1
|
Zeng X, Nong WX, Zou XQ, Li F, Ge YY, Zhang QM, Luo B, Huang W, Zou JX, Fan R, Xie XX. Prediction and identification of HLA-A*0201-restricted epitopes from cancer testis antigen CT23. Hum Vaccin Immunother 2023; 19:2293299. [PMID: 38100550 PMCID: PMC10730135 DOI: 10.1080/21645515.2023.2293299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Cancer-testis antigen CT23 is a class of tumor-associated antigens (TAA) characterized by restricted expression in male germ cells and a variety of tumor tissues. Numerous studies have shown that CT23 is closely related to tumor cell viability, proliferation, metastasis and invasion. CT23 is immunogenic and can cause specific immune response in tumor patients. Therefore, it is considered to be one of the best target antigens for designing therapeutic tumor vaccines and T-cell-mediated tumor immunotherapy. In this study, we initially obtained seven HLA-A*0201-restricted CT23 epitope candidate peptides through the T cell epitope prediction program. Subsequently, a T2 cell binding assay revealed the potential binding of all candidate peptides with HLA-A2 molecules. Notably, peptide P7 (ALLVLCYSI) exhibited the highest affinity, as evidenced by a fluorescence index (FI) of 2.19. Dendritic cells (DCs) loaded with CT23 candidate peptide can stimulate CD8+T cell activation and proliferation, and compared with other candidate peptides, candidate peptide P7 is superior. The cytotoxic T lymphocytes (CTLs) stimulated by the peptide P7 had killing effect on tumor cells (HLA-A*0201+, CT23+), but no killing effect on tumor cells (HLA-A*0201-, CT23+). The CTLs induced by the peptide P7 also had a specific killing effect on T2 cells bearing the peptide P7. In summary, our findings suggest that the CT23 peptide P7 (ALLVLCYSI) can induce immune responses and holds potential for tumor-specific CTL therapy.
Collapse
Affiliation(s)
- Xia Zeng
- Department of Immunology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Wei-Xia Nong
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiao-Qiong Zou
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Feng Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Ying-Ying Ge
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Qing-Mei Zhang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Nanning, P. R. China
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Nanning, P. R. China
| | - Wei Huang
- Department of Gynecology, First Affiliated Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jian-Xia Zou
- Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rong Fan
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiao-Xun Xie
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Nanning, P. R. China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University), Nanning, P. R. China
| |
Collapse
|
2
|
Safrastyan A, Wollny D. Network analysis of hepatocellular carcinoma liquid biopsies augmented by single-cell sequencing data. Front Genet 2022; 13:921195. [PMID: 36092896 PMCID: PMC9452847 DOI: 10.3389/fgene.2022.921195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Liquid biopsy, the analysis of body fluids, represents a promising approach for disease diagnosis and prognosis with minimal intervention. Sequencing cell-free RNA derived from liquid biopsies has been very promising for the diagnosis of several diseases. Cancer research, in particular, has emerged as a prominent candidate since early diagnosis has been shown to be a critical determinant of disease prognosis. Although high-throughput analysis of liquid biopsies has uncovered many differentially expressed genes in the context of cancer, the functional connection between these genes is not investigated in depth. An important approach to remedy this issue is the construction of gene networks which describes the correlation patterns between different genes, thereby allowing to infer their functional organization. In this study, we aimed at characterizing extracellular transcriptome gene networks of hepatocellular carcinoma patients compared to healthy controls. Our analysis revealed a number of genes previously associated with hepatocellular carcinoma and uncovered their association network in the blood. Our study thus demonstrates the feasibility of performing gene co-expression network analysis from cell-free RNA data and its utility in studying hepatocellular carcinoma. Furthermore, we augmented cell-free RNA network analysis with single-cell RNA sequencing data which enables the contextualization of the identified network modules with cell-type specific transcriptomes from the liver.
Collapse
Affiliation(s)
- Aram Safrastyan
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Damian Wollny
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- *Correspondence: Damian Wollny,
| |
Collapse
|
3
|
Bi SQ, Zhang QM, Zeng X, Liu C, Nong WX, Xie H, Li F, Lin LN, Luo B, Ge YY, Xie XX. Combined treatment with epigenetic agents enhances anti-tumor activity of MAGE-D4 peptide-specific T cells by upregulating the MAGE-D4 expression in glioma. Front Oncol 2022; 12:873639. [PMID: 35992806 PMCID: PMC9382192 DOI: 10.3389/fonc.2022.873639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The study evaluated the efficacy of combined epigenetic drugs of decitabine (DAC), valproic acid (VPA), and trichostatin A (TSA) on immunotherapy against glioma. METHODS The expression and prognosis of MAGE-D4 in glioma were analyzed online, and the expression of MAGE-D4 and HLA-A2 in glioma induced by epigenetic drugs was detected by qRT-PCR, Western blot, and flow cytometry. The methylation status of the MAGE-D4 promoter was determined by pyrosequencing. An HLA-A2 restricted MAGE-D4 peptide was predicted and synthesized. An affinity assay and a peptide/HLA complex stability assay were performed to determine the affinity between peptide and HLA. CCK8 assay, CFSE assay, ELISA and ELISPOT were performed to detect the function of MAGE-D4 peptide-specific T cells. Flow cytometry, ELISA, and cytotoxicity assays were used to detect the cytotoxicity effect of MAGE-D4 peptide-specific T cells combined with epigenetic drugs against glioma in vitro. Finally, the glioma-loaded mouse model was applied to test the inhibitory effect of specific T cells on gliomas in vivo. RESULTS MAGE-D4 was highly expressed in glioma and correlated with poor prognosis. Glioma cells could be induced to express MAGE-D4 and HLA-A2 by epigenetic drugs. MAGE-D4-associated peptides were found that induce DCs to stimulate the highest T-cell activities of proliferation, IL-2 excretion, and IFN-γ secretion. MAGE-D4 peptide-specific T cells treated with TSA only or combining TSA and DAC had the most cytotoxicity effect, and its cytotoxicity effect on glioma cells decreased significantly after HLA blocking. In vivo experiments also confirmed that MAGE-D4-specific T cells inhibit TSA-treated glioma. CONCLUSION MAGE-D4 is highly expressed in glioma and correlated with the prognosis of glioma. The novel MAGE-D4 peptide identified was capable of inducing MAGE-D4-specific T cells that can effectively inhibit glioma growth, and the epigenetic drug application can enhance this inhibition.
Collapse
Affiliation(s)
- Shui-Qing Bi
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Neurosurgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qing-Mei Zhang
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key laboratory of Preclinical Medicine, Education Department of Guangxi Zhuang Autonomous region, Nanning, China
| | - Xia Zeng
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei-Xia Nong
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Huan Xie
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Feng Li
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Na Lin
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Bin Luo
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key laboratory of Preclinical Medicine, Education Department of Guangxi Zhuang Autonomous region, Nanning, China
| | - Ying-Ying Ge
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao-Xun Xie
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key laboratory of Preclinical Medicine, Education Department of Guangxi Zhuang Autonomous region, Nanning, China
| |
Collapse
|
4
|
Fu J, Yingying Ge, Qingmei Zhang, Lin Y, Liu C, Nong W, Luo X, Xiao S, Xie X, Luo B. Immunohistochemistry Study of OY-TES-1 Location in Fetal and Adult Human Tissues. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7052830. [PMID: 35463688 PMCID: PMC9020931 DOI: 10.1155/2022/7052830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022]
Abstract
OY-TES-1 is reportedly involved in carcinogenesis and spermatogenesis. However, the tissue distribution of OY-TES-1 in the normal human body remains elusive. This study detected OY-TES-1 expression in human fetal and adult normal tissues by immunohistochemistry. We identified a general principle of OY-TES-1 expression. The expression of OY-TES-1 was found in neurons, smooth muscle cells, and cardiac muscle cells from both fetuses and adults. The connective tissue showed no specific staining throughout the fetal and adult samples. With OY-TES-1-positive staining of the epithelium irregular, OY-TES-1 was strongly expressed in the epithelium of the skin and bladder, as well as hepatocytes, pancreatic islets, and acinous cells during the fetal stage but was not detected in the postnatal period. In contrast to the epithelium of blood vessels, the fetal and adult central hepatic vein and glomeruli showed negative expression of the OY-TES-1 protein. Sex-dimorphism was observed in the distribution of OY-TES-1 in male and female germ cells. Collectively, our results indicate that OY-TES-1 is a member of the cancer-testis antigen and autoantigen, with tissue-specific and period-specific expression patterns, revealing potential contributions of OY-TES-1 to the diagnosis and therapeutic treatment for neoplasms and infertility.
Collapse
Affiliation(s)
- Jun Fu
- Department of Histology & Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Yingying Ge
- Department of Histology & Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Qingmei Zhang
- Guangxi Colleges and Universities Key Laboratory Research of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Yongda Lin
- Department of Histology & Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Chang Liu
- Department of Neurosurgery, First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Weixia Nong
- Department of Histology & Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xin Luo
- Department of Histology & Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Shaowen Xiao
- Department of Neurosurgery, First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Xiaoxun Xie
- Guangxi Colleges and Universities Key Laboratory Research of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Bin Luo
- Guangxi Colleges and Universities Key Laboratory Research of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
5
|
Lin L, Nong W, Luo B, Ge Y, Zeng X, Li F, Fan R, Zhang Q, Xie X. Cancer-testis antigen ACRBP expression and serum immunoreactivity in ovarian cancer: Its association with prognosis. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1759-1770. [PMID: 34528758 PMCID: PMC8589352 DOI: 10.1002/iid3.534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022]
Abstract
Introduction Cancer testis (CT) antigens are attractive targets for cancer immunotherapy because of their expression restriction and immunogenicity. The acrosin binding protein (ACRBP) is a member of CT antigens. This study aimed to evaluate ACRBP expression and immunogenicity in ovarian cancer (OC). Methods The expression level of ACRBP in OC tissues, normal ovarian tissues, and cell lines was detected via quantitative real‐time polymerase chain reaction (qRT‐PCR) and immunohistochemistry. We determined the levels of ACRBP antigen and antibody in serum samples collected from patients with OC and healthy donors using enzyme‐linked immunosorbent assays (ELISA), the level of ACRBP in cell‐cultured medium was also tested. Results ACRBP mRNA and protein expressions were upregulated in OC tissues relative to normal tissue, especially highly expressed in epithelial ovarian cancer (EOC). Moreover, ACRBP expression was significantly correlated with International Federation of Gynecology and Obstetrics (FIGO) stage and chemosensitivity. Serological analysis showed that anti‐ACRBP antibody was detected in the sera of 16 of the 56 (28.5%) patients with OC but not in healthy donors. The area under the receiver operating characteristic curve for ACRBP antibody was 0.802 (95% confidence interval [CI]: 0.708–0.876), and the sensitivity and specificity for ACRBP antibody was 85.71% and 55.0%, respectively. Kaplan–Meier analysis revealed that the overall survival (OS) and disease‐free survival (DFS) in OC patients with high ACRBP expression were significantly lower than those with low expression (p = 0.040, p = 0.021). However, ACRBP antibody level was not associated with prognosis. Conclusion ACRBP expression was upregulated in OC tissues and induced humoral immune response in patients with OC, suggesting that ACRBP is a potential prognostic biomarker and a target of tumor immunotherapy for OC.
Collapse
Affiliation(s)
- Lina Lin
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Weixia Nong
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Central Laboratory, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Bin Luo
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Central Laboratory, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Yingying Ge
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Central Laboratory, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xia Zeng
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Feng Li
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Rong Fan
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Chinese Medicine University, Nanning, China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Central Laboratory, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Central Laboratory, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|