1
|
Azerigyik FA, Faizah AN, Kobayashi D, Amoa-Bosompem M, Matsumura R, Kai I, Sasaki T, Higa Y, Isawa H, Iwanaga S, Ishino T. Evaluating the mosquito host range of Getah virus and the vector competence of selected medically important mosquitoes in Getah virus transmission. Parasit Vectors 2023; 16:99. [PMID: 36922882 PMCID: PMC10015795 DOI: 10.1186/s13071-023-05713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND The Getah virus (GETV) is a mosquito-borne Alphavirus (family Togaviridae) that is of significant importance in veterinary medicine. It has been associated with major polyarthritis outbreaks in animals, but there are insufficient data on its clinical symptoms in humans. Serological evidence of GETV exposure and the risk of zoonotic transmission makes GETV a potentially medically relevant arbovirus. However, minimal emphasis has been placed on investigating GETV vector transmission, which limits current knowledge of the factors facilitating the spread and outbreaks of GETV. METHODS To examine the range of the mosquito hosts of GETV, we selected medically important mosquitoes, assessed them in vitro and in vivo and determined their relative competence in virus transmission. The susceptibility and growth kinetics of GETVs in various mosquito-derived cell lines were also determined and quantified using plaque assays. Vector competency assays were also conducted, and quantitative reverse transcription-PCR and plaque assays were used to determine the susceptibility and transmission capacity of each mosquito species evaluated in this study. RESULTS GETV infection in all of the investigated mosquito cell lines resulted in detectable cytopathic effects. GETV reproduced the fastest in Culex tritaeniorhynchus- and Aedes albopictus-derived cell lines, as evidenced by the highest exponential titers we observed. Regarding viral RNA copy numbers, mosquito susceptibility to infection, spread, and transmission varied significantly between species. The highest vector competency indices for infection, dissemination and transmission were obtained for Cx. tritaeniorhynchus. This is the first study to investigate the ability of Ae. albopictus and Anopheles stephensi to transmit GETV, and the results emphasize the role and capacity of other mosquito species to transmit GETV upon exposure to GETV, in addition to the perceived vectors from which GETV has been isolated in nature. CONCLUSIONS This study highlights the importance of GETV vector competency studies to determine all possible transmission vectors, especially in endemic regions.
Collapse
Affiliation(s)
- Faustus Akankperiwen Azerigyik
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.,Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Michael Amoa-Bosompem
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN, USA
| | - Ryo Matsumura
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Izumi Kai
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| | - Shiroh Iwanaga
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.,Department of Molecular Protozoology, Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Schirtzinger EE, Jasperson DC, Swanson DA, Mitzel D, Drolet BS, Richt JA, Wilson WC. Establishment of a Culex tarsalis (Diptera: Culicidae) Cell Line and its Permissiveness to Arbovirus Infection. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:239-244. [PMID: 36260075 PMCID: PMC10091495 DOI: 10.1093/jme/tjac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 05/25/2023]
Abstract
A cell line was established from Culex tarsalis Coquillett embryonated eggs and designated as CxTr. The cell line is heterogeneous, composed predominantly of small, round cells, and spindle-shaped cells with a doubling time of approximately 52-60 h. The identity of the cell line was verified as Cx. tarsalis by sequencing of cytochrome oxidase I and the cells were found to be free of contaminating cells, bacteria, fungi, and mycoplasma. The permissiveness of CxTr cells to arbovirus infection was investigated with vaccine and wildtype arboviruses from four viral families: Flaviviridae (Japanese encephalitis virus), Phenuiviridae (Rift Valley fever phlebovirus), Rhabdoviridae (vesicular stomatitis virus), and Togaviridae (Mayaro virus). All viruses were able to infect and replicate within CxTr cells.
Collapse
Affiliation(s)
- Erin E Schirtzinger
- Arthropod-borne Animal Diseases Research Unit, USDA, ARS, Manhattan, KS, USA
- Department of Diagnostic Medicine/Pathology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dane C Jasperson
- Arthropod-borne Animal Diseases Research Unit, USDA, ARS, Manhattan, KS, USA
| | - Dustin A Swanson
- Arthropod-borne Animal Diseases Research Unit, USDA, ARS, Manhattan, KS, USA
| | - Dana Mitzel
- Foreign Arthropod-borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA
| | - Barbara S Drolet
- Arthropod-borne Animal Diseases Research Unit, USDA, ARS, Manhattan, KS, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
3
|
Amoa-Bosompem M, Kobayashi D, Itokawa K, Faizah AN, Kuwata R, Dadzie S, Hayashi T, Yamaoka S, Sawabe K, Iwanaga S, Isawa H. Establishment and characterization of a cell line from Ghanaian Aedes aegypti (Diptera: Culicidae) focusing on Aedes-borne flavivirus susceptibility. In Vitro Cell Dev Biol Anim 2020; 56:792-798. [PMID: 33000384 DOI: 10.1007/s11626-020-00504-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Mosquitoes are generally considered one of the most important vectors of arboviruses, with Aedes aegypti regarded as the most important in transmission of yellow fever and dengue viruses. To investigate why there are differences in the incidence of dengue fever and Zika in different geographical areas and an absence of outbreaks in Ghana in spite of an abundance of A. aegypti mosquitoes, we established a continuous cell line from embryonic cells of A. aegypti collected in Ghana and assessed its susceptibility to dengue, yellow fever, and Zika viruses. The new cell line (designated AeAe-GH98), having an adhesive spindle-shaped web-like morphology, was serially subcultured in both VP-12 and Schneider's medium supplemented with 10% heat-inactivated fetal bovine serum. AeAe-GH98 cells were found to have a population doubling time of 1.3 d during exponential growth. The mosquito colony used to establish the cell line was confirmed to have originated from Africa using microsatellite assay. In terms of susceptibility to Aedes-borne flaviviruses, AeAe-GH98 cells were found to have different degrees of susceptibility to yellow fever, Zika, and dengue virus infection and propagation. While susceptibility of AeAe-GH98 cells to yellow fever and Zika viruses was comparable with that of C6/36 cells, susceptibility to dengue virus was significantly lower. This cell line will serve as a useful tool for determining molecular factors influencing virus-vector susceptibility in vitro.
Collapse
Affiliation(s)
- Michael Amoa-Bosompem
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-850, Japan.,Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O.Box LG581, Legon, Accra, Ghana
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryusei Kuwata
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, Japan
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O.Box LG581, Legon, Accra, Ghana
| | - Takaya Hayashi
- Department of Molecular Virology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-850, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-850, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-850, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
4
|
Amoa-Bosompem M, Kobayashi D, Murota K, Faizah AN, Itokawa K, Fujita R, Osei JHN, Agbosu E, Pratt D, Kimura S, Kwofie KD, Ohashi M, Bonney JHK, Dadzie S, Sasaki T, Ohta N, Isawa H, Sawabe K, Iwanaga S. Entomological Assessment of the Status and Risk of Mosquito-borne Arboviral Transmission in Ghana. Viruses 2020; 12:v12020147. [PMID: 32012771 PMCID: PMC7077231 DOI: 10.3390/v12020147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 01/16/2023] Open
Abstract
Entomological surveillance is one of the tools used in monitoring and controlling vector-borne diseases. However, the use of entomological surveillance for arboviral infection vector control is often dependent on finding infected individuals. Although this method may suffice in highly endemic areas, it is not as effective in controlling the spread of diseases in low endemic and non-endemic areas. In this study, we examined the efficiency of using entomological markers to assess the status and risk of arbovirus infection in Ghana, which is considered a non-endemic country, by combining mosquito surveillance with virus isolation and detection. This study reports the presence of cryptic species of mosquitoes in Ghana, demonstrating the need to combine morphological identification and molecular techniques in mosquito surveillance. Furthermore, although no medically important viruses were detected, the importance of insect-specific viruses in understanding virus evolution and arbovirus transmission is discussed. This study reports the first mutualistic relationship between dengue virus and the double-stranded RNA Aedes aegypti totivirus. Finally, this study discusses the complexity of the virome of Aedes and Culex mosquitoes and its implication for arbovirus transmission.
Collapse
Affiliation(s)
- Michael Amoa-Bosompem
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
| | - Katsunori Murota
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima 891-0105, Japan;
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan;
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Esinam Agbosu
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (E.A.); (D.P.); (J.H.K.B.)
| | - Deborah Pratt
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (E.A.); (D.P.); (J.H.K.B.)
| | - Shohei Kimura
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
| | - Kofi Dadzie Kwofie
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Mitsuko Ohashi
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Joseph H. Kofi Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (E.A.); (D.P.); (J.H.K.B.)
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
| | - Nobuo Ohta
- Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka-cyo, Suzuka-shi, Mie 510-0293, Japan;
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
- Correspondence: (H.I.); (S.I.); Tel.: +81-3-5285-1111 (H.I.); +81-3-5803-5191 (S.I.)
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Correspondence: (H.I.); (S.I.); Tel.: +81-3-5285-1111 (H.I.); +81-3-5803-5191 (S.I.)
| |
Collapse
|
5
|
Kobayashi D, Isawa H, Fujita R, Murota K, Itokawa K, Higa Y, Katayama Y, Sasaki T, Mizutani T, Iwanaga S, Ohta N, Garcia-Bertuso A, Sawabe K. Isolation and characterization of a new iflavirus from Armigeres spp. mosquitoes in the Philippines. J Gen Virol 2017; 98:2876-2881. [PMID: 29048274 DOI: 10.1099/jgv.0.000929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During an entomological surveillance for arthropod-borne viruses in the Philippines, we isolated a previously unrecognized virus from female Armigeres spp. mosquitoes. Whole-genome sequencing, genetic characterization and phylogenetic analysis revealed that the isolated virus, designated Armigeres iflavirus (ArIFV), is a novel member of the iflaviruses (genus Iflavirus, family Iflaviridae) and phylogenetically related to Moku virus, Hubei odonate virus 4, slow bee paralysis virus and Graminella nigrifrons virus 1. To our knowledge, this is the first successful isolation of iflavirus from a dipteran insect. Spherical ArIFV particles of approximately 30 nm in diameter contained at least three major structural proteins. ArIFV multiplied to high titres (~109 p.f.u. ml-1) and formed clear plaques in a mosquito cell line, C6/36. Our findings provide new insights into the infection mechanism, genetic diversity and evolution of the Iflaviridae family.
Collapse
Affiliation(s)
- Daisuke Kobayashi
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.,Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ryosuke Fujita
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.,Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Kita 21 Nihi 10, Sapporo 001-0021, Japan
| | - Katsunori Murota
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kentaro Itokawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yukiko Higa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-1-8 Harumi, Fuchu, Tokyo 183-8509, Japan
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-1-8 Harumi, Fuchu, Tokyo 183-8509, Japan
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Nobuo Ohta
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Arlene Garcia-Bertuso
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Ermita, 1000 Manila City, Philippines
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|