1
|
Malak M, Qian C, James J, Nair S, Grantham J, Ericson MB. Insights into metabolic changes during epidermal differentiation as revealed by multiphoton microscopy with fluorescence lifetime imaging. Sci Rep 2025; 15:6377. [PMID: 39984626 PMCID: PMC11845624 DOI: 10.1038/s41598-025-90101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
Rapid developments in the field of organotypic cultures have generated a growing need for effective and non-invasive methods for quality control during tissue development. In this study, we correlate metabolic changes with epidermal differentiation and demonstrate that multiphoton microscopy with fluorescence lifetime imaging (MPM-FLIM) can be applied to monitor epidermal differentiation of keratinocytes with respect to proliferative and differentiated states. In a 2D keratinocyte tissue culture model, increased expression of differentiation markers keratin-1 and keratin-10 was induced with calcium supplementation. An accompanying shift from glycolysis to mitochondrial respiration was detected in metabolic flux assays. Analysis of MPM-FLIM images acquired at 750 nm and 900 nm excitation revealed a decreased relative fraction of intracellular NADH and FAD after high calcium treatment, consistent with increased oxidative phosphorylation. Epidermal differentiation could be monitored over a 96 h period. Discrimination analysis based on k-means clustering generated clusters that correlated well with the duration of high Ca2+ treatment, suggesting that MPM-FLIM can provide useful parameters for monitoring keratinocyte differentiation.
Collapse
Affiliation(s)
- Monika Malak
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, 412 96, Sweden
| | - Chen Qian
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, 412 96, Sweden.
| | - Jeemol James
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, 412 96, Sweden
| | - Syam Nair
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
- Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 416 85, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, 412 96, Sweden
| | - Marica B Ericson
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, 412 96, Sweden.
| |
Collapse
|
2
|
Naito E, Igawa K, Takada S, Haga K, Yortchan W, Suebsamarn O, Kobayashi R, Yamazaki M, Tanuma JI, Hamano T, Shimokawa T, Tomihara K, Izumi K. The effects of carbon-ion beam irradiation on three-dimensional in vitro models of normal oral mucosa and oral cancer: development of a novel tool to evaluate cancer therapy. In Vitro Cell Dev Biol Anim 2024; 60:1184-1199. [PMID: 39110152 DOI: 10.1007/s11626-024-00958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/14/2024] [Indexed: 08/24/2024]
Abstract
Given that the original tumor microenvironment of oral cancer cannot be reproduced, predicting the therapeutic effects of irradiation using monolayer cultures and animal models of ectopic tumors is challenging. Unique properties of carbon-ion irradiation (CIR) characterized by the Bragg peak exert therapeutic effects on tumors and prevent adverse events in surrounding normal tissues. However, the underlying mechanism remains unclear. The biological effects of CIR were evaluated on three-dimensional (3D) in vitro models of normal oral mucosa (NOMM) and oral cancer (OCM3 and OCM4) consisting of HSC-3 and HSC-4 cells. A single 10- or 20-Gy dose of CIR was delivered to NOMM, OCM3, and OCM4 models. Histopathological and histomorphometric analyses and labeling indices for Ki-67, γH2AX, and TUNEL were examined after CIR. The concentrations of high mobility group box 1 (HMGB1) were measured. NOMM exhibited epithelial thinning after CIR, which could be caused by the decreased presence of Ki-67-labeled basal cells. The relative proportion of the thickness of cancer cells to the underlying stroma in cancer models decreased after CIR. This finding appeared to be supported by changes in the three labeling indices, indicating CIR-induced cancer cell death, mostly via apoptosis. Furthermore, the three indices and the HMGB1 release levels significantly differed among the OCM4 that received different doses and with different incubation times after CIR while those of the OCM3 models did not, suggesting more radiosensitivity in the OCM4. The three 3D in vitro models can be a feasible and novel tool to elucidate radiation biology.
Collapse
Affiliation(s)
- Eriko Naito
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Kazuyo Igawa
- Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Sho Takada
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Kenta Haga
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Witsanu Yortchan
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Orakarn Suebsamarn
- Children's Oral Health Department, Institute of Dentistry, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 3000, Thailand
| | - Ryota Kobayashi
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Manabu Yamazaki
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Jun-Ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Tsuyoshi Hamano
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Takashi Shimokawa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Kei Tomihara
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan.
| |
Collapse
|
3
|
Aizawa Y, Haga K, Yoshiba N, Yortchan W, Takada S, Tanaka R, Naito E, Abé T, Maruyama S, Yamazaki M, Tanuma JI, Igawa K, Tomihara K, Togo S, Izumi K. Development and Characterization of a Three-Dimensional Organotypic In Vitro Oral Cancer Model with Four Co-Cultured Cell Types, Including Patient-Derived Cancer-Associated Fibroblasts. Biomedicines 2024; 12:2373. [PMID: 39457685 PMCID: PMC11505046 DOI: 10.3390/biomedicines12102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Cancer organoids have emerged as a valuable tool of three-dimensional (3D) cell cultures to investigate tumor heterogeneity and predict tumor behavior and treatment response. We developed a 3D organotypic culture model of oral squamous cell carcinoma (OSCC) to recapitulate the tumor-stromal interface by co-culturing four cell types, including patient-derived cancer-associated fibroblasts (PD-CAFs). Methods: A stainless-steel ring was used twice to create the horizontal positioning of the cancer stroma (adjoining normal oral mucosa connective tissue) and the OSCC layer (surrounding normal oral mucosa epithelial layer). Combined with a structured bi-layered model of the epithelial component and the underlying stroma, this protocol enabled us to construct four distinct portions mimicking the oral cancer tissue arising in the oral mucosa. Results: In this model, α-smooth muscle actin-positive PD-CAFs were localized in close proximity to the OSCC layer, suggesting a crosstalk between them. Furthermore, a linear laminin-γ2 expression was lacking at the interface between the OSCC layer and the underlying stromal layer, indicating the loss of the basement membrane-like structure. Conclusions: Since the specific 3D architecture and polarity mimicking oral cancer in vivo provides a more accurate milieu of the tumor microenvironment (TME), it could be crucial in elucidating oral cancer TME.
Collapse
Affiliation(s)
- Yuka Aizawa
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (E.N.)
| | - Kenta Haga
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Nagako Yoshiba
- Department of Oral Health and Welfare, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Witsanu Yortchan
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
| | - Sho Takada
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
| | - Rintaro Tanaka
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
| | - Eriko Naito
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (E.N.)
| | - Tatsuya Abé
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan (J.-i.T.)
| | - Satoshi Maruyama
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan (J.-i.T.)
| | - Manabu Yamazaki
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan (J.-i.T.)
| | - Jun-ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan (J.-i.T.)
| | - Kazuyo Igawa
- Neutron Therapy Research Center, Okayama University, Okayama 700-8558, Japan;
| | - Kei Tomihara
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (E.N.)
| | - Shinsaku Togo
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.A.); (W.Y.); (S.T.)
| |
Collapse
|
4
|
Klein L, Hutmacher DW. Straddling the Line Between In Vitro and Ex Vivo Investigations. Tissue Eng Part C Methods 2024; 30:443-451. [PMID: 39422880 DOI: 10.1089/ten.tec.2024.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Tissue engineering research fundamentally relies on experiments to advance knowledge, utilizing various models for research on both humans and animals. With scientific progress, experimental models have become increasingly complex over time. This complexity sometimes blurs the distinction between categories, making terminology less consistent. In biomedical research, three overarching terms are commonly used to characterize experimental environments: in vitro, ex vivo, and in vivo. While in vitro translates from Latin as "in glass," referring historically to experimental conditions in a test tube or petri dish, in vivo experiments occur within a living organism's natural environment. Conversely, ex vivo originates from living tissue outside its host environment while striving to maintain conditions as close to the host surroundings as possible. In the tissue engineering and regenerative medicine (TE&RM) community, there needs to be more clarity between in vitro and ex vivo terminology, with historical definitions sometimes disregarded and new terms often introduced without rigorous scientific justification. At this juncture, the question arises of when to refer to experiments as in vitro or ex vivo or whether the terms may be used synonymously in some instances. Moreover, what criteria must ex vivo experiments meet to be legitimately defined as such? This perspective is intended to address questions that would assist the TE&RM community in better understanding the differences between in vitro and ex vivo models. Impact Statement In the tissue engineering & regenerative medicine literature, the terms "in vitro" and "ex vivo" are often used interchangeably to describe experiments. This interchangeable usage can lead to a compromised interpretation of research results and, consequently, misleading scientific conclusions and teachings. This perspective aims to provide clarity on the various definitions of experimental designs. It also highlights the issue of using terms with inconsistent meanings that have origins dating back to the distant past. It's important to note that scientific definitions constantly evolve, and there is a scientifically rooted responsibility to evaluate and rethink the current state of affairs critically.
Collapse
Affiliation(s)
- Leopold Klein
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Dietmar W Hutmacher
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
5
|
Lombardi F, Augello FR, Ciafarone A, Ciummo V, Altamura S, Cinque B, Palumbo P. 3D Models Currently Proposed to Investigate Human Skin Aging and Explore Preventive and Reparative Approaches: A Descriptive Review. Biomolecules 2024; 14:1066. [PMID: 39334833 PMCID: PMC11430810 DOI: 10.3390/biom14091066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Skin aging is influenced by intrinsic and extrinsic factors that progressively impair skin functionality over time. Investigating the skin aging process requires thorough research using innovative technologies. This review explores the use of in vitro human 3D culture models, serving as valuable alternatives to animal ones, in skin aging research. The aim is to highlight the benefits and necessity of improving the methodology in analyzing the molecular mechanisms underlying human skin aging. Traditional 2D models, including monolayers of keratinocytes, fibroblasts, or melanocytes, even if providing cost-effective and straightforward methods to study critical processes such as extracellular matrix degradation, pigmentation, and the effects of secretome on skin cells, fail to replicate the complex tissue architecture with its intricated interactions. Advanced 3D models (organoid cultures, "skin-on-chip" technologies, reconstructed human skin, and 3D bioprinting) considerably enhance the physiological relevance, enabling a more accurate representation of skin aging and its peculiar features. By reporting the advantages and limitations of 3D models, this review highlights the importance of using advanced in vitro systems to develop practical anti-aging preventive and reparative approaches and improve human translational research in this field. Further exploration of these technologies will provide new opportunities for previously unexplored knowledge on skin aging.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Francesca Rosaria Augello
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Alessia Ciafarone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Valeria Ciummo
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Serena Altamura
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| |
Collapse
|
6
|
Silva B, Marques EF, Gomes AC. Recent advances in in vitro models simulating the female genital tract toward more effective intravaginal therapeutic delivery. Expert Opin Drug Deliv 2024; 21:1007-1027. [PMID: 39001669 DOI: 10.1080/17425247.2024.2380338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Intravaginal drug delivery has emerged as a promising avenue for treating a spectrum of systemic and local female genital tract (FGT) conditions, using biomaterials as carriers or scaffolds for targeted and efficient administration. Much effort has been made to understand the natural barriers of this route and improve the delivery system to achieve an efficient therapeutic response. AREAS COVERED In this review, we conducted a comprehensive literature search using multiple databases (PubMed Scopus Web of Science Google Scholar), to discuss the potential of intravaginal therapeutic delivery, as well as the obstacles unique to this route. The in vitro cell models of the FGT and how they can be applied to probing intravaginal drug delivery are then analyzed. We further explore the limitations of the existing models and the possibilities to make them more promising for delivery studies or biomaterial validation. Complementary information is provided by in vitro acellular techniques that may shed light on mucus-drug interaction. EXPERT OPINION Advances in 3D models and cell cultures have enhanced our understanding of the FGT, but they still fail to replicate all variables. Future research should aim to use complementary methods, ensure stability, and develop consistent protocols to improve therapy evaluation and create better predictive in vitro models for women's health.
Collapse
Affiliation(s)
- Bruna Silva
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Eduardo F Marques
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
| |
Collapse
|
7
|
Li X, González-Maroto C, Tavassoli M. Crosstalk between CAFs and tumour cells in head and neck cancer. Cell Death Discov 2024; 10:303. [PMID: 38926351 PMCID: PMC11208506 DOI: 10.1038/s41420-024-02053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are amongst the most aggressive, complex, and heterogeneous malignancies. The standard of care treatments for HNC patients include surgery, radiotherapy, chemotherapy, or their combination. However, around 50% do not benefit while suffering severe toxic side effects, costing the individuals and society. Decades have been spent to improve HNSCC treatment outcomes with only limited success. Much of the research in HNSCC treatment has focused on understanding the genetics of the HNSCC malignant cells, but it has become clear that tumour microenvironment (TME) plays an important role in the progression as well as treatment response in HNSCC. Understanding the crosstalk between cancer cells and TME is crucial for inhibiting progression and treatment resistance. Cancer-associated fibroblasts (CAFs), the predominant component of stroma in HNSCC, serve as the primary source of extra-cellular matrix (ECM) and various pro-tumoral composites in TME. The activation of CAFs in HNSCC is primarily driven by cancer cell-secreted molecules, which in turn induce phenotypic changes, elevated secretive status, and altered ECM production profile. Concurrently, CAFs play a pivotal role in modulating the cell cycle, stemness, epithelial-mesenchymal transition (EMT), and resistance to targeted and chemoradiotherapy in HNSCC cells. This modulation occurs through interactions with secreted molecules or direct contact with the ECM or CAF. Co-culture and 3D models of tumour cells and other TME cell types allows to mimic the HNSCC tumour milieu and enable modulating tumour hypoxia and reprograming cancer stem cells (CSC). This review aims to provide an update on the development of HNSCC tumour models comprising CAFs to obtain better understanding of the interaction between CAFs and tumour cells, and for providing preclinical testing platforms of current and combination with emerging therapeutics.
Collapse
Affiliation(s)
- Xinyang Li
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Celia González-Maroto
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
8
|
Bassan A, Steigerwalt R, Keller D, Beilke L, Bradley PM, Bringezu F, Brock WJ, Burns-Naas LA, Chambers J, Cross K, Dorato M, Elespuru R, Fuhrer D, Hall F, Hartke J, Jahnke GD, Kluxen FM, McDuffie E, Schmidt F, Valentin JP, Woolley D, Zane D, Myatt GJ. Developing a pragmatic consensus procedure supporting the ICH S1B(R1) weight of evidence carcinogenicity assessment. FRONTIERS IN TOXICOLOGY 2024; 6:1370045. [PMID: 38646442 PMCID: PMC11027748 DOI: 10.3389/ftox.2024.1370045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
The ICH S1B carcinogenicity global testing guideline has been recently revised with a novel addendum that describes a comprehensive integrated Weight of Evidence (WoE) approach to determine the need for a 2-year rat carcinogenicity study. In the present work, experts from different organizations have joined efforts to standardize as much as possible a procedural framework for the integration of evidence associated with the different ICH S1B(R1) WoE criteria. The framework uses a pragmatic consensus procedure for carcinogenicity hazard assessment to facilitate transparent, consistent, and documented decision-making and it discusses best-practices both for the organization of studies and presentation of data in a format suitable for regulatory review. First, it is acknowledged that the six WoE factors described in the addendum form an integrated network of evidence within a holistic assessment framework that is used synergistically to analyze and explain safety signals. Second, the proposed standardized procedure builds upon different considerations related to the primary sources of evidence, mechanistic analysis, alternative methodologies and novel investigative approaches, metabolites, and reliability of the data and other acquired information. Each of the six WoE factors is described highlighting how they can contribute evidence for the overall WoE assessment. A suggested reporting format to summarize the cross-integration of evidence from the different WoE factors is also presented. This work also notes that even if a 2-year rat study is ultimately required, creating a WoE assessment is valuable in understanding the specific factors and levels of human carcinogenic risk better than have been identified previously with the 2-year rat bioassay alone.
Collapse
Affiliation(s)
| | | | - Douglas Keller
- Independent Consultant, Kennett Square, PA, United States
| | - Lisa Beilke
- Toxicology Solutions, Inc., Marana, AZ, United States
| | | | - Frank Bringezu
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - William J. Brock
- Brock Scientific Consulting, LLC, Hilton Head, SC, United States
| | | | | | | | | | | | - Douglas Fuhrer
- BioXcel Therapeutics, Inc., New Haven, CT, United States
| | | | - Jim Hartke
- Gilead Sciences, Inc., Foster City, CA, United States
| | | | | | - Eric McDuffie
- Neurocrine Bioscience, Inc., San Diego, CA, United States
| | | | | | | | - Doris Zane
- Gilead Sciences, Inc., Foster City, CA, United States
| | | |
Collapse
|
9
|
Saglam-Metiner P, Yildiz-Ozturk E, Tetik-Vardarli A, Cicek C, Goksel O, Goksel T, Tezcanli B, Yesil-Celiktas O. Organotypic lung tissue culture as a preclinical model to study host- influenza A viral infection: A case for repurposing of nafamostat mesylate. Tissue Cell 2024; 87:102319. [PMID: 38359705 DOI: 10.1016/j.tice.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Reliable and effective models for recapitulation of host-pathogen interactions are imperative for the discovery of potential therapeutics. Ex vivo models can fulfill these requirements as the multicellular native environment in the tissue is preserved and be utilized for toxicology, vaccine, infection and drug efficacy studies due to the presence of immune cells. Drug repurposing involves the identification of new applications for already approved drugs that are not related to the prime medical indication and emerged as a strategy to cope with slow pace of drug discovery due to high costs and necessary phases to reach the patients. Within the scope of the study, broad-spectrum serine protease inhibitor nafamostat mesylate was repurposed to inhibit influenza A infection and evaluated by a translational ex vivo organotypic model, in which human organ-level responses can be achieved in preclinical safety studies of potential antiviral agents, along with in in vitro lung airway culture. The safe doses were determined as 10 µM for in vitro, whereas 22 µM for ex vivo to be applied for evaluation of host-pathogen interactions, which reduced virus infectivity, increased cell/tissue viability, and protected total protein content by reducing cell death with the inflammatory response. When the gene expression levels of specific pro-inflammatory, anti-inflammatory and cell surface markers involved in antiviral responses were examined, the significant inflammatory response represented by highly elevated mRNA gene expression levels of cytokines and chemokines combined with CDH5 downregulated by 5.1-fold supported the antiviral efficacy of NM and usability of ex vivo model as a preclinical infection model.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey
| | - Ece Yildiz-Ozturk
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Food Processing, Food Technology Programme, Yasar University, 35100 Izmir, Turkey
| | - Aslı Tetik-Vardarli
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Candan Cicek
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Ozlem Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Pulmonary Medicine, Division of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Tuncay Goksel
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey; Department of Pulmonary Medicine, Division of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | | | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir 35100, Turkey.
| |
Collapse
|
10
|
Viegas J, Cardoso EM, Bonneau L, Esteves AF, Ferreira CL, Alves G, Santos-Silva AJ, Vitale M, Arosa FA, Taborda-Barata L. A Novel Bionebulizer Approach to Study the Effects of Natural Mineral Water on a 3D In Vitro Nasal Model from Allergic Rhinitis Patients. Biomedicines 2024; 12:408. [PMID: 38398010 PMCID: PMC10886703 DOI: 10.3390/biomedicines12020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sulfurous thermal waters (STWs) are used as a complementary treatment for allergic rhinitis. However, there is scant data on the effects of STW on nasal epithelial cells, and in vitro models are warranted. The main aim of this study was to evaluate the dose and time effects of exposure to 3D nasal inserts (MucilAirTM-HF allergic rhinitis model) with STW or isotonic sodium chloride solution (ISCS) aerosols. Transepithelial electrical resistance (TEER) and histology were assessed before and after nebulizations. Chemokine/cytokine levels in the basal supernatants were assessed by enzyme-linked immunosorbent assay. The results showed that more than four daily nebulizations of four or more minutes compromised the normal epithelial integrity. In contrast, 1 or 2 min of STW or ISCS nebulizations had no toxic effect up to 3 days. No statistically significant changes in release of inflammatory chemokines MCP-1/CCL2 > IL-8/CXCL8 > MIP-1α/CCL3, no meaningful release of "alarmins" (IL-1α, IL-33), nor of anti-inflammatory IL-10 cytokine were observed. We have characterized safe time and dose conditions for aerosol nebulizations using a novel in vitro 3D nasal epithelium model of allergic rhinitis patients. This may be a suitable in vitro setup to mimic in vivo treatments of chronic rhinitis with STW upon triggering an inflammatory stimulus in the future.
Collapse
Affiliation(s)
- Joana Viegas
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Elsa M. Cardoso
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- ESS-IPG-School of Health Sciences, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
| | - Lucile Bonneau
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Ana Filipa Esteves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
| | - Catarina L. Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - António Jorge Santos-Silva
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Unhais da Serra Thermal Spa, Avenida das Termas, 6215-574 Unhais da Serra, Portugal
| | - Marco Vitale
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, 20132 Milan, Italy;
- FoRST—Fondazione per la Ricerca Scientifica Termale, 00198 Rome, Italy
| | - Fernando A. Arosa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Luís Taborda-Barata
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.V.); (E.M.C.); (L.B.); (A.F.E.); (C.L.F.); (G.A.); (F.A.A.)
- Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- UBIAir—Clinical & Experimental Lung Centre, University of Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- CACB—Clinical Academic Centre of Beiras, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Department of Immunoallergology, Cova da Beira University Hospital Centre, Alameda Pêro da Covilhã, 6200-251 Covilhã, Portugal
| |
Collapse
|
11
|
Jaber N, Billet S. How to use an in vitro approach to characterize the toxicity of airborne compounds. Toxicol In Vitro 2024; 94:105718. [PMID: 37871865 DOI: 10.1016/j.tiv.2023.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023]
Abstract
As part of the development of new approach methodologies (NAMs), numerous in vitro methods are being developed to characterize the potential toxicity of inhalable xenobiotics (gases, volatile organic compounds, polycyclic aromatic hydrocarbons, particulate matter, nanoparticles). However, the materials and methods employed are extremely diverse, and no single method is currently in use. Method standardization and validation would raise trust in the results and enable them to be compared. This four-part review lists and compares biological models and exposure methodologies before describing measurable biomarkers of exposure or effect. The first section emphasizes the importance of developing alternative methods to reduce, if not replace, animal testing (3R principle). The biological models presented are mostly to cultures of epithelial cells from the respiratory system, as the lungs are the first organ to come into contact with air pollutants. Monocultures or cocultures of primary cells or cell lines, as well as 3D organotypic cultures such as organoids, spheroids and reconstituted tissues, but also the organ(s) model on a chip are examples. The exposure methods for these biological models applicable to airborne compounds are submerged, intermittent, continuous either static or dynamic. Finally, within the restrictions of these models (i.e. relative tiny quantities, adhering cells), the mechanisms of toxicity and the phenotypic markers most commonly examined in models exposed at the air-liquid interface (ALI) are outlined.
Collapse
Affiliation(s)
- Nour Jaber
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France.
| |
Collapse
|
12
|
Pateras IS, Igea A, Nikas IP, Leventakou D, Koufopoulos NI, Ieronimaki AI, Bergonzini A, Ryu HS, Chatzigeorgiou A, Frisan T, Kittas C, Panayiotides IG. Diagnostic Challenges during Inflammation and Cancer: Current Biomarkers and Future Perspectives in Navigating through the Minefield of Reactive versus Dysplastic and Cancerous Lesions in the Digestive System. Int J Mol Sci 2024; 25:1251. [PMID: 38279253 PMCID: PMC10816510 DOI: 10.3390/ijms25021251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
In the setting of pronounced inflammation, changes in the epithelium may overlap with neoplasia, often rendering it impossible to establish a diagnosis with certainty in daily clinical practice. Here, we discuss the underlying molecular mechanisms driving tissue response during persistent inflammatory signaling along with the potential association with cancer in the gastrointestinal tract, pancreas, extrahepatic bile ducts, and liver. We highlight the histopathological challenges encountered in the diagnosis of chronic inflammation in routine practice and pinpoint tissue-based biomarkers that could complement morphology to differentiate reactive from dysplastic or cancerous lesions. We refer to the advantages and limitations of existing biomarkers employing immunohistochemistry and point to promising new markers, including the generation of novel antibodies targeting mutant proteins, miRNAs, and array assays. Advancements in experimental models, including mouse and 3D models, have improved our understanding of tissue response. The integration of digital pathology along with artificial intelligence may also complement routine visual inspections. Navigating through tissue responses in various chronic inflammatory contexts will help us develop novel and reliable biomarkers that will improve diagnostic decisions and ultimately patient treatment.
Collapse
Affiliation(s)
- Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Ana Igea
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Mobile Genomes, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Danai Leventakou
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Nektarios I. Koufopoulos
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Argyro Ioanna Ieronimaki
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Anna Bergonzini
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52 Stockholm, Sweden;
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Christos Kittas
- Department of Histopathology, Biomedicine Group of Health Company, 156 26 Athens, Greece;
| | - Ioannis G. Panayiotides
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| |
Collapse
|
13
|
Reddy N, Lynch B, Gujral J, Karnik K. Alternatives to animal testing in toxicity testing: Current status and future perspectives in food safety assessments. Food Chem Toxicol 2023; 179:113944. [PMID: 37453475 DOI: 10.1016/j.fct.2023.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The development of alternative methods to animal testing has gained great momentum since Russel and Burch introduced the "3Rs" concept of Reduction, Refinement, and Replacement of animals in safety testing in 1959. Several alternatives to animal testing have since been introduced, including but not limited to in vitro and in chemico test systems, in silico models, and computational models (e.g., [quantitative] structural activity relationship models, high-throughput screens, organ-on-chip models, and genomics or bioinformatics) to predict chemical toxicity. Furthermore, several agencies have developed robust integrated testing strategies to determine chemical toxicity. The cosmetics sector is pioneering the adoption of alternative methodologies for safety evaluations, and other sectors are aiming to completely abandon animal testing by 2035. However, beyond the use of in vitro genetic testing, agencies regulating the food industry have been slow to implement alternative methodologies into safety evaluations compared with other sectors; setting health-based guidance values for food ingredients requires data from systemic toxicity, and to date, no standalone validated alternative models to assess systemic toxicity exist. The abovementioned models show promise for assessing systemic toxicity with further research. In this paper, we review the current alternatives and their applicability and limitations in food safety evaluations.
Collapse
Affiliation(s)
- Navya Reddy
- Intertek Health Sciences Inc., 2233 Argentia Rd, Suite 201, Mississauga, ON, L5N 2X7, Canada
| | - Barry Lynch
- Intertek Health Sciences Inc., 2233 Argentia Rd, Suite 201, Mississauga, ON, L5N 2X7, Canada.
| | - Jaspreet Gujral
- Tate & Lyle, 5450 Prairie Stone Pkwy, Hoffman Estates, IL, 60192, USA
| | - Kavita Karnik
- Tate & Lyle PLC, 5 Marble Arch, London, W1H 7EJ, United Kingdom
| |
Collapse
|
14
|
Etschmaier V, Üçal M, Lohberger B, Absenger-Novak M, Kolb D, Weinberg A, Schäfer U. Disruption of Endochondral Ossification and Extracellular Matrix Maturation in an Ex Vivo Rat Femur Organotypic Slice Model Due to Growth Plate Injury. Cells 2023; 12:1687. [PMID: 37443722 PMCID: PMC10341345 DOI: 10.3390/cells12131687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Postnatal bone fractures of the growth plate (GP) are often associated with regenerative complications such as growth impairment. In order to understand the underlying processes of trauma-associated growth impairment within postnatal bone, an ex vivo rat femur slice model was developed. To achieve this, a 2 mm horizontal cut was made through the GP of rat femur prior to the organotypic culture being cultivated for 15 days in vitro. Histological analysis showed disrupted endochondral ossification, including disordered architecture, increased chondrocyte metabolic activity, and a loss of hypertrophic zone throughout the distal femur. Furthermore, altered expression patterns of Col2α1, Acan, and ColX, and increased chondrocyte metabolic activity in the TZ and MZ at day 7 and day 15 postinjury were observed. STEM revealed the presence of stem cells, fibroblasts, and chondrocytes within the injury site at day 7. In summary, the findings of this study suggest that the ex vivo organotypic GP injury model could be a valuable tool for investigating the underlying mechanisms of GP regeneration post-trauma, as well as other tissue engineering and disease studies.
Collapse
Affiliation(s)
- Vanessa Etschmaier
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria; (V.E.); (M.Ü.)
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (B.L.); (A.W.)
| | - Muammer Üçal
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria; (V.E.); (M.Ü.)
- Bio-Tech-Med Graz, 8010 Graz, Austria
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (B.L.); (A.W.)
| | - Markus Absenger-Novak
- Center for Medical Research, Core Facility Imaging, Medical University of Graz, 8036 Graz, Austria;
| | - Dagmar Kolb
- Center for Medical Research, Core Facility Ultrastructure Analysis, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Annelie Weinberg
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (B.L.); (A.W.)
| | - Ute Schäfer
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria; (V.E.); (M.Ü.)
| |
Collapse
|
15
|
Mitchell A, Yu C, Zhao X, Pearmain L, Shah R, Hanley KP, Felton T, Wang T. Rapid Generation of Pulmonary Organoids from Induced Pluripotent Stem Cells by Co-Culturing Endodermal and Mesodermal Progenitors for Pulmonary Disease Modelling. Biomedicines 2023; 11:1476. [PMID: 37239147 PMCID: PMC10216357 DOI: 10.3390/biomedicines11051476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Differentiation of induced pluripotent stem cells to a range of target cell types is ubiquitous in monolayer culture. To further improve the phenotype of the cells produced, 3D organoid culture is becoming increasingly prevalent. Mature organoids typically require the involvement of cells from multiple germ layers. The aim of this study was to produce pulmonary organoids from defined endodermal and mesodermal progenitors. Endodermal and mesodermal progenitors were differentiated from iPSCs and then combined in 3D Matrigel hydrogels and differentiated for a further 14 days to produce pulmonary organoids. The organoids expressed a range of pulmonary cell markers such as SPA, SPB, SPC, AQP5 and T1α. Furthermore, the organoids expressed ACE2 capable of binding SARS-CoV-2 spike proteins, demonstrating the physiological relevance of the organoids produced. This study presented a rapid production of pulmonary organoids using a multi-germ-layer approach that could be used for studying respiratory-related human conditions.
Collapse
Affiliation(s)
- Adam Mitchell
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (A.M.); (C.Y.); (X.Z.)
| | - Chaowen Yu
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (A.M.); (C.Y.); (X.Z.)
- Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiangjun Zhao
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (A.M.); (C.Y.); (X.Z.)
| | - Laurence Pearmain
- Division of Diabetes, Endocrinology & Gastroenterology, Wellcome Trust Centre for Cell-Matrix Research, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (L.P.); (K.P.H.)
| | - Rajesh Shah
- Manchester University Hospital NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT, UK;
| | - Karen Piper Hanley
- Division of Diabetes, Endocrinology & Gastroenterology, Wellcome Trust Centre for Cell-Matrix Research, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (L.P.); (K.P.H.)
| | - Timothy Felton
- Division of Infection, Immunity and Respiratory Medicine, The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Tao Wang
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (A.M.); (C.Y.); (X.Z.)
| |
Collapse
|
16
|
Heredia-Mendez AJ, Sánchez-Sánchez G, López-Camarillo C. Reprogramming of the Genome-Wide DNA Methylation Landscape in Three-Dimensional Cancer Cell Cultures. Cancers (Basel) 2023; 15:1991. [PMID: 37046652 PMCID: PMC10093594 DOI: 10.3390/cancers15071991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
During the last century, 2D cell cultures have been the tool most widely used to study cancer biology, drug discovery, genomics, and the regulation of gene expression at genetic/epigenetic levels. However, this experimental approach has limitations in faithfully recreating the microenvironment and cellular processes occurring in tumors. For these reasons, 3D cell cultures have recently been implemented to optimize the conditions that better recreate the biological and molecular features of tumors, including cell-cell and cell-extracellular matrix (ECM) interactions, growth kinetics, metabolic activities, and the development of gradients in the cellular microenvironment affecting the availability of oxygen and nutrients. In this sense, tumor cells receive stimuli from the local environment, resulting in significant changes in their signaling pathways, gene expression, and transcriptional and epigenetic patterns. In this review, we discuss how different types of 3D cell culture models can be applied to characterize the epigenetic footprints of cancer cell lines, emphasizing that DNA methylation patterns play an essential role in the emergence and development of cancer. However, how 3D cancer cell cultures remodel the epigenetic programs is poorly understood, with very few studies in this emerging topic. Here, we have summarized the studies on the reprogramming of the epigenetic landscape of DNA methylation during tumorigenesis and discuss how it may be affected by microenvironmental factors, specifically in 3D cell cultures.
Collapse
Affiliation(s)
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia del Valle Sur, Ciudad de Mexico 03100, Mexico
| |
Collapse
|
17
|
Dalleywater W, Wheat F, Sculthorpe D, Hyland G, Ilyas M. In Vitro Culture and Histological Evaluation of 3D Organotypic Cultures. Methods Mol Biol 2023; 2650:155-170. [PMID: 37310631 DOI: 10.1007/978-1-0716-3076-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organotypic cultures allow cells to grow in a system which mimics in vivo tissue organization. Here we describe a method for establishing 3D organotypic cultures (using intestine as an example system), followed by methods for demonstrating cell morphology and tissue architecture using histological techniques and molecular expression analysis using immunohistochemistry, though the system is also amenable to molecular expression analysis, such as by PCR, RNA sequencing, or FISH.
Collapse
Affiliation(s)
- William Dalleywater
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK.
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Francesca Wheat
- Department of Cellular Pathology, University Hospitals of Leicester NHS Trust, Nottingham, UK
| | - Declan Sculthorpe
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Georgina Hyland
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mohammad Ilyas
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
18
|
Fattahi E, Taheri S, Schilling AF, Becker T, Pörtner R. Generation and evaluation of input values for computational analysis of transport processes within tissue cultures. Eng Life Sci 2022; 22:681-698. [PMID: 36348656 PMCID: PMC9635004 DOI: 10.1002/elsc.202100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 11/15/2022] Open
Abstract
Techniques for tissue culture have seen significant advances during the last decades and novel 3D cell culture systems have become available. To control their high complexity, experimental techniques and their Digital Twins (modelling and computational tools) are combined to link different variables to process conditions and critical process parameters. This allows a rapid evaluation of the expected product quality. However, the use of mathematical simulation and Digital Twins is critically dependent on the precise description of the problem and correct input parameters. Errors here can lead to dramatically wrong conclusions. The intention of this review is to provide an overview of the state-of-the-art and remaining challenges with respect to generating input values for computational analysis of mass and momentum transport processes within tissue cultures. It gives an overview on relevant aspects of transport processes in tissue cultures as well as modelling and computational tools to tackle these problems. Further focus is on techniques used for the determination of cell-specific parameters and characterization of culture systems, including sensors for on-line determination of relevant parameters. In conclusion, tissue culture techniques are well-established, and modelling tools are technically mature. New sensor technologies are on the way, especially for organ chips. The greatest remaining challenge seems to be the proper addressing and handling of input parameters required for mathematical models. Following Good Modelling Practice approaches when setting up and validating computational models is, therefore, essential to get to better estimations of the interesting complex processes inside organotypic tissue cultures in the future.
Collapse
Affiliation(s)
- Ehsan Fattahi
- Chair of Brewing and Beverage TechnologyTUM School of Life SciencesTechnische Universität MünchenFreisingGermany
| | - Shahed Taheri
- Department of Trauma SurgeryOrthopaedics and Plastic SurgeryUniversity Medical Center GöttingenGöttingenGermany
| | - Arndt F. Schilling
- Department of Trauma SurgeryOrthopaedics and Plastic SurgeryUniversity Medical Center GöttingenGöttingenGermany
| | - Thomas Becker
- Chair of Brewing and Beverage TechnologyTUM School of Life SciencesTechnische Universität MünchenFreisingGermany
| | - Ralf Pörtner
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| |
Collapse
|
19
|
Overexpression of miR-124 in Motor Neurons Plays a Key Role in ALS Pathological Processes. Int J Mol Sci 2021; 22:ijms22116128. [PMID: 34200161 PMCID: PMC8201298 DOI: 10.3390/ijms22116128] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
miRNA(miR)-124 is an important regulator of neurogenesis, but its upregulation in SOD1G93A motor neurons (mSOD1 MNs) was shown to associate with neurodegeneration and microglia activation. We used pre-miR-124 in wild-type (WT) MNs and anti-miR-124 in mSOD1 MNs to characterize the miR-124 pathological role. miR-124 overexpression in WT MNs produced a miRNA profile like that of mSOD1 MNs (high miR-125b; low miR-146a and miR-21), and similarly led to early apoptosis. Alterations in mSOD1 MNs were abrogated with anti-miR-124 and changes in their miRNAs mostly recapitulated by their secretome. Normalization of miR-124 levels in mSOD1 MNs prevented the dysregulation of neurite network, mitochondria dynamics, axonal transport, and synaptic signaling. Same alterations were observed in WT MNs after pre-miR-124 transfection. Secretome from mSOD1 MNs triggered spinal microglia activation, which was unno-ticed with that from anti-miR-124-modulated cells. Secretome from such modulated MNs, when added to SC organotypic cultures from mSOD1 mice in the early symptomatic stage, also coun-teracted the pathology associated to GFAP decrease, PSD-95 and CX3CL1-CX3CR1 signaling im-pairment, neuro-immune homeostatic imbalance, and enhanced miR-124 expression levels. Data suggest that miR-124 is implicated in MN degeneration and paracrine-mediated pathogenicity. We propose miR-124 as a new therapeutic target and a promising ALS biomarker in patient sub-populations.
Collapse
|