1
|
Sakai Y, Miyake R, Shimizu T, Nakajima T, Sakakura T, Tomooka Y. A clonal stem cell line established from a mouse mammary placode with ability to generate functional mammary glands. In Vitro Cell Dev Biol Anim 2019; 55:861-871. [PMID: 31529417 DOI: 10.1007/s11626-019-00406-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/23/2019] [Indexed: 01/16/2023]
Abstract
The mammary gland develops from the placode at ectodermal invagination. The rudimentary parenchyma (mammary bud) develops mammary trees and alveolar structures, suggesting that the mammary bud consists of stem/progenitor cells. Here, we established a clonal stem cell line from a mammary bud of a p53 null female embryo at day 14.5. FP5-3-1 line was a homogeneous cell population with polygonal epithelial morphology and spontaneously became heterogeneous during passages. Recloning gave rise to four sublines; three sublines have basal epithelial property and one subline has luminal epithelial property. The former sublines generate functional mammary glands when injected into cleared fat pads and the latter subline does not. The cell lines also express many stemness-related genes. The clonal cell lines established in the present study are shown to be mammary stem cells and not tumorigenic. They provide useful models for normal and tumor biology of the mammary gland in vivo and in vitro.
Collapse
Affiliation(s)
- Yurika Sakai
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Ruka Miyake
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Tatsuya Shimizu
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Tadaaki Nakajima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Teruyo Sakakura
- Research Center for Matrix Biology, Mie University, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Yasuhiro Tomooka
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| |
Collapse
|
2
|
Aldarmahi A. Establishment and characterization of female reproductive tract epithelial cell culture. J Microsc Ultrastruct 2017; 5:105-110. [PMID: 30023243 PMCID: PMC6025759 DOI: 10.1016/j.jmau.2016.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/09/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
The oviductal and uterine epithelial cells have a crucial role, but are still poorly understood. Numerous studies have tried to isolate the epithelial cells from different organs in various models. The current study aimed to establish and characterize an in vitro monolayer culture of the oviduct and uterine horn epithelial cells by using two different techniques. Female reproductive epithelial cells from sows were cultured in follicular phase. Combined protocols to isolate the epithelial cells were performed. The viability and cell number were determined. Monolayers of epithelial cells from each group were cultured in four-well plates and were subjected to immunostaining using a Vector ABC Elite Kit. The immunohistochemical staining step was performed to evaluate the quality of the epithelial cells. Oviductal cells reached confluence faster than uterine horn cells. Cilia were seen in oviduct and uterine horn tissue culture. All the isolated cells reached confluence prior to harvesting. The number of cells was increased over the time of incubation. Monolayer culture using the trypsin/EDTA method took longer than culture with the collagenase method. Immunohistochemistry of epithelial cells showed strong staining for cytokeratin. Oviductal and uterus epithelial cells were cultured and established. Both techniques used in this experiment were useful and showed no significant differences. This cell culture model has the potential to study the secretory interactions of the female reproductive tract with spermatozoa, oocytesor embryos.
Collapse
Affiliation(s)
- Ahmed Aldarmahi
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, National Guard Health Affairs, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Yamamoto N, Kato Y, Sato A, Hiramatsu N, Yamashita H, Ohkuma M, Miyachi EI, Horiguchi M, Hirano K, Kojima H. Establishment of a new immortalized human corneal epithelial cell line (iHCE-NY1) for use in evaluating eye irritancy by in vitro test methods. In Vitro Cell Dev Biol Anim 2016; 52:742-8. [PMID: 27130679 DOI: 10.1007/s11626-016-0038-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/04/2016] [Indexed: 11/26/2022]
Abstract
In vitro test methods that use human corneal epithelial cells to evaluate the eye irritation potency of chemical substances do not use human corneal epithelium because it has been difficult to maintain more than four passages. In this study, we make a new cell line comprising immortalized human corneal epithelial cells (iHCE-NY1). The IC50 of iHCE-NY1 cells is slightly higher than that of Statens Seruminstitut Rabbit Cornea (SIRC) cells, which are currently used in some in vitro test methods. CDKN1A in iHCE-NY1 cells was used as a marker of gene expression to indicate cell cycle activity. This enabled us to evaluate cell recovery characteristics at concentrations lower than the IC50 of cytotoxic tests.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Laboratory of Molecular Biology, Fujita Health University Institute of Joint Research, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Yoshinao Kato
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, 451-0071, Japan
| | - Atsushi Sato
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd, 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, 451-0071, Japan
| | - Noriko Hiramatsu
- Laboratory of Molecular Biology, Fujita Health University Institute of Joint Research, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiromi Yamashita
- Laboratory of Molecular Biology, Fujita Health University Institute of Joint Research, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Mahito Ohkuma
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ei-Ichi Miyachi
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Masayuki Horiguchi
- Department of Ophthalmology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Koji Hirano
- Department of Ophthalmology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hajime Kojima
- Japanese Center for the Validation of Alternative Methods (JaCVAM), Division of Pharmacology, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1, Kamiyouga, Setagaya-ku, Tokyo, 158-8501, Japan
| |
Collapse
|
4
|
Successful reconstruction of tooth germ with cell lines requires coordinated gene expressions from the initiation stage. Cells 2012; 1:905-25. [PMID: 24710535 PMCID: PMC3901128 DOI: 10.3390/cells1040905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/28/2012] [Accepted: 10/24/2012] [Indexed: 11/17/2022] Open
Abstract
Tooth morphogenesis is carried out by a series of reciprocal interactions between the epithelium and mesenchyme in embryonic germs. Previously clonal dental epithelial cell (epithelium of molar tooth germ (emtg)) lines were established from an embryonic germ. They were odontogenic when combined with a dental mesenchymal tissue, although the odontogenesis was quantitatively imperfect. To improve the microenvironment in the germs, freshly isolated dental epithelial cells were mixed with cells of lines, and germs were reconstructed in various combinations. The results demonstrated that successful tooth construction depends on the mixing ratio, the age of dental epithelial cells and the combination with cell lines. Analyses of gene expression in these germs suggest that some signal(s) from dental epithelial cells makes emtg cells competent to communicate with mesenchymal cells and the epithelial and mesenchymal compartments are able to progress odontogenesis from the initiation stage.
Collapse
|
5
|
King SM, Burdette JE. Evaluating the progenitor cells of ovarian cancer: analysis of current animal models. BMB Rep 2011; 44:435-45. [PMID: 21777513 DOI: 10.5483/bmbrep.2011.44.7.435] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Serous ovarian cancer is one of the most lethal gynecological malignancies. Progress on effective diagnostics and therapeutics for this disease are hampered by ambiguity as to the cellular origins of this histotype of ovarian cancer, as well as limited suitable animal models to analyze early stages of disease. In this report, we will review current animal models with respect to the two proposed progenitor cells for serous ovarian cancer, the ovarian surface epithelium and the fallopian tube epithelium.
Collapse
Affiliation(s)
- Shelby M King
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 60607, USA
| | | |
Collapse
|
6
|
King SM, Hilliard TS, Wu LY, Jaffe RC, Fazleabas AT, Burdette JE. The impact of ovulation on fallopian tube epithelial cells: evaluating three hypotheses connecting ovulation and serous ovarian cancer. Endocr Relat Cancer 2011; 18:627-42. [PMID: 21813729 PMCID: PMC3638747 DOI: 10.1530/erc-11-0107] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ovarian cancer is the most lethal gynecological malignancy affecting American women. Current hypotheses concerning the etiology of ovarian cancer propose that a reduction in the lifetime number of ovulations decreases ovarian cancer risk. Advanced serous carcinoma shares several biomarkers with fallopian tube epithelial cells, suggesting that some forms of ovarian carcinoma may originate in the fallopian tube. Currently, the impact of ovulation on the tubal epithelium is unknown. In CD1 mice, ovulation did not increase tubal epithelial cell (TEC) proliferation as measured by bromodeoxyuridine incorporation and proliferating cell nuclear antigen staining as compared to unstimulated animals. In superovulated mice, an increase in the number of pro-inflammatory macrophages was detected in the oviduct. Ovulation also increased levels of phospho-γH2A.X in TEC, indicating that these cells were susceptible to double-strand DNA breakage following ovulation. To determine which components of ovulation contributed to DNA damage in the fallopian tube, an immortalized baboon TEC cell line and a three-dimensional organ culture system for mouse oviduct and baboon fallopian tubes were developed. TEC did not proliferate or display increased DNA damage in response to the gonadotropins or estradiol alone in vitro. Oxidative stress generated by treatment with hydrogen peroxide or macrophage-conditioned medium increased DNA damage in TEC in culture. Ovulation may impact the fallopian tube epithelium by generating DNA damage and stimulating macrophage infiltration but does not increase proliferation through gonadotropin signaling.
Collapse
Affiliation(s)
- Shelby M King
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago College of Pharmacy, 900 S. Ashland, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
7
|
King SM, Quartuccio S, Hilliard TS, Inoue K, Burdette JE. Alginate hydrogels for three-dimensional organ culture of ovaries and oviducts. J Vis Exp 2011:2804. [PMID: 21712801 DOI: 10.3791/2804] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer deaths in women and has a 63% mortality rate in the United States(1). The cell type of origin for ovarian cancers is still in question and might be either the ovarian surface epithelium (OSE) or the distal epithelium of the fallopian tube fimbriae(2,3). Culturing the normal cells as a primary culture in vitro will enable scientists to model specific changes that might lead to ovarian cancer in the distinct epithelium, thereby definitively determining the cell type of origin. This will allow development of more accurate biomarkers, animal models with tissue-specific gene changes, and better prevention strategies targeted to this disease. Maintaining normal cells in alginate hydrogels promotes short term in vitro culture of cells in their three-dimensional context and permits introduction of plasmid DNA, siRNA, and small molecules. By culturing organs in pieces that are derived from strategic cuts using a scalpel, several cultures from a single organ can be generated, increasing the number of experiments from a single animal. These cuts model aspects of ovulation leading to proliferation of the OSE, which is associated with ovarian cancer formation. Cell types such as the OSE that do not grow well on plastic surfaces can be cultured using this method and facilitate investigation into normal cellular processes or the earliest events in cancer formation(4). Alginate hydrogels can be used to support the growth of many types of tissues(5). Alginate is a linear polysaccharide composed of repeating units of β-D-mannuronic acid and α-L-guluronic acid that can be crosslinked with calcium ions, resulting in a gentle gelling action that does not damage tissues(6,7). Like other three-dimensional cell culture matrices such as Matrigel, alginate provides mechanical support for tissues; however, proteins are not reactive with the alginate matrix, and therefore alginate functions as a synthetic extracellular matrix that does not initiate cell signaling(5). The alginate hydrogel floats in standard cell culture medium and supports the architecture of the tissue growth in vitro. A method is presented for the preparation, separation, and embedding of ovarian and oviductal organ pieces into alginate hydrogels, which can be maintained in culture for up to two weeks. The enzymatic release of cells for analysis of proteins and RNA samples from the organ culture is also described. Finally, the growth of primary cell types is possible without genetic immortalization from mice and permits investigators to use knockout and transgenic mice.
Collapse
Affiliation(s)
- Shelby M King
- Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, USA
| | | | | | | | | |
Collapse
|
8
|
Sako H, Hori M, Masuho I, Saitoh O, Okada A, Tomooka Y. Establishment of clonal cell lines of taste buds from a p53(-/-) mouse tongue. In Vitro Cell Dev Biol Anim 2011; 47:333-40. [PMID: 21437573 DOI: 10.1007/s11626-011-9398-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
Abstract
A taste bud is a sensory organ and consists of 50-100 spindle-shaped cells. The cells function as taste acceptors. They have characteristics of both epithelial and neuronal cells. A taste bud contains four types of cells, type I, type II, type III cells, and basal cells. Taste buds were isolated from a tongue of a p53-deficient mouse at day 12, and 11 clonal taste bud (TBD) cell lines were established. In immunochemical analysis, all cell lines expressed cytokeratin 18, gustducin, T1R3, and neural cellular adhesion molecule, but not GLAST. In RT-PCR analysis, shh was not expressed in any of the cell lines. Further analysis with RT-PCR was conducted on four cell lines. They expressed G protein-coupled taste receptors; T1R3, T2R8 for sweet, bitter, umami. And they also expressed α-ENaC for salty taste. While, a candidate for sour receptor HCN4 was expressed in TBD-a1 and TBD-a7 lines. And another candidate for sour receptor PKD1L3 was slightly expressed in TBD-a1 and TBD-c1.
Collapse
Affiliation(s)
- Hideyuki Sako
- Department of Biological Science and Technology and Research Center for RNA Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Follistatin-like-1, a diffusible mesenchymal factor determines the fate of epithelium. Proc Natl Acad Sci U S A 2010; 107:4601-6. [PMID: 20176958 DOI: 10.1073/pnas.0909501107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mesenchyme is generally believed to play critical roles in "secondary induction" during organogenesis. Because of the complexity of tissue interactions in secondary inductions, however, little is known about the precise mechanisms at the cellular and molecular levels. We have demonstrated that, in mouse oviductal development, the mesenchyme determines the fate of undetermined epithelial cells to become secretory or cilial cells. We have established a model for studying secondary induction by establishing clonal epithelial and mesenchymal cell lines from perinatal p53(-/-) mouse oviducts. The signal sequence trap method collected candidate molecules secreted from mesenchymal cell lines. Naive epithelial cells exposed to Follistatin-like-1 (Fstl1), one of the candidates, became irreversibly committed to expressing a cilial epithelial marker and differentiated into ciliated cells. We concluded that Fstl1 is one of the mesenchymal factors determining oviductal epithelial cell fate. This is a unique demonstration that the determination of epithelial cell fate is induced by a single diffusible factor.
Collapse
|
10
|
Newly established cell lines from mouse oral epithelium regenerate teeth when combined with dental mesenchyme. In Vitro Cell Dev Biol Anim 2009; 46:457-68. [PMID: 20033791 PMCID: PMC2862945 DOI: 10.1007/s11626-009-9265-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/10/2009] [Indexed: 11/05/2022]
Abstract
The present study attempted to examine whether clonal cell lines of the oral epithelium can differentiate into ameloblasts and regenerate tooth when combined with dental germ mesenchyme. Clonal cell lines with a distinct morphology were established from the oral epithelium of p53-deficient fetal mice at embryonic day 18 (E18). The strain of mouse is shown to be a useful source for establishing clonal and immortalized cell lines from various tissues and at various stages of development. Tooth morphogenesis is almost completed and the oral epithelium is segregated from the dental epithelium at E18. In RT-PCR analysis of cell lines, mucosal epithelial markers (cytokeratin 14) were detected, but ameloblast markers such as amelogenin and ameloblastin were not detected when cells were cultured on plastic dish. They formed stratified epithelia and expressed a specific differentiation marker (CK13) in the upper layer when cultured on feeder layer or on collagen gel for 1–3 wk, demonstrating that they are of oral mucosa origin. Next, bioengineered tooth germs were prepared with cell lines and fetal molar mesenchymal tissues and implanted under kidney capsule for 2–3 wk. Five among six cell lines regenerated calcified structures as seen in natural tooth. Our results indicate that some oral epithelial cells at E18 possess the capability to differentiate into ameloblasts. Furthermore, cell lines established in the present study are useful models to study processes in tooth organogenesis and tooth regeneration.
Collapse
|
11
|
Ovarian cancer pathogenesis: a model in evolution. JOURNAL OF ONCOLOGY 2009; 2010:932371. [PMID: 19746182 PMCID: PMC2739011 DOI: 10.1155/2010/932371] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 06/23/2009] [Indexed: 01/07/2023]
Abstract
Ovarian cancer is a deadly disease for which there is no effective means of early detection. Ovarian carcinomas comprise a diverse group of neoplasms, exhibiting a wide range of morphological characteristics, clinical manifestations, genetic alterations, and tumor behaviors. This high degree of heterogeneity presents a major clinical challenge in both diagnosing and treating ovarian cancer. Furthermore, the early events leading to ovarian carcinoma development are poorly understood, thus complicating efforts to develop screening modalities for this disease. Here, we provide an overview of the current models of ovarian cancer pathogenesis, highlighting recent findings implicating the fallopian tube fimbria as a possible site of origin of ovarian carcinomas. The ovarian cancer model will continue to evolve as we learn more about the genetics and etiology of this disease.
Collapse
|
12
|
Carlson J, Roh MH, Chang MC, Crum CP. Recent advances in the understanding of the pathogenesis of serous carcinoma: the concept of low- and high-grade disease and the role of the fallopian tube. ACTA ACUST UNITED AC 2008; 14:352-365. [PMID: 20953242 DOI: 10.1016/j.mpdhp.2008.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 50 years, the concept of serous ovarian cancer has been progressively refined, with the distinction of the borderline serous tumour, identification of a smaller subset of well-differentiated serous malignancies and, recently, closer attention to the pathogenesis of high-grade serous malignancies. High-grade serous carcinoma, traditionally presumed to arise within Müllerian inclusion cysts of the ovarian surface, cortex and peritoneum, has recently been linked to the distal fallopian tube. This review addresses the disparate forms of serous neoplasia, which reflect both different genetic abnormalities and stages of differentiation of Müllerian epithelium. The significance of these different origins is addressed in the context of ovarian cancer prevention.
Collapse
Affiliation(s)
- Joseph Carlson
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|