1
|
Li Y, Lin Z, Li Y. Visceral obesity and HFpEF: targets and therapeutic opportunities. Trends Pharmacol Sci 2025; 46:337-356. [PMID: 40113531 DOI: 10.1016/j.tips.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
The effectiveness of weight-loss drugs in heart failure (HF) with preserved ejection fraction (HFpEF) highlights the link between obesity (adipose tissue) and HF (the heart). Recent guidelines incorporating the waist:height ratio for diagnosing and treating obesity reflect the growing recognition of the significance of visceral adiposity. However, its unique impact on HFpEF and their complex relationship remain underexplored. With limited treatment options for obesity-related HFpEF, novel disease-modifying treatments are urgently needed. Here, we clarify the relationship between visceral obesity and HFpEF, introducing the concept of the visceral adipose tissue-heart axis to explore its mechanisms and therapeutic potential. We also discuss promising strategies targeting visceral obesity in HFpEF and propose directions for future research.
Collapse
Affiliation(s)
- Yilin Li
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of the Ministry of Education for Cardiovascular Remodeling-Related Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Zhuofeng Lin
- The Innovation Center of Cardiometabolic Disease, Guangdong Medical University, Dongguan 523808, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of the Ministry of Education for Cardiovascular Remodeling-Related Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
2
|
Phan F, Bourron O, Foufelle F, Le Stunff H, Hajduch E. Sphingosine-1-phosphate signalling in the heart: exploring emerging perspectives in cardiopathology. FEBS Lett 2024; 598:2641-2655. [PMID: 38965662 DOI: 10.1002/1873-3468.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Cardiometabolic disorders contribute to the global burden of cardiovascular diseases. Emerging sphingolipid metabolites like sphingosine-1-phosphate (S1P) and its receptors, S1PRs, present a dynamic signalling axis significantly impacting cardiac homeostasis. S1P's intricate mechanisms extend to its transportation in the bloodstream by two specific carriers: high-density lipoprotein particles and albumin. This intricate transport system ensures the accessibility of S1P to distant target tissues, influencing several physiological processes critical for cardiovascular health. This review delves into the diverse functions of S1P and S1PRs in both physiological and pathophysiological conditions of the heart. Emphasis is placed on their diverse roles in modulating cardiac health, spanning from cardiac contractility, angiogenesis, inflammation, atherosclerosis and myocardial infarction. The intricate interplays involving S1P and its receptors are analysed concerning different cardiac cell types, shedding light on their respective roles in different heart diseases. We also review the therapeutic applications of targeting S1P/S1PRs in cardiac diseases, considering existing drugs like Fingolimod, as well as the prospects and challenges in developing novel therapies that selectively modulate S1PRs.
Collapse
Affiliation(s)
- Franck Phan
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris-Saclay, France
| | - Eric Hajduch
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
3
|
Fuster-Martínez I, Calatayud S. The current landscape of antifibrotic therapy across different organs: A systematic approach. Pharmacol Res 2024; 205:107245. [PMID: 38821150 DOI: 10.1016/j.phrs.2024.107245] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Fibrosis is a common pathological process that can affect virtually all the organs, but there are hardly any effective therapeutic options. This has led to an intense search for antifibrotic therapies over the last decades, with a great number of clinical assays currently underway. We have systematically reviewed all current and recently finished clinical trials involved in the development of new antifibrotic drugs, and the preclinical studies analyzing the relevance of each of these pharmacological strategies in fibrotic processes affecting tissues beyond those being clinically studied. We analyze and discuss this information with the aim of determining the most promising options and the feasibility of extending their therapeutic value as antifibrotic agents to other fibrotic conditions.
Collapse
Affiliation(s)
- Isabel Fuster-Martínez
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia 46020, Spain.
| | - Sara Calatayud
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; CIBERehd (Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas), Spain.
| |
Collapse
|
4
|
Ranasinghe ADCU, Holohan M, Borger KM, Donahue DL, Kuc RD, Gerig M, Kim A, Ploplis VA, Castellino FJ, Schwarz MA. Altered Smooth Muscle Cell Histone Acetylome by the SPHK2/S1P Axis Promotes Pulmonary Hypertension. Circ Res 2023; 133:704-719. [PMID: 37698017 PMCID: PMC10543610 DOI: 10.1161/circresaha.123.322740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Epigenetic regulation of vascular remodeling in pulmonary hypertension (PH) is poorly understood. Transcription regulating, histone acetylation code alters chromatin accessibility to promote transcriptional activation. Our goal was to identify upstream mechanisms that disrupt epigenetic equilibrium in PH. METHODS Human pulmonary artery smooth muscle cells (PASMCs), human idiopathic pulmonary arterial hypertension (iPAH):human PASMCs, iPAH lung tissue, failed donor lung tissue, human pulmonary microvascular endothelial cells, iPAH:PASMC and non-iPAH:PASMC RNA-seq databases, NanoString nCounter, and cleavage under targets and release using nuclease were utilized to investigate histone acetylation, hyperacetylation targets, protein and gene expression, sphingolipid activation, cell proliferation, and gene target identification. SPHK2 (sphingosine kinase 2) knockout was compared with control C57BL/6NJ mice after 3 weeks of hypoxia and assessed for indices of PH. RESULTS We identified that Human PASMCs are vulnerable to the transcription-promoting epigenetic mediator histone acetylation resulting in alterations in transcription machinery and confirmed its pathological existence in PH:PASMC cells. We report that SPHK2 is elevated as much as 20-fold in iPAH lung tissue and is elevated in iPAH:PASMC cells. During PH pathogenesis, nuclear SPHK2 activates nuclear bioactive lipid S1P (sphingosine 1-phosphate) catalyzing enzyme and mediates transcription regulating histone H3K9 acetylation (acetyl histone H3 lysine 9 [Ac-H3K9]) through EMAP (endothelial monocyte activating polypeptide) II. In iPAH lungs, we identified a 4-fold elevation of the reversible epigenetic transcription modulator Ac-H3K9:H3 ratio. Loss of SPHK2 inhibited hypoxic-induced PH and Ac-H3K9 in mice. We discovered that pulmonary vascular endothelial cells are a priming factor of the EMAP II/SPHK2/S1P axis that alters the acetylome with a specificity for PASMC, through hyperacetylation of histone H3K9. Using cleavage under targets and release using nuclease, we further show that EMAP II-mediated SPHK2 has the potential to modify the local transcription machinery of pluripotency factor KLF4 (Krüppel-like factor 4) by hyperacetylating KLF4 Cis-regulatory elements while deletion and targeted inhibition of SPHK2 rescues transcription altering Ac-H3K9. CONCLUSIONS SPHK2 expression and its activation of the reversible histone H3K9 acetylation in human pulmonary artery smooth muscle cell represent new therapeutic targets that could mitigate PH vascular remodeling.
Collapse
Affiliation(s)
| | - Maggie Holohan
- Departments of Pediatrics and Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, South Bend, IN, United States
| | | | | | | | - Martin Gerig
- Departments of Pediatrics and Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, South Bend, IN, United States
| | - Andrew Kim
- Department of Chemistry and Biochemistry, University of Notre Dame
| | - Victoria A. Ploplis
- Harper Cancer Research Institute
- Department of Chemistry and Biochemistry, University of Notre Dame
- W. M. Keck Center for Transgene Research, University of Notre Dame
| | - Francis J. Castellino
- Harper Cancer Research Institute
- Department of Chemistry and Biochemistry, University of Notre Dame
- W. M. Keck Center for Transgene Research, University of Notre Dame
| | - Margaret A. Schwarz
- Harper Cancer Research Institute
- Department of Chemistry and Biochemistry, University of Notre Dame
- Departments of Pediatrics and Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, South Bend, IN, United States
| |
Collapse
|
5
|
Ren C, Li Q, Luo T, Betti M, Wang M, Qi S, Wu L, Zhao L. Antioxidant Polyphenols from Lespedeza bicolor Turcz. Honey: Anti-Inflammatory Effects on Lipopolysaccharide-Treated RAW 264.7 Macrophages. Antioxidants (Basel) 2023; 12:1809. [PMID: 37891888 PMCID: PMC10604429 DOI: 10.3390/antiox12101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023] Open
Abstract
Although the honey produced by Lespedeza bicolor Turcz. is precious because of its medicinal value, its pharmacological mechanism is still unclear. Here, its anti-inflammatory and antioxidant functions on lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophages were analyzed using targeted and non-targeted metabolomics. Results showed that twelve polyphenols were identified in L. bicolor honey using UHPLC-QQQ-MS/MS. L. bicolor honey extract could scavenge the free radicals DPPH• and ABTS+ and reduce Fe3+. Furthermore, pretreatment with L. bicolor honey extract significantly decreased NO production; suppressed the expression of COX-2, IL-10, TNF-α, and iNOS; and upregulated HO-1's expression in the cells with LPS application. UHPLC-Q-TOF-MS/MS-based metabolomics results revealed that L. bicolor honey extract could protect against inflammatory damage caused by LPS through the reduced activation of sphingolipid metabolism and necroptosis pathways. These findings demonstrate that L. bicolor honey possesses excellent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Caijun Ren
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| | - Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| | - Teng Luo
- Institute of NBC Defence, Beijing 102205, China;
| | - Mirko Betti
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Miao Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| | - Liming Wu
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Beijing 100093, China
| | - Liuwei Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| |
Collapse
|
6
|
Gaggini M, Fenizia S, Vassalle C. Sphingolipid Levels and Signaling via Resveratrol and Antioxidant Actions in Cardiometabolic Risk and Disease. Antioxidants (Basel) 2023; 12:antiox12051102. [PMID: 37237968 DOI: 10.3390/antiox12051102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Resveratrol (RSV) is a phenolic compound with strong antioxidant activity, which is generally associated with the beneficial effects of wine on human health. All resveratrol-mediated benefits exerted on different systems and pathophysiological conditions are possible through resveratrol's interactions with different biological targets, along with its involvement in several key cellular pathways affecting cardiometabolic (CM) health. With regard to its role in oxidative stress, RSV exerts its antioxidant activity not only as a free radical scavenger but also by increasing the activity of antioxidant enzymes and regulating redox genes, nitric oxide bioavailability and mitochondrial function. Moreover, several studies have demonstrated that some RSV effects are mediated by changes in sphingolipids, a class of biolipids involved in a number of cellular functions (e.g., apoptosis, cell proliferation, oxidative stress and inflammation) that have attracted interest as emerging critical determinants of CM risk and disease. Accordingly, this review aimed to discuss the available data regarding the effects of RSV on sphingolipid metabolism and signaling in CM risk and disease, focusing on oxidative stress/inflammatory-related aspects, and the clinical implications of this relationship.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council of Italy (CNR), Via Moruzzi 1, I-56124 Pisa, Italy
| | - Simona Fenizia
- Institute of Clinical Physiology, National Research Council of Italy (CNR), Via Moruzzi 1, I-56124 Pisa, Italy
| | - Cristina Vassalle
- Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|