1
|
Li Z, Zhuang J, Chen J, Cao J, Han Q, Luo Z, Wang B, Wang H, Li A. Establishment of a gill cell line from yellowfin seabream (Acanthopagrus latus) for studying Amyloodinium ocellatum infection of fish. JOURNAL OF FISH DISEASES 2024; 47:e13923. [PMID: 38217345 DOI: 10.1111/jfd.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
Amyloodinium ocellatum is among the most devastating protozoan parasites, causing huge economic losses in the mariculture industry. However, the pathogenesis of amyloodiniosis remains unknown, hindering the development of targeted anti-parasitic drugs. The A. ocellatum in vitro model is an indispensable tool for investigating the pathogenic mechanism of amyloodiniosis at the cellular and molecular levels. The present work developed a new cell line, ALG, from the gill of yellowfin seabream (Acanthopagrus latus). The cell line was routinely cultured at 28°C in Dulbecco's modified Eagle medium (DMEM) supplemented with 15% fetal bovine serum (FBS). ALG cells were adherent and exhibited an epithelioid morphology; the cells were stably passed over 30 generations and successfully cryopreserved. The cell line derived from A. latus was identified based on partial sequence amplification and sequencing of cytochrome B (Cyt b). The ALG was seeded onto transwell inserts and found to be a platform for in vitro infection of A. ocellatum, with a 37.23 ± 5.75% infection rate. Furthermore, scanning electron microscopy (SEM) revealed that A. ocellatum parasitizes cell monolayers via rhizoids. A. ocellatum infection increased the expression of apoptosis and inflammation-related genes, including caspase 3 (Casp 3), interleukin 1 (IL-1), interleukin 10 (IL-10), tumour necrosis factor-alpha (TNF-α), in vivo or in vitro. These results demonstrated that the in vitro gill cell monolayer successfully recapitulated in vivo A. latus host responses to A. ocellatum infection. The ALG cell line holds great promise as a valuable tool for investigating parasite-host interactions in vitro.
Collapse
Affiliation(s)
- Zhicheng Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingyu Zhuang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiaming Chen
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jizhen Cao
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qing Han
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Luo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Baotun Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hebing Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Moratal S, Magnet A, Izquierdo F, del Águila C, López-Ramon J, Dea-Ayuela MA. Microsporidia in Commercially Harvested Marine Fish: A Potential Health Risk for Consumers. Animals (Basel) 2023; 13:2673. [PMID: 37627464 PMCID: PMC10451485 DOI: 10.3390/ani13162673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Microsporidia are widely spread obligate intracellular fungal pathogens from vertebrate and invertebrate organisms, mainly transmitted by contaminated food and water. This study aims to detect the presence of major human-pathogenic microsporidia, i.e., Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon hellem, and Encephalitozoon cuniculi, in the gastrointestinal tract of commercially harvested marine fish from Mediterranean coast of the Comunidad Valenciana, Eastern Spain. A total of 251 fish, 138 farmed fish and 113 wild fish from commercial fishing were tested by SYBR Green real-time PCR, enabling the simultaneous detection of the four targeted species. E. intestinalis/hellem was found in 1.45% of farmed fish and 7.96% of wild fish, while Enterocytozoonidae was detected in 2.90% and 18.58% of farmed and wild fish, respectively. E. cuniculi was not detected in any of the analyzed specimens. To the authors' knowledge, this is the first report of E. intestinalis/hellem in fish, particularly in marine fish. Although the role of fish in these species' epidemiology remains unknown, this finding points out a potential public health risk linked to fish consumption. Further studies are necessary to characterize these microsporidia in fish hosts better and to elucidate their epidemiological role.
Collapse
Affiliation(s)
- Samantha Moratal
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, Alfara del Patriarca, 46115 Valencia, Spain (J.L.-R.)
| | - Angela Magnet
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Fernando Izquierdo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Carmen del Águila
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Jordi López-Ramon
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, Alfara del Patriarca, 46115 Valencia, Spain (J.L.-R.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain
| | - María Auxiliadora Dea-Ayuela
- Departamento Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, C/Ramón y Cajal, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
3
|
Liu Y, Wei C, Liu Z, Cao Z, Sun Y, Zhou Y, Wang S, Guo W. Establishment of a new fish cell line from the brain of humpback grouper (Cromileptes altivelis) and its application in toxicology and bacterial susceptibility. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1645-1658. [PMID: 34448109 DOI: 10.1007/s10695-021-01006-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 05/27/2023]
Abstract
Cromileptes altivelis, humpback grouper, belongs to the family Epinephelidae and is one popular farmed fish species because of its high economic value and ornamental value. However, more and more diseases outbreaks have been reported with C. altivelis aquaculture. Today, a new brain cell line of C. altivelis (named CAB) was established and characterized. Our results showed that CAB cells were suitable for growth at 26 °C in L-15 medium supplemented with 15% fetal bovine serum (FBS). The results of 18S rRNA gene sequencing confirmed that CAB cell line was derived from C. altivelis. Moreover, chromosomal aneuploidy was observed in CAB cells, and the modal chromosome number of CAB cells was 48 by chromosome analysis. In addition, CAB cells could transfect pEGFP-N3 plasmid with high transfection efficiency, indicating that CAB cell line has the potential to investigate the function of exogenous genes in vitro. Furthermore, the bacterial susceptibility results suggested that CAB cells were susceptive to Vibrio harveyi and Edwardsiella tarda. And, heavy metals (Hg, Cd, and Cu) were toxic to the CAB cells, and the toxic effect was dose-dependent. In summary, the CAB cell line could be a powerful tool in vitro to study functional genes and has the potential application in bacterial susceptibility and toxicology.
Collapse
Affiliation(s)
- Yixuan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, People's Republic of China
| | - Caoying Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, People's Republic of China
| | - Zhiru Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China
- Department of Aquaculture, College of Marine Sciences, Hainan University, 58 Renmin Avenue Haikou 570228, Hainan, 570228, People's Republic of China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, People's Republic of China.
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, People's Republic of China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, People's Republic of China
| | - Shifeng Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, People's Republic of China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, People's Republic of China
| | - Weiliang Guo
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, People's Republic of China
| |
Collapse
|
4
|
Generation of a Microsporidia Species Attribute Database and Analysis of the Extensive Ecological and Phenotypic Diversity of Microsporidia. mBio 2021; 12:e0149021. [PMID: 34182782 PMCID: PMC8262960 DOI: 10.1128/mbio.01490-21] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microsporidia are a large group of fungus-related obligate intracellular parasites. Though many microsporidia species have been identified over the past 160 years, depiction of the full diversity of this phylum is lacking. To systematically describe the characteristics of these parasites, we created a database of 1,440 species and their attributes, including the hosts they infect and spore characteristics. We find that microsporidia have been reported to infect 16 metazoan and 4 protozoan phyla, with smaller phyla being underrepresented. Most species are reported to infect only a single host, but those that are generalists are also more likely to infect a broader set of host tissues. Strikingly, polar tubes are threefold longer in species that infect tissues besides the intestine, suggesting that polar tube length is a determinant of tissue specificity. Phylogenetic analysis revealed four clades which each contain microsporidia that infect hosts from all major habitats. Although related species are more likely to infect similar hosts, we observe examples of changes in host specificity and convergent evolution. Taken together, our results show that microsporidia display vast diversity in their morphology and the hosts they infect, illustrating the flexibility of these parasites to evolve new traits.
Collapse
|
5
|
Chaijarasphong T, Munkongwongsiri N, Stentiford GD, Aldama-Cano DJ, Thansa K, Flegel TW, Sritunyalucksana K, Itsathitphaisarn O. The shrimp microsporidian Enterocytozoon hepatopenaei (EHP): Biology, pathology, diagnostics and control. J Invertebr Pathol 2020; 186:107458. [PMID: 32882232 DOI: 10.1016/j.jip.2020.107458] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/12/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022]
Abstract
Disease is a major limiting factor in the global production of cultivated shrimp. The microsporidian parasite Enterocytozoon hepatopenaei (EHP) was formally characterized in 2009 as a rare infection of the black tiger shrimp Penaeus monodon. It remained relatively unstudied until mid-2010, after which infection with EHP became increasingly common in the Pacific whiteleg shrimp Penaeus vannamei, by then the most common shrimp species farmed in Asia. EHP infects the hepatopancreas of its host, causing hepatopancreatic microsporidiosis (HPM), a condition that has been associated with slow growth of the host in aquaculture settings. Unlike other infectious disease agents that have caused economic losses in global shrimp aquaculture, EHP has proven more challenging because too little is still known about its environmental reservoirs and modes of transmission during the industrial shrimp production process. This review summarizes our current knowledge of the EHP life cycle and the molecular strategies that it employs as an obligate intracellular parasite. It also provides an analysis of available and new methodologies for diagnosis since most of the current literature on EHP focuses on that topic. We summarize current knowledge of EHP infection and transmission dynamics and currently recommended, practical control measures that are being applied to limit its negative impact on shrimp cultivation. We also point out the major gaps in knowledge that urgently need to be bridged in order to improve control measures.
Collapse
Affiliation(s)
- Thawatchai Chaijarasphong
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
| | - Natthinee Munkongwongsiri
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok 10400, Thailand
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Diva J Aldama-Cano
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand; Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok 10400, Thailand
| | - Kwanta Thansa
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok 10400, Thailand
| | - Timothy W Flegel
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park (TSP), Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok 10400, Thailand
| | - Ornchuma Itsathitphaisarn
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand.
| |
Collapse
|
6
|
Hutson KS, Cable J, Grutter AS, Paziewska-Harris A, Barber I. Aquatic Parasite Cultures and Their Applications. Trends Parasitol 2018; 34:1082-1096. [PMID: 30473011 DOI: 10.1016/j.pt.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
In this era of unprecedented growth in aquaculture and trade, aquatic parasite cultures are essential to better understand emerging diseases and their implications for human and animal health. Yet culturing parasites presents multiple challenges, arising from their complex, often multihost life cycles, multiple developmental stages, variable generation times and reproductive modes. Furthermore, the essential environmental requirements of most parasites remain enigmatic. Despite these inherent difficulties, in vivo and in vitro cultures are being developed for a small but growing number of aquatic pathogens. Expanding this resource will facilitate diagnostic capabilities and treatment trials, thus supporting the growth of sustainable aquatic commodities and communities.
Collapse
Affiliation(s)
- Kate S Hutson
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Alexandra S Grutter
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Iain Barber
- School of Animal, Rural and Environmental Sciences, College of Science and Technology, Nottingham Trent University, NG25 0QF, UK
| |
Collapse
|
7
|
MacLeod MJ, Vo NTK, Mikhaeil MS, Monaghan SR, Alexander JAN, Saran MK, Lee LEJ. Development of a continuous cell line from larval Atlantic cod (Gadus morhua) and its use in the study of the microsporidian, Loma morhua. JOURNAL OF FISH DISEASES 2018; 41:1359-1372. [PMID: 29882595 DOI: 10.1111/jfd.12830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
In vitro cell culture methods are crucial for the isolation, purification and mass propagation of intracellular pathogens of aquatic organisms. Cell culture infection models can yield insights into infection mechanisms, aid in developing methods for disease mitigation and prevention, and inform commercial-scale cultivation approaches. This study details the establishment of a larval cell line (GML-5) from the Atlantic cod (Gadus morhua) and its use in the study of microsporidia. GML-5 has survived over 100 passages in 8 years of culture. The line remains active and viable between 8 and 21°C in Leibovitz-15 (L-15) media with 10% foetal bovine serum and exhibits a myofibroblast phenotype as indicated by immuno-positive results for vimentin, α-smooth muscle actin, collagen I and S-100 proteins, while being desmin-negative. GML-5 supports the infection and development of two microsporidian parasites, an opportunistic generalist (Anncaliia algerae) and cod-specific Loma morhua. Using GML-5, spore germination and proliferation of L. morhua was found to require exposure to basic pH and cool incubation temperatures (8°C), in contrast to A. algerae, which required no cultural modifications. Loma morhua-associated xenoma-like structures were observed 2 weeks postexposure. This in vitro infection model may serve as a valuable tool for cod parasitology and aquaculture research.
Collapse
Affiliation(s)
- Michael J MacLeod
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | | | | - Mandeep K Saran
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Lucy E J Lee
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, Canada
| |
Collapse
|
8
|
Lallo MA, Vidoto Da Costa LF, Alvares-Saraiva AM, Rocha PRD, Spadacci-Morena DD, Konno FTDC, Suffredini IB. Culture and propagation of microsporidia of veterinary interest. J Vet Med Sci 2015; 78:171-6. [PMID: 26346746 PMCID: PMC4785104 DOI: 10.1292/jvms.15-0401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Microsporidia are obligate intracellular mitochrondria-lacking pathogens that rely on host cells to grow and
multiply. Microsporidia, currently classified as fungi, are ubiquitous in nature and are found worldwide. They
infect a large number of mammals and are recognized as opportunistic infection agents in HIV-AIDS patients.
Its importance for veterinary medicine has been unveiled in recent years through the description of clinical
and subclinical forms of infection in domestic and wild animals. Domestic and wild birds may be infected by
the same human microsporidia, reinforcing their zoonotic potential. Microsporidiosis in fish is prevalent and
causes significant economic losses for fish farming. Some species of microsporidia have been propagated in
cell cultures, which may provide conditions for the development of diagnostic techniques, understanding of
pathogenesis and immune responses and for the discovery of potential therapies. Unfortunately, the cultivation
of these parasites is not fully standardized in most research laboratories, especially in the veterinary
field. The aim of this review is to relate the most important microsporidia of veterinary interest and
demonstrate how these pathogens can be grown and propagated in cell culture for diagnostic purposes or for
pathogenesis studies. Cultivation of microsporidia allowed the study of its life cycle, metabolism,
pathogenesis and diagnosis, and may also serve as a repository for these pathogens for molecular, biochemical,
antigenic and epidemiological studies.
Collapse
Affiliation(s)
- Maria Anete Lallo
- Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Development of the microsporidian parasite, Loma salmonae, in a rainbow trout gill epithelial cell line (RTG-1): evidence of xenoma development in vitro. Parasitology 2014; 142:326-31. [DOI: 10.1017/s0031182014001620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYGrowth and propagation of fish-infecting microsporidians within cell culture has been more difficult to achieve than for insect- and human-infecting microsporidians. Fish microsporidia tend to elicit xenoma development rather than diffuse growth in vivo, and this process likely increases host specificity. We present evidence that the fish microsporidian, Loma salmonae, has the capacity to develop xenomas within a rainbow trout gill epithelial cell line (RTG-1). Spore numbers increased over a 4 weeks period within cell culture flasks. Xenoma-like structures were observed using phase contrast microscopy, and then confirmed using transmission electron microscopy. Optimization of the L. salmonae-RTG-1 cell model has important implications in elucidating the process of xenoma development induced by microsporidian parasites.
Collapse
|
10
|
Kumar G, Saleh M, Abdel-Baki AAS, Al-Quraishy S, El-Matbouli M. In vitro cultivation model for Heterosporis saurida (Microsporidia) isolated from lizardfish, Saurida undosquamis (Richardson). JOURNAL OF FISH DISEASES 2014; 37:443-9. [PMID: 23957717 DOI: 10.1111/jfd.12123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/22/2013] [Accepted: 04/10/2013] [Indexed: 05/12/2023]
Abstract
Heterosporis saurida is a microsporidian that infects lizardfish, Saurida undosquamis (Richardson, 1848), in the Arabian Sea. Spores were isolated from infected lizardfish and used to infect derived fish cell lines: common carp brain (CCB), epithelioma papulosum cyprinid (EPC), fathead minnow epithelial (FHM), rainbow trout gonad (RTG), bluegill fry (BF-2) and chinook salmon embryo (CHSE). Non-fish cell lines were also tested that include: insect (SF-9), rabbit (RK-13) and African green monkey (Vero E6). No growth of H. saurida was observed in any fish cell line, SF-9 or Vero E6 cell lines. H. saurida spores grew only in RK-13 cell line and were detected by immunofluorescence. Developmental stages of H. saurida were seen in RK-13 cells by light and transmission electron microscopy, and species identification was confirmed by sequencing. This study demonstrated that H. saurida was able to proliferate in the mammalian RK-13 cell line, which thus represents an in vitro model for conducting molecular genetics and cell-pathogen interaction studies of Heterosporis.
Collapse
Affiliation(s)
- G Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | |
Collapse
|
11
|
Saleh M, Kumar G, Abdel-Baki AA, El-Matbouli M, Al-Quraishy S. In vitro growth of the microsporidian Heterosporis saurida in the eel kidney EK-1 cell line. DISEASES OF AQUATIC ORGANISMS 2014; 108:37-44. [PMID: 24492052 DOI: 10.3354/dao02690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Heterosporis saurida is an intracellular microsporidian that infects lizardfish Saurida undosquamis. Although some attempts have been introduced to clarify microsporidian host-pathogen interactions, development of novel strategies to combat fish diseases is still needed. Here we present an in vitro cultivation model for fish microsporidia based on an eel kidney cell line (EK-1), which is susceptible to infection by H. saurida. Spores were isolated from infected lizardfish and used to inoculate EK-1 cells. H. saurida were propagated in the eel kidney EK-1 cell line and detected by immunofluorescence. Developmental stages of H. saurida were seen in EK-1 cells by transmission electron microscopy. Identity of the parasite was confirmed by partial sequencing of the 16S rDNA gene. Our cell culture model provides a valuable means to explore molecular and immunological events and will facilitate development of effective treatment strategies.
Collapse
Affiliation(s)
- Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | |
Collapse
|
12
|
Ghosh K, Weiss LM. T cell response and persistence of the microsporidia. FEMS Microbiol Rev 2011; 36:748-60. [PMID: 22126330 DOI: 10.1111/j.1574-6976.2011.00318.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/28/2011] [Accepted: 11/08/2011] [Indexed: 11/28/2022] Open
Abstract
The microsporidia are a diverse phylum of obligate intracellular parasites related to the fungi that cause significant and sometimes life-threatening disease in immune-compromised hosts, such as AIDS and organ transplant patients. More recently, their role in causing pathology in immune-competent populations has also been appreciated. Interestingly, in several instances, the microsporidia have been shown to persist in their hosts long term, causing at opposite ends of the spectrum either an intractable chronic diarrhea and wasting in patients with advanced-stage AIDS or asymptomatic shedding of spores in healthy populations. Much remains to be studied regarding the immune response to these pathogens, but it seems clear that CD8+ T cells are essential in clearing infection. However, in the infection models examined thus far, the role for CD4+ T cells is unclear at best. Here, we discuss the possible reasons and ramifications of what may be a weak primary CD4+ T cell response against Encephalitozoon cuniculi. Given the central role of the CD4+ T cell in other models of adaptive immunity, a better appreciation of its role in responding to microsporidia may provide insight into the survival strategies of these pathogens, which allow them to persist in hosts of varied immune status.
Collapse
Affiliation(s)
- Kaya Ghosh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
13
|
Cali A, Kent M, Sanders J, Pau C, Takvorian PM. Development, ultrastructural pathology, and taxonomic revision of the Microsporidial genus, Pseudoloma and its type species Pseudoloma neurophilia, in skeletal muscle and nervous tissue of experimentally infected zebrafish Danio rerio. J Eukaryot Microbiol 2011; 59:40-8. [PMID: 22092657 DOI: 10.1111/j.1550-7408.2011.00591.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/15/2011] [Indexed: 11/29/2022]
Abstract
The microsporidium Pseudoloma neurophilia was initially reported to infect the central nervous system of zebrafish causing lordosis and eventually death. Subsequently, muscle tissue infections were also identified. To understand the infection process, development, and ultrastructural pathology of this microsporidium, larval and adult zebrafish were fed P. neurophilia spores. Spores were detected in the larval fish digestive tract 3-h postexposure (PE). By 4.5-d PE, developing parasite stages were identified in muscle tissue. Wet preparations of larvae collected at 8-d PE showed aggregates of spores in the spinal cord adjacent to the notochord. All parasite stages, including spores, were present in the musculature of larval fish 8-d PE. Adult zebrafish sacrificed 45-d PE had fully developed infections in nerves. Ultrastructural study of the developmental cycle of P. neurophilia revealed that proliferative stages undergo karyokinesis, producing tetranucleate stages that then divide into uninucleate cells. The plasmalemma of proliferative cells has a previously unreported glycocalyx-like coat that interfaces with the host cell cytoplasm. Sporogonic stages form sporophorous vacuoles (SPOV) derived from the plasmalemmal dense surface coat, which "blisters" off sporonts. Uninucleate sporoblasts and spores develop in the SPOV. The developmental cycle is identical in both nerve and muscle. The SPOV surface is relatively thick and is the outermost parasite surface entity; thus, xenomas are not formed. Based on the new information provided by this study, the taxonomic description of the genus Pseudoloma and its type species, P. neurophilia, is modified and its life cycle described.
Collapse
Affiliation(s)
- Ann Cali
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA.
| | | | | | | | | |
Collapse
|
14
|
In vitro growth of microsporidia Anncaliia algerae in cell lines from warm water fish. In Vitro Cell Dev Biol Anim 2010; 47:104-13. [DOI: 10.1007/s11626-010-9366-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
|
15
|
Mathews A, Hotard A, Hale-Donze H. Innate immune responses to Encephalitozoon species infections. Microbes Infect 2009; 11:905-11. [PMID: 19573618 DOI: 10.1016/j.micinf.2009.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 06/23/2009] [Indexed: 11/29/2022]
Abstract
Microsporidia are obligate intracellular, eukaryotic fungi, which have gained recognition as opportunistic parasites in immunocompromised patients. Resistance to lethal microsporidia infections requires a Th1 immune response; how this protection is initiated against Encephalitozoon species is the focus of this review article.
Collapse
Affiliation(s)
- Amber Mathews
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences, Baton Rouge, LA 70803-1715, USA
| | | | | |
Collapse
|