1
|
Aebisher D, Przygórzewska A, Myśliwiec A, Dynarowicz K, Krupka-Olek M, Bożek A, Kawczyk-Krupka A, Bartusik-Aebisher D. Current Photodynamic Therapy for Glioma Treatment: An Update. Biomedicines 2024; 12:375. [PMID: 38397977 PMCID: PMC10886821 DOI: 10.3390/biomedicines12020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Research on the development of photodynamic therapy for the treatment of brain tumors has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits, such as an improved median rate of survival. The use of photodynamic therapy is characterized by relatively few side effects, which is a significant advantage compared to conventional treatment methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy. Continued research in this area could bring significant advances, influencing future standards of treatment for this difficult and deadly disease.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Magdalena Krupka-Olek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Andrzej Bożek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
2
|
Hsia T, Small JL, Yekula A, Batool SM, Escobedo AK, Ekanayake E, You DG, Lee H, Carter BS, Balaj L. Systematic Review of Photodynamic Therapy in Gliomas. Cancers (Basel) 2023; 15:3918. [PMID: 37568734 PMCID: PMC10417382 DOI: 10.3390/cancers15153918] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Over the last 20 years, gliomas have made up over 89% of malignant CNS tumor cases in the American population (NIH SEER). Within this, glioblastoma is the most common subtype, comprising 57% of all glioma cases. Being highly aggressive, this deadly disease is known for its high genetic and phenotypic heterogeneity, rendering a complicated disease course. The current standard of care consists of maximally safe tumor resection concurrent with chemoradiotherapy. However, despite advances in technology and therapeutic modalities, rates of disease recurrence are still high and survivability remains low. Given the delicate nature of the tumor location, remaining margins following resection often initiate disease recurrence. Photodynamic therapy (PDT) is a therapeutic modality that, following the administration of a non-toxic photosensitizer, induces tumor-specific anti-cancer effects after localized, wavelength-specific illumination. Its effect against malignant glioma has been studied extensively over the last 30 years, in pre-clinical and clinical trials. Here, we provide a comprehensive review of the three generations of photosensitizers alongside their mechanisms of action, limitations, and future directions.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 554414, USA
| | - Syeda M. Batool
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ana K. Escobedo
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emil Ekanayake
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Dong J, Wang F, Xu Y, Gao X, Zhao H, Zhang J, Wang N, Liu Z, Yan X, Jin J, Ji H, Cheng R, Wang L, Qiu Z, Hu S. Using mixed reality technique combines multimodal imaging signatures to adjuvant glioma photodynamic therapy. Front Med (Lausanne) 2023; 10:1171819. [PMID: 37534312 PMCID: PMC10392826 DOI: 10.3389/fmed.2023.1171819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Background Photodynamic therapy (PDT) promotes significant tumor regression and extends the lifetime of patients. The actual operation of PDT often relies on the subjective judgment of experienced neurosurgeons. Patients can benefit more from precisely targeting PDT's key operating zones. Methods We used magnetic resonance imaging scans and created 3D digital models of patient anatomy. Multiple images are aligned and merged in STL format. Neurosurgeons use HoloLens to import reconstructions and assist in PDT execution. Also, immunohistochemistry was used to explore the association of hyperperfusion sites in PDT of glioma with patient survival. Results We constructed satisfactory 3D visualization of glioma models and accurately localized the hyperperfused areas of the tumor. Tumor tissue taken in these areas was rich in CD31, VEGFA and EGFR that were associated with poor prognosis in glioma patients. We report the first study using MR technology combined with PDT in the treatment of glioma. Based on this model, neurosurgeons can focus PDT on the hyperperfused area of the glioma. A direct benefit was expected for the patients in this treatment. Conclusion Using the Mixed Reality technique combines multimodal imaging signatures to adjuvant glioma PDT can better exploit the vascular sealing effect of PDT on glioma.
Collapse
Affiliation(s)
- Jiawei Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuyun Xu
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xin Gao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiheng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhihui Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiuwei Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hang Ji
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiqi Cheng
- Heilongjiang Tuomeng Technology Co., Ltd, Harbin, China
| | - Lihai Wang
- College of Engineering and Technology, Northeast Forestry University, Harbin, China
| | - Zhaowen Qiu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Bhanja D, Wilding H, Baroz A, Trifoi M, Shenoy G, Slagle-Webb B, Hayes D, Soudagar Y, Connor J, Mansouri A. Photodynamic Therapy for Glioblastoma: Illuminating the Path toward Clinical Applicability. Cancers (Basel) 2023; 15:3427. [PMID: 37444537 DOI: 10.3390/cancers15133427] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma (GBM) is the most common adult brain cancer. Despite extensive treatment protocols comprised of maximal surgical resection and adjuvant chemo-radiation, all glioblastomas recur and are eventually fatal. Emerging as a novel investigation for GBM treatment, photodynamic therapy (PDT) is a light-based modality that offers spatially and temporally specific delivery of anti-cancer therapy with limited systemic toxicity, making it an attractive option to target GBM cells remaining beyond the margins of surgical resection. Prior PDT approaches in GBM have been predominantly based on 5-aminolevulinic acid (5-ALA), a systemically administered drug that is metabolized only in cancer cells, prompting the release of reactive oxygen species (ROS), inducing tumor cell death via apoptosis. Hence, this review sets out to provide an overview of current PDT strategies, specifically addressing both the potential and shortcomings of 5-ALA as the most implemented photosensitizer. Subsequently, the challenges that impede the clinical translation of PDT are thoroughly analyzed, considering relevant gaps in the current PDT literature, such as variable uptake of 5-ALA by tumor cells, insufficient tissue penetrance of visible light, and poor oxygen recovery in 5-ALA-based PDT. Finally, novel investigations with the potential to improve the clinical applicability of PDT are highlighted, including longitudinal PDT delivery, photoimmunotherapy, nanoparticle-linked photosensitizers, and near-infrared radiation. The review concludes with commentary on clinical trials currently furthering the field of PDT for GBM. Ultimately, through addressing barriers to clinical translation of PDT and proposing solutions, this review provides a path for optimizing PDT as a paradigm-shifting treatment for GBM.
Collapse
Affiliation(s)
- Debarati Bhanja
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Hannah Wilding
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Angel Baroz
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Mara Trifoi
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Becky Slagle-Webb
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Daniel Hayes
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA 16801, USA
| | | | - James Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State Health, Hershey, PA 17033, USA
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State Health, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Cramer SW, Chen CC. Photodynamic Therapy for the Treatment of Glioblastoma. Front Surg 2020; 6:81. [PMID: 32039232 PMCID: PMC6985206 DOI: 10.3389/fsurg.2019.00081] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common form of adult brain cancer and remains one of the deadliest of human cancers. The current standard-of-care involves maximal tumor resection followed by treatment with concurrent radiation therapy and the chemotherapy temozolomide. Recurrence after this therapy is nearly universal within 2 years of diagnosis. Notably, >80% of recurrence is found in the region adjacent to the resection cavity. The need for improved local control in this region, thus remains unmet. The FDA approval of 5-aminolevulinic acid (5-ALA) for fluorescence guided glioblastoma resection renewed interests in leveraging this agent as a means to administer photodynamic therapy (PDT). Here we review the general principles of PDT as well as the available literature on PDT as a glioblastoma therapeutic platform.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Dubey SK, Pradyuth SK, Saha RN, Singhvi G, Alexander A, Agrawal M, Shapiro BA, Puri A. Application of photodynamic therapy drugs for management of glioma. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619300192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human gliomas are one of the most prevalent and challenging-to-treat adult brain tumors, and thus result in high morbidity and mortality rates worldwide. Current research and treatments of gliomas include surgery associated with conventional chemotherapy, use of biologicals, radiotherapy, and medical device applications. The selected treatment options are often guided by the category and aggressiveness of this deadly disease and the patient’s conditions. However, the effectiveness of these approaches is still limited due to poor drug efficacy (including delivery to desired sites), undesirable side effects, and high costs associated with therapies. In addition, the degree of leakiness of the blood–brain barrier (BBB) that regulates trafficking of molecules in and out of the brain also modulates accumulation of adequate drug levels to tumor sites. Active research is being pursued to overcome these limitations to obtain a superior therapeutic index and enhanced patient survival. One area of development in this direction focuses on the localized application of photodynamic therapy (PDT) drugs to cure brain cancers. PDT molecules potentially utilize multiple pathways based on their ability to generate reactive oxygen species (ROS) upon photoactivation by a suitable light source. In this communication, we have attempted to provide a brief overview of PDT and cancer, photoactivation pathways, mechanism of tumor destruction, effect of PDT on tumor cell viability, immune activation, various research attempted by applying PDT in combination with novel strategies to treat glioma, role of BBB and clinical status of PDT therapy for glioma treatment.
Collapse
Affiliation(s)
- Sunil K. Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Sai K. Pradyuth
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Ranendra N. Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, 345055, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Amit Alexander
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Bruce A. Shapiro
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research National Cancer Institute — Frederick, Frederick, MD, 21702, USA
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research National Cancer Institute — Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
7
|
Xu Y, Zhang J, Liu X, Huo P, Zhang Y, Chen H, Tian Q, Zhang N. MMP-2-responsive gelatin nanoparticles for synergistic tumor therapy. Pharm Dev Technol 2019; 24:1002-1013. [PMID: 31109231 DOI: 10.1080/10837450.2019.1621899] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/17/2022]
Abstract
Purpose: The aim of this study was to develop a new type of nanoparticle that enables concentrated drug release and synergistic therapy. Methods: To this end, we synthesized Ge-DOX-5-ALA/NPs, which can enter tumor tissue by the enhanced permeability and retention (EPR) effect and release drugs by utilizing matrix metalloproteinase-2 (MMP-2). Results: The Ge-DOX-5-ALA/NPs were synthesized by a single-phase coacervation method, and the hydrodynamic diameters of all nanoparticles were under 200 nm. The drug encapsulation and loading efficiency were 92%±1.13% and 6.02% ± 0.48%, respectively. Gelatin zymography was performed to detect the expression of MMP-2 in MCF-7 and Hs578Bst cells. The nanoparticle sensitivity to MMP-2 was examined by comparing the release behavior and cellular uptake in MCF-7 and Hs578Bst cells. In vitro cytotoxicity of the nanoparticles was measured by an MTT assay. An in vivo anticancer efficacy study in S180-bearing mice demonstrated that Ge-DOX-5-ALA/NPs provide a substantial curative effect. A pharmacokinetics experiment demonstrated that the nanoparticles have a sustained release effect. Conclusions: The MMP-2-triggered nanoparticles can transport drugs successfully into the tumor site and enable combined chemotherapy and photodynamic therapy.
Collapse
Affiliation(s)
- Yue Xu
- a School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , China
| | - Jiangnan Zhang
- a School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , China
| | - Xinyang Liu
- a School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , China
| | - Pengchao Huo
- a School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , China
| | - Yan Zhang
- a School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , China
| | - Hui Chen
- a School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , China
| | - Qingfeng Tian
- b College of Public Health , Zhengzhou University , Zhengzhou , China
| | - Nan Zhang
- a School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , China
| |
Collapse
|
8
|
Gandhi S, Tayebi Meybodi A, Belykh E, Cavallo C, Zhao X, Syed MP, Borba Moreira L, Lawton MT, Nakaji P, Preul MC. Survival Outcomes Among Patients With High-Grade Glioma Treated With 5-Aminolevulinic Acid-Guided Surgery: A Systematic Review and Meta-Analysis. Front Oncol 2019; 9:620. [PMID: 31380272 PMCID: PMC6652805 DOI: 10.3389/fonc.2019.00620] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023] Open
Abstract
Background: High-grade glioma (HGG) is associated with a dismal prognosis despite significant advances in adjuvant therapies, including chemotherapy, immunotherapy, and radiotherapy. Extent of resection continues to be the most important independent prognosticator of survival. This underlines the significance of increasing gross total resection (GTR) rates by using adjunctive intraoperative modalities to maximize resection with minimal neurological morbidity. 5-aminolevulinic acid (5-ALA) is the only US Food and Drug Administration–approved intraoperative optical agent used for fluorescence-guided surgical resection of gliomas. Despite several studies on the impact of intra-operative 5-ALA use on the extent of HGG resection, a clear picture of how such usage affects patient survival is still unavailable. Methods: A systematic review was conducted of all relevant studies assessing the GTR rate and survival outcomes [overall survival (OS) and progression-free survival (PFS)] in HGG. A meta-analysis of eligible studies was performed to assess the influence of 5-ALA-guided resection on improving GTR, OS, and PFS. GTR was defined as >95% resection. Results: Of 23 eligible studies, 19 reporting GTR rates were included in the meta-analysis. The pooled cohort had 998 patients with HGG, including 796 with newly diagnosed cases. The pooled GTR rate among patients with 5-ALA–guided resection was 76.8% (95% confidence interval, 69.1–82.9%). A comparative subgroup analysis of 5-ALA–guided vs. conventional surgery (controlling for within-study covariates) showed a 26% higher GTR rate in the 5-ALA subgroup (odds ratio, 3.8; P < 0.001). There were 11 studies eligible for survival outcome analysis, 4 of which reported PFS. The pooled mean difference in OS and PFS was 3 and 1 months, respectively, favoring 5-ALA vs. control (P < 0.001). Conclusions: This meta-analysis shows a significant increase in GTR rate with 5-ALA–guided surgical resection, with a higher weighted GTR rate (~76%) than the pivotal phase III study (~65%). Pooled analysis showed a small yet significant increase in survival measures associated with the use of 5-ALA. Despite the statistically significant results, the low level of evidence and heterogeneity across these studies make it difficult to conclusively report an independent association between 5-ALA use and survival outcomes in HGG. Additional randomized control studies are required to delineate the role of 5-ALA in survival outcomes in HGG.
Collapse
Affiliation(s)
- Sirin Gandhi
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Ali Tayebi Meybodi
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Evgenii Belykh
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Claudio Cavallo
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Xiaochun Zhao
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Masood Pasha Syed
- Department of Medicine, Saint Vincent Hospital, Worcester, MA, United States
| | - Leandro Borba Moreira
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Michael T Lawton
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Peter Nakaji
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
9
|
Mahmoudi K, Garvey KL, Bouras A, Cramer G, Stepp H, Jesu Raj JG, Bozec D, Busch TM, Hadjipanayis CG. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol 2019; 141:595-607. [PMID: 30659522 PMCID: PMC6538286 DOI: 10.1007/s11060-019-03103-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Photodynamic therapy (PDT) is a two-step treatment involving the administration of a photosensitive agent followed by its activation at a specific light wavelength for targeting of tumor cells. MATERIALS/METHODS A comprehensive review of the literature was performed to analyze the indications for PDT, mechanisms of action, use of different photosensitizers, the immunomodulatory effects of PDT, and both preclinical and clinical studies for use in high-grade gliomas (HGGs). RESULTS PDT has been approved by the United States Food and Drug Administration (FDA) for the treatment of premalignant and malignant diseases, such as actinic keratoses, Barrett's esophagus, esophageal cancers, and endobronchial non-small cell lung cancers, as well as for the treatment of choroidal neovascularization. In neuro-oncology, clinical trials are currently underway to demonstrate PDT efficacy against a number of malignancies that include HGGs and other brain tumors. Both photosensitizers and photosensitizing precursors have been used for PDT. 5-aminolevulinic acid (5-ALA), an intermediate in the heme synthesis pathway, is a photosensitizing precursor with FDA approval for PDT of actinic keratosis and as an intraoperative imaging agent for fluorescence-guided visualization of malignant tissue during glioma surgery. New trials are underway to utilize 5-ALA as a therapeutic agent for PDT of the intraoperative resection cavity and interstitial PDT for inoperable HGGs. CONCLUSION PDT remains a promising therapeutic approach that requires further study in HGGs. Use of 5-ALA PDT permits selective tumor targeting due to the intracellular metabolism of 5-ALA. The immunomodulatory effects of PDT further strengthen its use for treatment of HGGs and requires a better understanding. The combination of PDT with adjuvant therapies for HGGs will need to be studied in randomized, controlled studies.
Collapse
Affiliation(s)
- K Mahmoudi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K L Garvey
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Cramer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Stepp
- Laser-Research Laboratory, LIFE-Center, Department of Urology, University Hospital of Munich, Munich, Germany
| | - J G Jesu Raj
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D Bozec
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - C G Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Mount Sinai Beth Israel, New York, NY, USA.
| |
Collapse
|
10
|
Acker G, Palumbo A, Neri D, Vajkoczy P, Czabanka M. F8-SIP mediated targeted photodynamic therapy leads to microvascular dysfunction and reduced glioma growth. J Neurooncol 2016; 129:33-8. [PMID: 27188647 DOI: 10.1007/s11060-016-2143-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
The extra domain A (ED A) of fibronectin has been identified as a tumor vessel specific neovascular marker in glioma. Antibody based vascular targeting against ED A of fibronectin allows precise accumulation of photosensitizer in glioma microvasculature and thereby promises to overcome drawbacks of current photodynamic therapy (PDT) for glioma treatment. Our aim was to characterize microcirculatory consequences of F8-small immunoprotein (SIP) mediated PDT by intravital microscopy (IVM) and to analyze the effects on glioma growth. For IVM SF126 glioma cells were implanted into dorsal skinfold-chamber of nude mice. PDT was performed after intravenous injection of photosensitizer (PS)-coupled F8-SIP or PBS (n = 4). IVM was performed before and after PDT for 4 days. Analysis included total and functional (TVD, FVD) vessel densities, perfusion index (PI), microvascular permeability and blood flow rate (Q). To assess tumor growth SF126 glioma cells were implanted subcutaneously. PDT was performed as a single and repetitive treatment after PS-F8-SIP injection (n = 5). Subcutaneous tumors were treated after uncoupled F8-SIP injection as control group (n = 5). PDT induced microvascular stasis and thrombosis with reduced FVD (24 h: 115.98 ± 0.7 vs. 200.8 ± 61.9 cm/cm(2)) and PI (39 ± 11 vs. 70 ± 10 %), whereas TVD was not altered (298 ± 39.2 vs. 278.2 ± 51 cm/cm(2)). Microvascular dysfunction recovered 4 days after treatment. Microvascular dysfunction led to a temporary reduction of glioma growth in the first 48 h after treatment with complete recovery 5 days after treatment. Repetitive PDT resulted in sustained reduction of tumor growth. F8-SIP mediated PDT leads to microvascular dysfunction and reduced glioma growth in a preclinical glioma model with recovery of microcirculation 4 days after treatment. Repetitive application of PDT overcomes microvascular recovery and leads to prolonged antiglioma effects.
Collapse
Affiliation(s)
- G Acker
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - A Palumbo
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH, Zurich, Switzerland
| | - D Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH, Zurich, Switzerland
| | - P Vajkoczy
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - M Czabanka
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|