1
|
Zhou Q, Liu Z, Yu C, Wang Q, Zhuang W, Tang Y, Zheng T, Yu H, Zhou D. Effect of combined treatment with transcranial direct current stimulation and repetitive transcranial magnetic stimulation compared to monotherapy for the treatment of chronic insomnia: a randomised, double-blind, parallel-group, controlled trial. BMC Med 2024; 22:538. [PMID: 39551773 PMCID: PMC11571512 DOI: 10.1186/s12916-024-03751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Chronic insomnia increases the risk of various health problems and mental illness. Existing research suggests promise for both transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) in treating chronic insomnia individually. However, the combined effects of tDCS and rTMS on this condition remain unclear. This study aimed to verify the efficacy and safety of tDCS combined with rTMS for the treatment of adult patients with chronic insomnia. METHODS This was a randomised double-blind parallel-group controlled study. Overall, 157 participants with chronic insomnia were randomly assigned to one of three neurotherapy regimens: tDCS + rTMS, sham tDCS + rTMS, or tDCS + sham rTMS. All groups received 20 treatment sessions over 4 consecutive weeks. The primary outcome was the change in patients' sleep as assessed by the Pittsburgh Sleep Quality Index (PSQI) at 2 weeks, 4 weeks, and 3 months of follow-up. The secondary outcome was the assessment of different dimensions of depression and anxiety in patients through the Hamilton Depression Scale (HAMD) and Hamilton Anxiety Scale (HAMA), as well as the occurrence of adverse events. RESULTS Throughout the intervention and after the 3-month follow-up, the tDCS + rTMS group had significantly reduced total PSQI scores compared with the other two groups [tDCS + rTMS, 9.21 vs. sham tDCS + rTMS, 10.03; difference - 1.10; 95% confidence interval (CI), - 1.82 to - 0.38; p = 0.003; tDCS + rTMS, 9.21 vs. tDCS + sham rTMS, 10.76; difference - 2.14; 95% CI, - 2.90 to - 1.38; p < 0.001; sham tDCS + rTMS, 10.03 vs. tDCS + sham rTMS, 10.76; difference - 1.04; 95% CI, - 1.82 to - 0.26; p = 0.010), indicating improved overall sleep quality. Total HAMD and insomnia factor scores were significantly lower in the tDCS + rTMS group than in the other two groups after treatment (p < 0.05). Notably, no adverse events or serious adverse reactions were observed during the study period. CONCLUSIONS Combining tDCS with rTMS effectively relieved insomnia symptoms, achieving a significant therapeutic effect after 2-week of intervention, and demonstrating the persistence of treatment effects in later follow-up, emphasising the advantages of combination therapy in improving treatment stability and long-term benefits, reflecting the rapid and effective augmentation of combination therapy. This combined therapy may serve as a safe and effective treatment for adults with chronic insomnia. TRIAL REGISTRATION This study was registered as a clinical trial with the China Clinical Trial Registration Center (ChiCTR2100052681).
Collapse
Affiliation(s)
- Qi Zhou
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Zhiwang Liu
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Chang Yu
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Qiao Wang
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Wenhao Zhuang
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Yafang Tang
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Tianming Zheng
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Haihang Yu
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Dongsheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, 315201, China.
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
2
|
Qiu J, Xu J, Cai Y, Li M, Peng Y, Xu Y, Chen G. Catgut embedding in acupoints combined with repetitive transcranial magnetic stimulation for the treatment of postmenopausal osteoporosis: study protocol for a randomized clinical trial. Front Neurol 2024; 15:1295429. [PMID: 38606276 PMCID: PMC11008468 DOI: 10.3389/fneur.2024.1295429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background To date, the clinical modulation for bone metabolism based on the neuro-bone mass regulation theory is still not popular. The stimulation of nerve systems to explore novel treatments for Postmenopausal osteoporosis (PMOP) is urgent and significant. Preliminary research results suggested that changes brain function and structure may play a crucial role in bone metabolism with PMOP. Thus, we set up a clinical trial to investigate the effect of the combination of repetitive transcranial magnetic stimulation (rTMS) and catgut embedding in acupoints (CEA) for PMOP and to elucidate the central mechanism of this neural stimulation in regulating bone metabolism. Method This trial is a prospective and randomized controlled trial. 96 PMOP participants will be randomized in a 1:1:1 ratio into a CEA group, an rTMS group, or a combined one. Participants will receive CEA, rTMS, or combined therapy for 3 months with 8 weeks of follow-up. The primary outcomes will be the changes in Bone Mineral Density scores, total efficiency of Chinese Medicine Symptoms before and after treatment. Secondary outcomes include the McGill Pain Questionnaire Short-Form, Osteoporosis Symptom Score, Mini-Mental State Examination, and Beck Depression Inventory-II. The leptin, leptin receptor, and norepinephrine levels of peripheral blood must be measured before and after treatment. Adverse events that occur during the trial will be recorded. Discussion CEA achieves brain-bone mass regulation through the bottom-up way of peripheral-central while rTMS achieves it through the top-down stimulation of central-peripheral. CEA combined with rTMS can stimulate the peripheral-central at the same time and promote peripheral bone mass formation. The combination of CEA and rTMS may play a coordinating, synergistic, and side-effect-reducing role, which is of great clinical significance in exploring better treatment options for PMOP.Clinical trial registration: https://www.chictr.org.cn/, identifier ChiCTR2300073863.
Collapse
Affiliation(s)
- Jingjing Qiu
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - JiaZi Xu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingyue Cai
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minghong Li
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingsin Peng
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yunxiang Xu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guizhen Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
3
|
Guo Y, Zhao X, Liu X, Liu J, Li Y, Yue L, Yuan F, Zhu Y, Sheng X, Yu D, Yuan K. Electroencephalography microstates as novel functional biomarkers for insomnia disorder. Gen Psychiatr 2023; 36:e101171. [PMID: 38143715 PMCID: PMC10749048 DOI: 10.1136/gpsych-2023-101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Background Insomnia disorder (ID) is one of the most common mental disorders. Research on ID focuses on exploring its mechanism of disease, novel treatments and treatment outcome prediction. An emerging technique in this field is the use of electroencephalography (EEG) microstates, which offer a new method of EEG feature extraction that incorporates information from both temporal and spatial dimensions. Aims To explore the electrophysiological mechanisms of repetitive transcranial magnetic stimulation (rTMS) for ID treatment and use baseline microstate metrics for the prediction of its efficacy. Methods This study included 60 patients with ID and 40 age-matched and gender-matched good sleep controls (GSC). Their resting-state EEG microstates were analysed, and the Pittsburgh Sleep Quality Index (PSQI) and polysomnography (PSG) were collected to assess sleep quality. The 60 patients with ID were equally divided into active and sham groups to receive rTMS for 20 days to test whether rTMS had a moderating effect on abnormal microstates in patients with ID. Furthermore, in an independent group of 90 patients with ID who received rTMS treatment, patients were divided into optimal and suboptimal groups based on their median PSQI reduction rate. Baseline EEG microstates were used to build a machine-learning predictive model for the effects of rTMS treatment. Results The class D microstate was less frequent and contribute in patients with ID, and these abnormalities were associated with sleep onset latency as measured by PSG. Additionally, the abnormalities were partially reversed to the levels observed in the GSC group following rTMS treatment. The baseline microstate characteristics could predict the therapeutic effect of ID after 20 days of rTMS, with an accuracy of 80.13%. Conclusions Our study highlights the value of EEG microstates as functional biomarkers of ID and provides a new perspective for studying the neurophysiological mechanisms of ID. In addition, we predicted the therapeutic effect of rTMS on ID based on the baseline microstates of patients with ID. This finding carries great practical significance for the selection of therapeutic options for patients with ID.
Collapse
Affiliation(s)
- Yongjian Guo
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xumeng Zhao
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyang Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jiayi Liu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Li
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lirong Yue
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yifei Zhu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaona Sheng
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| |
Collapse
|
4
|
Krone LB, Fehér KD, Rivero T, Omlin X. Brain stimulation techniques as novel treatment options for insomnia: A systematic review. J Sleep Res 2023; 32:e13927. [PMID: 37202368 PMCID: PMC10909439 DOI: 10.1111/jsr.13927] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Despite the success of cognitive behavioural therapy for insomnia and recent advances in pharmacotherapy, many patients with insomnia do not sufficiently respond to available treatments. This systematic review aims to present the state of science regarding the use of brain stimulation approaches in treating insomnia. To this end, we searched MEDLINE, Embase and PsycINFO from inception to 24 March 2023. We evaluated studies that compared conditions of active stimulation with a control condition or group. Outcome measures included standardized insomnia questionnaires and/or polysomnography in adults with a clinical diagnosis of insomnia. Our search identified 17 controlled trials that met inclusion criteria, and assessed a total of 967 participants using repetitive transcranial magnetic stimulation, transcranial electric stimulation, transcutaneous auricular vagus nerve stimulation or forehead cooling. No trials using other techniques such as deep brain stimulation, vestibular stimulation or auditory stimulation met the inclusion criteria. While several studies report improvements of subjective and objective sleep parameters for different repetitive transcranial magnetic stimulation and transcranial electric stimulation protocols, important methodological limitations and risk of bias limit their interpretability. A forehead cooling study found no significant group differences in the primary endpoints, but better sleep initiation in the active condition. Two transcutaneous auricular vagus nerve stimulation trials found no superiority of active stimulation for most outcome measures. Although modulating sleep through brain stimulation appears feasible, gaps in the prevailing models of sleep physiology and insomnia pathophysiology remain to be filled. Optimized stimulation protocols and proof of superiority over reliable sham conditions are indispensable before brain stimulation becomes a viable treatment option for insomnia.
Collapse
Affiliation(s)
- Lukas B. Krone
- University Hospital of Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
- Centre for Experimental NeurologyUniversity of BernBernSwitzerland
- Department of Physiology Anatomy and Genetics, Sir Jules Thorn Sleep and Circadian Neuroscience InstituteUniversity of OxfordOxfordUK
- The Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Kristoffer D. Fehér
- University Hospital of Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
- Geneva University Hospitals (HUG), Division of Psychiatric SpecialtiesUniversity of GenevaGenevaSwitzerland
| | - Tania Rivero
- Medical LibraryUniversity Library of Bern, University of BernBernSwitzerland
| | - Ximena Omlin
- University Hospital of Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
- Geneva University Hospitals (HUG), Division of Psychiatric SpecialtiesUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
5
|
Wang S, Lan Y, Liu Z, Xu S, Wu X. Effects of different interventions on insomnia in adults: Systematic review and network meta-analysis. J Psychiatr Res 2023; 165:140-149. [PMID: 37499485 DOI: 10.1016/j.jpsychires.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/04/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE Insomnia is a common sleep disorder. There are many clinical-intervention methods for treating this condition, but thus far, the most effective method has not been determined. METHODS We conducted a network meta-analysis by including random evidence of insomnia improvement in people over 18 years old, without other physical diseases. From January 1, 1990 to June 15, 2022, we searched multiple electronic databases for randomized controlled trials of different insomnia-related, clinical-intervention methods. R software was used to analyze 10 indices, in order to evaluate the effect of sleep improvement. Primary outcomes comprised Pittsburgh sleep quality-index (PSQI) scores and insomnia severity-index (ISI) scores. RESULTS Finally, 122 randomized controlled trials were included in our study. For the PSQI scores, we found the sequence of intervention measures by effect to be as follows: electroacupuncture, acupuncture, repetitive transcranial magnetic stimulation (rTMS), essential oils, herbal medicine, traditional Western medicine, Tai Chi and Baduanjin, music, supplements, cognitive behavioral therapy for insomnia (CBT-I), and exercise. The results for ISI were similar to those for PSQI, but with slight differences. CONCLUSION Our research results indicate that various measures have a certain effect on improving sleep, among which the effect of instruments is more prominent. The curative effect of placebo groups was better than that of blank control groups. There is essentially no statistical difference in detailed classification within the same intervention category.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yueyan Lan
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zixiu Liu
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shuang Xu
- Library of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaomei Wu
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
6
|
Guo Y, Zhao X, Zhang X, Li M, Liu X, Lu L, Liu J, Li Y, Zhang S, Yue L, Li J, Liu J, Zhu Y, Zhu Y, Sheng X, Yu D, Yuan K. Effects on resting-state EEG phase-amplitude coupling in insomnia disorder patients following 1 Hz left dorsolateral prefrontal cortex rTMS. Hum Brain Mapp 2023; 44:3084-3093. [PMID: 36919444 PMCID: PMC10171521 DOI: 10.1002/hbm.26264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Despite burgeoning evidence for cortical hyperarousal in insomnia disorder, the existing results on electroencephalography spectral features are highly heterogeneous. Phase-amplitude coupling, which refers to the modulation of the low-frequency phase to a high-frequency amplitude, is probably a more sensitive quantitative measure for characterizing abnormal neural oscillations and explaining the therapeutic effect of repetitive transcranial magnetic stimulation in the treatment of patients with insomnia disorder. Sixty insomnia disorder patients were randomly divided into the active and sham treatment groups to receive 4 weeks of repetitive transcranial magnetic stimulation treatment. Behavioral assessments, resting-state electroencephalography recordings, and sleep polysomnography recordings were performed before and after repetitive transcranial magnetic stimulation treatment. Forty good sleeper controls underwent the same assessment. We demonstrated that phase-amplitude coupling values in the frontal and temporal lobes were weaker in Insomnia disorder patients than in those with good sleeper controls at baseline and that phase-amplitude coupling values near the intervention area were significantly enhanced after active repetitive transcranial magnetic stimulation treatment. Furthermore, the enhancement of phase-amplitude coupling values was significantly correlated with the improvement of sleep quality. This study revealed the potential of phase-amplitude coupling in assessing the severity of insomnia disorder and the efficacy of repetitive transcranial magnetic stimulation treatment, providing new insights on the abnormal physiological mechanisms and future treatments for insomnia disorder.
Collapse
Affiliation(s)
- Yongjian Guo
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Xumeng Zhao
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaozi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Minpeng Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaoyang Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Ling Lu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Jiayi Liu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yan Li
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Shan Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Lirong Yue
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Jun Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yifei Zhu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaona Sheng
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, People's Republic of China
| | - Kai Yuan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China.,Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, People's Republic of China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Lanza G, Fisicaro F, Cantone M, Pennisi M, Cosentino FII, Lanuzza B, Tripodi M, Bella R, Paulus W, Ferri R. Repetitive transcranial magnetic stimulation in primary sleep disorders. Sleep Med Rev 2023; 67:101735. [PMID: 36563570 DOI: 10.1016/j.smrv.2022.101735] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widely used non-invasive neuromodulatory technique. When applied in sleep medicine, the main hypothesis explaining its effects concerns the modulation of synaptic plasticity and the strength of connections between the brain areas involved in sleep disorders. Recently, there has been a significant increase in the publication of rTMS studies in primary sleep disorders. A multi-database-based search converges on the evidence that rTMS is safe and feasible in chronic insomnia, obstructive sleep apnea syndrome (OSAS), restless legs syndrome (RLS), and sleep deprivation-related cognitive deficits, whereas limited or no data are available for narcolepsy, sleep bruxism, and REM sleep behavior disorder. Regarding efficacy, the stimulation of the dorsolateral prefrontal cortex bilaterally, right parietal cortex, and dominant primary motor cortex (M1) in insomnia, as well as the stimulation of M1 leg area bilaterally, left primary somatosensory cortex, and left M1 in RLS reduced subjective symptoms and severity scale scores, with effects lasting for up to weeks; conversely, no relevant effect was observed in OSAS and narcolepsy. Nevertheless, several limitations especially regarding the stimulation protocols need to be considered. This review should be viewed as a step towards the further contribution of individually tailored neuromodulatory techniques for sleep disorders.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy.
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariagiovanna Cantone
- Neurology Unit, University Hospital Policlinico "G. Rodolico-San Marco", Catania, Italy; Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Bartolo Lanuzza
- Department of Neurology IC and Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Mariangela Tripodi
- Department of Neurology IC and Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Science and Advanced Technologies, University of Catania, Catania, Italy
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
8
|
Liguori C, Mombelli S, Fernandes M, Zucconi M, Plazzi G, Ferini-Strambi L, Logroscino G, Mercuri NB, Filardi M. The evolving role of quantitative actigraphy in clinical sleep medicine. Sleep Med Rev 2023; 68:101762. [PMID: 36773596 DOI: 10.1016/j.smrv.2023.101762] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
Actigraphy has a consolidated role in Insomnia and Circadian Rhythm Sleep-Wake Disorders (CRSWD) and recent studies have highlighted the use of actigraphy for narcolepsy and REM sleep behaviour disorder (RBD). This review aims at summarising the results of studies published over the last decade regarding the use of actigraphy. Thirty-five studies proved eligible, and results were analysed separately for insomnia, narcolepsy and RBD. Actigraphy showed to consistently differentiate insomnia patients from healthy controls. Furthermore, the application of advanced analytical techniques has been shown to provide both unique insights into the physiology of insomnia and sleep misperception and to improve the specificity of actigraphy in detecting wakefulness within sleep periods. Regarding narcolepsy, several studies showed that actigraphy can detect peculiar sleep/wake disruption and the effects of pharmacological treatments. Finally, although the number of studies in RBD patients is still limited, the available evidence indicates a reduced amplitude of the activity pattern, sleep-wake rhythm dysregulation and daytime sleepiness. Therefore, the potential use of these markers as predictors of phenoconversion should be further explored. In conclusion, quantitative actigraphy presents a renewed interest when considering the possibility of using actigraphy in clinical sleep medicine to diagnose, monitor, and follow sleep disorders other than CRSWD.
Collapse
Affiliation(s)
- Claudio Liguori
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy.
| | - Samantha Mombelli
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, Milan, Italy
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Marco Zucconi
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, Milan, Italy
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Luigi Ferini-Strambi
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, Milan, Italy; "Vita-Salute" San Raffaele University, Milan, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy; Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Marco Filardi
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy; Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Italy
| |
Collapse
|
9
|
Qi S, Zhang Y, Li X, Sun C, Ma X, Li S, Li L, Ren K, Xi M, Huang ZG. Improved Functional Organization in Patients With Primary Insomnia After Individually-Targeted Transcranial Magnetic Stimulation. Front Neurosci 2022; 16:859440. [PMID: 35360154 PMCID: PMC8960275 DOI: 10.3389/fnins.2022.859440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Primary insomnia (PI) is among the most prevalent sleep-related disorders and has a far-reaching impact on daytime functioning. Repetitive transcranial magnetic stimulation (rTMS) has drawn attention because of its effectiveness and safety. The purpose of the current study was to detect changes in the topological organization of whole-brain functional networks and to determine their associations with the clinical treatment effects of rTMS. Resting-state functional magnetic resonance imaging (rsfMRI) data from 32 patients with PI were collected and compared with findings from 32 age- and gender-matched healthy controls (HCs). The patients were treated with Stanford accelerated intelligent neuromodulation therapy, which is a recently validated neuroscience-informed accelerated intermittent theta-burst stimulation protocol. Graph theoretical analysis was used to construct functional connectivity matrices and to extract the attribute features of small-world networks in insomnia. Scores on the Insomnia Severity Index (ISI), Pittsburgh Sleep Quality Index, Self-Rating Anxiety Scale, Self-Rating Depression Scale, and the associations between these clinical characteristics and functional metrics, were the primary outcomes. At baseline, the patients with PI showed inefficient small-world property and aberrant functional segregation and functional integration compared with the HCs. These properties showed renormalization after individualized rTMS treatment. Furthermore, low functional connectivity between the right insula and left medial frontal gyrus correlated with improvement in ISI scores. We highlight functional network dysfunctions in PI patients and provide evidence into the pathophysiological mechanisms involved and the possible mode of action of rTMS.
Collapse
Affiliation(s)
- Shun Qi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Brain Modulation and Scientific Research Center, Xi’an, China
| | - Yao Zhang
- Xijing Hospital, The Air Force Military Medical University, Xi’an, China
| | - Xiang Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Neuro-Informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, China
- Xi’an Solide Brain Control Medical Technology Company, Xi’an, China
| | - Chuanzhu Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Neuro-Informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, China
| | - Xiaowei Ma
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sanzhong Li
- Department of Neurosurgery, Xijing Hospital, The Air Force Military Medical University, Xi’an, China
| | - Li Li
- Center of Treatment and Rehabilitation of Severe Neurological Disorders, Xi’an International Medical Center Hospital, Xi’an, China
| | - Kai Ren
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Min Xi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Neuro-Informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, China
- Hospital of Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Min Xi,
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Neuro-Informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, China
- The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Zi-Gang Huang,
| |
Collapse
|
10
|
Shi X, Guo Y, Zhu L, Wu W, Hordacre B, Su X, Wang Q, Chen X, Lan X, Dang G. Electroencephalographic connectivity predicts clinical response to repetitive transcranial magnetic stimulation in patients with insomnia disorder. Sleep Med 2021; 88:171-179. [PMID: 34773788 DOI: 10.1016/j.sleep.2021.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Accumulating evidence suggests that low frequency repetitive transcranial magnetic stimulation (rTMS), which generally decreases cortical excitability and remodels plastic connectivity, improves sleep quality in patients with insomnia disorder. However, the effects of rTMS vary substantially across individuals and treatment is sometimes unsatisfactory, calling for biomarkers for predicting clinical outcomes. OBJECTIVE This study aimed to investigate whether functional connectivity of the target network in electroencephalography is associated with the clinical response to low frequency rTMS in patients with insomnia disorder. METHODS Twenty-five patients with insomnia disorder were subjected to 10 sessions of treatment with 1 Hz rTMS over the right dorsolateral prefrontal cortex. Resting-state electroencephalography was collected before rTMS. Pittsburgh Sleep Quality Index, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, and Mini-Mental State Exam were performed before and after rTMS treatment, with a follow-up after one month. Electroencephalographic connectivity was measured by the power envelope connectivity at the source level. Partial least squares regression identified models of connectivity that maximally accounted for the rTMS response. RESULTS Scores of Pittsburgh Sleep Quality Index, Hamilton Depression Rating Scale, and Hamilton Anxiety Rating Scale were decreased after rTMS and one-month later. Baseline weaker connectivity of a network in the beta and alpha bands between a brain region approximating the stimulated right dorsolateral prefrontal cortex and areas located in the frontal, insular, and limbic cortices was associated with a greater change in Pittsburgh Sleep Quality Index and Hamilton Depression Rating Scale following rTMS. CONCLUSIONS Low frequency rTMS could improve sleep quality and depressive moods in patients with insomnia disorder. Moreover, electroencephalographic functional connectivity would potentially be a robust biomarker for predicting the therapeutic effects.
Collapse
Affiliation(s)
- Xue Shi
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China; Shenzhen Bay Laboratory, Shenzhen, 518020, Guangdong, China
| | - Lin Zhu
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Wei Wu
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Australia
| | - Xiaolin Su
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Qian Wang
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Xiaoxia Chen
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Xiaoyong Lan
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Ge Dang
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
11
|
Ma H, Lin J, He J, Lo DHT, Tsang HWH. Effectiveness of TES and rTMS for the Treatment of Insomnia: Meta-Analysis and Meta-Regression of Randomized Sham-Controlled Trials. Front Psychiatry 2021; 12:744475. [PMID: 34744835 PMCID: PMC8569107 DOI: 10.3389/fpsyt.2021.744475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: Transcranial electric stimulation (TES) and repetitive transcranial magnetic stimulation (rTMS) have experienced significant development in treating insomnia. This review aims to examine the effectiveness of randomized sham-controlled trials of TES and rTMS in improving insomnia and examine potential moderators associated with the effect of the treatment. Methods: Nine electronic databases were searched for studies comparing the effects of TES/rTMS with sham group on insomnia from the inception of these databases to June 25, 2021, namely, Medline, Embase, PsycINFO, CINAHL, Cochrane Library, Web of Science, PubMed, ProQuest Dissertation and Thesis, and CNKI. Meta-analyses were conducted to examine the effect of TES and rTMS in treating insomnia. Univariate meta-regression was performed to explore potential treatment moderators that may influence the pooled results. Risk of bias was assessed by using the Cochrane Risk of Bias Tool. Results: A total of 16 TES studies and 27 rTMS studies were included in this review. The pooled results indicated that there was no significant difference between the TES group and the sham group in improving objective measures of sleep. rTMS was superior to its sham group in improving sleep efficiency, total sleep time, sleep onset latency, wake up after sleep onset, and number of awakenings (all p < 0.05). Both TES and rTMS were superior to their sham counterparts in improving sleep quality as measured by the Pittsburgh Sleep Quality Index at post-intervention. The weighted mean difference for TES and rTMS were -1.17 (95% CI: -1.98, -0.36) and -4.08 (95% CI: -4.86, -3.30), respectively. Gender, total treatment sessions, number of pulses per session, and length of treatment per session were associated with rTMS efficacy. No significant relationship was observed between TES efficacy and the stimulation parameters. Conclusions: It seems that TES and rTMS have a chance to play a decisive role in the therapy of insomnia. Possible dose-dependent and gender difference effects of rTMS are suggested.
Collapse
Affiliation(s)
- Haixia Ma
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Jingxia Lin
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Jiali He
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Dilys Hoi Ting Lo
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Hector W. H. Tsang
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| |
Collapse
|
12
|
Oroz R, Kung S, Croarkin PE, Cheung J. Transcranial magnetic stimulation therapeutic applications on sleep and insomnia: a review. SLEEP SCIENCE AND PRACTICE 2021. [DOI: 10.1186/s41606-020-00057-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractRepetitive transcranial magnetic stimulation (rTMS) is a neuromodulatory technique approved by the US Food and Drug Administration for use in treatment-resistant major depressive disorder. It works by generating localized magnetic fields that create depolarizing electrical currents in neurons a few centimeters below the scalp. This localized effect is believed to stimulate neural plasticity, activate compensatory processes, and influence cortical excitability. Additionally, rTMS has been used in a variety of clinical trials for neurological and psychiatric conditions such as anxiety, post-traumatic stress disorder and epilepsy. Beneficial effects in sleep parameters have been documented in these trials, as well as in major depressive disorder, and have led to an interest in using rTMS in the field of sleep medicine for specific disorders such as insomnia, hypersomnia, and restless legs syndrome. It is unknown whether rTMS has intrinsically beneficial properties when applied to primary sleep disorders, or if it only acts on sleep through mood disorders. This narrative review sought to examine available literature regarding the application of rTMS for sleep disorder to identify knowledge gaps and inform future study design. The literature in this area remains scarce, with few randomized clinical trials on rTMS and insomnia. Available studies have found mixed results, with some studies reporting subjective sleep improvement while objective improvement is less consistent. Due to the heterogeneity of results and the variations in rTMS protocols, no definitive conclusions have been reached, signaling the need for further research.
Collapse
|
13
|
The effects of non-invasive brain stimulation on sleep disturbances among different neurological and neuropsychiatric conditions: A systematic review. Sleep Med Rev 2021; 55:101381. [PMID: 32992227 DOI: 10.1016/j.smrv.2020.101381] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
|
14
|
Ning Y, Liu X, Yao H, Chen P, Li X, Jia H. The fMRI study for acupuncture on shift work sleep disorder: Study protocol for a randomized controlled neuroimaging trial. Medicine (Baltimore) 2020; 99:e22068. [PMID: 32899073 PMCID: PMC7478636 DOI: 10.1097/md.0000000000022068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Nearly 20% of night shift nurses will cause shift work disorder (SWD) due to the disruption of sleep-wake cycle, which not only affects the daily work efficiency, but also brings a huge burden on physical and mental health. Acupuncture is a safe and effective intervention on SWD. This trial will combine with functional magnetic resonance imaging (fMRI) to study the clinical effects and potential mechanism of acupuncture in the treatment of SWD. METHODS AND ANALYSIS This is a randomized controlled neuroimaging trial, with enrolled participants, outcome assessors, and data statisticians blinded. 60 patients with SWD and 30 healthy controls who sleep regularly will be recruited and divided into divided into a control group, a true acupoints treatment group (TATG) and a sham acupoints treatment group (SATG) by the ratio of 1:1:1. The TATG and SATG will receive 8 sessions of acupuncture treatment in 4 weeks. Cognitive function scales and MRI scanning will be performed before and after 4-week acupuncture treatment. The control group will receive no intervention. Functional connectivity of intra-network and inter-network will be the primary outcome and effect indicator. The secondary outcomes included Repeatable Battery for the Assessment of Neuropsychological Status, Attentional Network Test, Pittsburgh Sleep Quality Index scale and needle sensation assessment scale. Neuroimage indicators will be correlated with clinical data and scores of cognitive function assessment to explore the possible mechanisms underlying the changes of brain activity caused by acupuncture treatment. DISCUSSION The results of this study will enable us to verify the therapeutic effect of acupuncture on SWD and explore the potential central mechanism of acupuncture on SWD from the change of brain activity.
Collapse
Affiliation(s)
- Yanzhe Ning
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital affiliated to Capital Medical University
| | - Xueyan Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital affiliated to Capital Medical University
- Department of Acupuncture and Moxibustion, Dongfang Hospital affiliated to Beijing University of Chinese Medicine, Beijing100078, China
| | - Hao Yao
- Department of Acupuncture and Moxibustion, Dongfang Hospital affiliated to Beijing University of Chinese Medicine, Beijing100078, China
| | - Pei Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital affiliated to Capital Medical University
| | - Xue Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital affiliated to Capital Medical University
| | - Hongxiao Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital affiliated to Capital Medical University
| |
Collapse
|
15
|
Gong L, Xu R, Qin M, Liu D, Zhang B, Bi Y, Xi C. New potential stimulation targets for noninvasive brain stimulation treatment of chronic insomnia. Sleep Med 2020; 75:380-387. [PMID: 32950883 DOI: 10.1016/j.sleep.2020.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Noninvasive brain stimulation (NIBS) was recently used as a therapeutic application in patients with insomnia. Most of the previous NIBS treatments for insomnia directly selected the dorsolateral prefrontal cortex (DLPFC) as the stimulation site. As the NIBS target is an important factor in the efficacy of NIBS, it is necessary to detect more potential cortical sites for NIBS in insomnia. METHODS A neuroimaging study-based meta-analysis was used to examine sleep-related brain regions. A sleep-associated brain region-based functional connectivity (FC) map was constructed in 50 patients with chronic insomnia disorder (CID) without any comorbidity. We also combined the meta-analysis and FC results to examine the potential surface targets for NIBS for CID. RESULTS The results identified the bilateral supplementary motor area (SMA), left superior temporal gyrus (STG), bilateral DLPFC, precentral lobule, supramarginal gyrus, angular gyrus, superior frontal gyrus, middle temporal gyrus and middle occipital gyrus as potential brain stimulation targets for insomnia treatment. Notably, the bilateral SMA, right DLPFC and left STG were identified in the FC and meta-analyses. In addition, the SMA and DLPFC were positively and STG was negatively connected with other sleep related brain regions, which indicated inhibitory and excitatory stimulation for NIBS treatment for CID, respectively. CONCLUSION Our study suggests the SMA, DLPFC and STG as preferentially selected brain targets of NIBS for CID treatment. We recommend an inhibitory stimulation over SMA and DLPFC, and an excitatory stimulation over STG for NIBS treatment. Future studies should test these new targets using NIBS treatment for insomnia.
Collapse
Affiliation(s)
- Liang Gong
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Ronghua Xu
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Minhuang Qin
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Duan Liu
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Bei Zhang
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Youcai Bi
- Department of Neurology, Zigong Fourth People's Hospital, Zigong, Sichuan, 643000, China.
| | - Chunhua Xi
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, Anhui, 230061, China.
| |
Collapse
|
16
|
Nardone R, Golaszewski S, Frey V, Brigo F, Versace V, Sebastianelli L, Saltuari L, Höller Y. Altered response to repetitive transcranial magnetic stimulation in patients with chronic primary insomnia. Sleep Med 2020; 72:126-129. [PMID: 32615461 DOI: 10.1016/j.sleep.2020.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND We aimed at evaluating the amplitude changes of the motor evoked potentials (MEPs) induced by of low-frequency (LF) repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) in10 patients with primary insomnia (PI) and in 10 age-matched healthy controls. METHODS Median peak-to-peak MEP amplitudes were assessed in all subjects at three times: at baseline (T0), after the first train of a single rTMS session (T1), and after the whole rTMS procedure (T2). This consists of 20 trains of 1 Hz stimulation with 50 stimuli per train and an intertrain interval of 30 s. RESULTS Resting motor threshold (RMT) and MEPs amplitude did not differ between the two groups at T0. A reduction of MEP size was observed at both T1 and T2 in all subjects, but this was significantly less pronounced in patients than in control subjects. CONCLUSIONS The lack of MEP inhibition reflects an altered response to LF rTMS in patients with PI. These rTMS findings are indicative of an altered cortical plasticity in inhibitory circuits within M1 in PI. Subjects with PI exhibited an impairment of the LTD-like mechanisms induced by inhibitory rTMS, thus providing further support to the involvement of GABA neurotransmission in the pathophysiology of PI.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria.
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Vanessa Frey
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno, Italy; Research Department for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Italy; Research Department for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno, Italy; Research Department for Neurorehabilitation South Tyrol, Bolzano, Italy; Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Yvonne Höller
- Department of Psychology, University of Akureyri, Iceland
| |
Collapse
|
17
|
Effects of repetitive transcranial magnetic stimulation in subjects with sleep disorders. Sleep Med 2020; 71:113-121. [PMID: 32173186 DOI: 10.1016/j.sleep.2020.01.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 01/08/2023]
|
18
|
Sun N, He Y, Wang Z, Zou W, Liu X. The effect of repetitive transcranial magnetic stimulation for insomnia: a systematic review and meta-analysis. Sleep Med 2020; 77:226-237. [PMID: 32830052 DOI: 10.1016/j.sleep.2020.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/03/2020] [Accepted: 05/12/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) might be a promising technique in treating insomnia. A comprehensive meta-analysis of the available literature is conducted to offer evidence. OBJECTIVE To evaluate the efficacy and safety of rTMS for insomnia, either as monotherapy or as a complementary strategy. METHODS CENTRAL, PubMed, EMBASE, PsycINFO, CINAHL, PEDro, CBM, CNKI, WANFANG, and VIP were searched from earliest record to August 2019. Randomized control trials (RCTs) published in English and Chinese examining effects of rTMS on patients with insomnia were included. Two authors independently completed the article selection, data extraction and rating. Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. The RevMan software was used for meta-analysis. The quality of the evidence was assessed by Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS A total of 36 trials from 28 eligible studies were included, involving a total of 2357 adult participants (mean age, 48.80 years; 45.33% males). Compared with sham rTMS, rTMS was associated with improved PSQI total score (SMD -2.31, 95% CI -2.95 to -1.66; Z = 7.01, P < 0.00001) and scores of seven subscales. Compared to other treatment, rTMS as an adjunct to other treatment was associated with improved PSQI total score (SMD -1.44, 95% CI -2.00 to -0.88; Z = 5.01, P < 0.00001), and may have effects on scores of seven subscales. Compared with other treatment, rTMS was associated with improved Pittsburgh sleep quality index (PSQI) total score (SMD -0.63, 95% CI -1.22 to -0.04; Z = 2.08, P = 0.04), and may have a better score in sleep latency, sleep disturbance and hypnotic using of seven subscales. In the three pair of comparisons, the results for polysomnography (PSG) outcomes were varied. In general, rTMS may improve sleep quality through increasing slow wave and rapid eye movement (REM) sleep. The rTMS group was more prone to headache than the sham or blank control group (RR 1.71, 95% CI 1.03 to 2.85; Z = 2.07, P = 0.04). No severe adverse events were reported. Reporting biases and low and very low grade of some evidences should be considered when interpreting the results of this meta-analysis. CONCLUSIONS Our findings indicate that rTMS may be a safe and effective option for insomnia. Further international, multicenter, high-quality RCTs with more objective, quality of life related and follow-up assessments are needed.
Collapse
Affiliation(s)
- Nianyi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, People's Republic of China
| | - Yu He
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, People's Republic of China
| | - Zhiqiang Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, People's Republic of China
| | - Wenchen Zou
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xueyong Liu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
19
|
Restless legs syndrome: Clinical changes in nervous system excitability at the spinal cord level. Sleep Med Rev 2019; 47:9-17. [PMID: 31212170 DOI: 10.1016/j.smrv.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/30/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
Abstract
Restless legs syndrome (RLS) is a complex multifactorial disorder whose aetiology has yet to be fully elucidated. Some of the features of RLS, such as processing of sensations and activation of movement, may result from a dysfunction in spinal processing giving rise to a state of spinal hyperexcitability. In the current article we review studies investigating spinal excitability in RLS patients looking specifically at electrophysiological studies of spinal activity, sensory evaluations, and spinal reflex studies. Increased spinal excitability has been shown in RLS patients based on the combined data from electrophysiological studies. Results from studies assessing sensory evaluations in RLS patients show enhanced spinal processing of nociceptive inputs possibly due to central sensitisation. However, not all sensory modalities demonstrate an increase in sensitivity. An increase in nervous system excitability would result in an increase in reflex responses in RLS patients however the data from reflex analyses in RLS patients has failed to consistently show this expected result. Overall changes to RLS spinal excitability have been demonstrated though these changes might be heterogeneous as not all afferent input appears to be affected in the same manner. There may be phase-dependent and modality-dependent alterations in spinal excitability suggesting that the theory of absolute spinal hyperexcitability in RLS patients' needs to be reconsidered.
Collapse
|
20
|
Song P, Lin H, Li S, Wang L, Liu J, Li N, Wang Y. Repetitive transcranial magnetic stimulation (rTMS) modulates time-varying electroencephalography (EEG) network in primary insomnia patients: a TMS-EEG study. Sleep Med 2019; 56:157-163. [PMID: 30871961 DOI: 10.1016/j.sleep.2019.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
|
21
|
Priola SM, Moghaddamjou A, Ku JC, Taslimi S, Yang VXD. Acupuncture-Induced Cranial Epidural Abscess: Case Report and Review of the Literature. World Neurosurg 2019; 125:519-526.e1. [PMID: 30743042 DOI: 10.1016/j.wneu.2019.01.189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acupuncture is a common form of alternative medicine that is used for pain control among other modalities of treatment. It is a relatively safe procedure, but complications, including those of infectious etiology, may still occur. CASE DESCRIPTION A 47-year-old immunosuppressed woman presented with fever, altered level of consciousness, dysphasia, and a left occipital subgaleal fluctuant mass after acupuncture for headaches in the same area. Imaging demonstrated subgaleal and epidural collection localized in the left occipital region. She underwent urgent surgical evacuation of both collections. Cultures from intraoperative specimens grew Streptococcus anginosus. The patient started targeted antibiotic treatment leading to complete recovery. CONCLUSIONS To our knowledge, this is the first report of intracranial abscess after acupuncture. Given the worldwide application of this alternative treatment, physicians, acupuncturists, and the general public should be aware of the possibility of this rare but serious complication.
Collapse
Affiliation(s)
- Stefano Maria Priola
- Sunnybrook Health Sciences Centre, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.
| | - Ali Moghaddamjou
- Sunnybrook Health Sciences Centre, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Jerry C Ku
- Sunnybrook Health Sciences Centre, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Shervin Taslimi
- Sunnybrook Health Sciences Centre, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Victor X D Yang
- Sunnybrook Health Sciences Centre, Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|