1
|
Weigel T, Malkmus C, Weigel V, Wußmann M, Berger C, Brennecke J, Groeber-Becker F, Hansmann J. Fully Synthetic 3D Fibrous Scaffolds for Stromal Tissues-Replacement of Animal-Derived Scaffold Materials Demonstrated by Multilayered Skin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106780. [PMID: 34933407 DOI: 10.1002/adma.202106780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The extracellular matrix (ECM) of soft tissues in vivo has remarkable biological and structural properties. Thereby, the ECM provides mechanical stability while it still can be rearranged via cellular remodeling during tissue maturation or healing processes. However, modern synthetic alternatives fail to provide these key features among basic properties. Synthetic matrices are usually completely degraded or are inert regarding cellular remodeling. Based on a refined electrospinning process, a method is developed to generate synthetic scaffolds with highly porous fibrous structures and enhanced fiber-to-fiber distances. Since this approach allows for cell migration, matrix remodeling, and ECM synthesis, the scaffold provides an ideal platform for the generation of soft tissue equivalents. Using this matrix, an electrospun-based multilayered skin equivalent composed of a stratified epidermis, a dermal compartment, and a subcutis is able to be generated without the use of animal matrix components. The extension of classical dense electrospun scaffolds with high porosities and motile fibers generates a fully synthetic and defined alternative to collagen-gel-based tissue models and is a promising system for the construction of tissue equivalents as in vitro models or in vivo implants.
Collapse
Affiliation(s)
- Tobias Weigel
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082, Würzburg, Germany
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Christoph Malkmus
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Verena Weigel
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082, Würzburg, Germany
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Maximiliane Wußmann
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082, Würzburg, Germany
| | - Constantin Berger
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Julian Brennecke
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Florian Groeber-Becker
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082, Würzburg, Germany
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Jan Hansmann
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
- Faculty of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, 97421, Schweinfurt, Germany
| |
Collapse
|
2
|
Scott R, Panitch A. Decorin mimic regulates platelet-derived growth factor and interferon-γ stimulation of vascular smooth muscle cells. Biomacromolecules 2014; 15:2090-103. [PMID: 24806357 PMCID: PMC4052849 DOI: 10.1021/bm500224f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/15/2014] [Indexed: 01/24/2023]
Abstract
Following balloon injury, smooth muscle cells (SMCs) serve as targets for many of the pro-inflammatory and pro-fibrotic factors, including platelet-derived growth factor (PDGF) and interferon-γ (IFN-γ) released from activated inflammatory cells and platelets. Previously, our lab designed a mimic of the proteoglycan decorin, termed DS-SILY20, that suppressed vascular SMC proliferation, migration, and protein synthesis in vitro, and injured vessels treated with DS-SILY20 demonstrated reduced hyperplasia in vivo. Here we characterize the effects of DS-SILY20 on modulating PDGF and IFN-γ stimulation in both proliferative and quiescent human SMCs to further evaluate the potential impact of DS-SILY20-SMC interaction on restenosis. Nanomolar dissociation constants were observed between DS-SILY20 and both PDGF and IFN-γ. PDGF significantly increased migration, proliferation, and protein and cytokine expression, as well as increased ERK-1/2 and p38 MAPK phosphorylation in both quiescent and proliferative cultures. However, DS-SILY20 inhibited these increases, presumably through sequestration of the PDGF. Consistent with the complex responses seen with IFN-γ in SMC physiology in the literature, the response of SMC cultures to IFN-γ was variable and complex. However, where increased activity was seen with IFN-γ, DS-SILY20 attenuated this activity. Overall, the results suggest that DS-SILY20 would be an ideal alternative to traditional therapeutics used and may be an effective therapy for the prevention of intimal hyperplasia after balloon angioplasty.
Collapse
Affiliation(s)
- Rebecca
A. Scott
- Weldon
School of Biomedical
Engineering Purdue University, West Lafayette, Indiana 47907, United States
| | - Alyssa Panitch
- Weldon
School of Biomedical
Engineering Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Golde TE, Miller VM. Proteinopathy-induced neuronal senescence: a hypothesis for brain failure in Alzheimer's and other neurodegenerative diseases. ALZHEIMERS RESEARCH & THERAPY 2009; 1:5. [PMID: 19822029 PMCID: PMC2874257 DOI: 10.1186/alzrt5] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Alzheimer's disease (AD) and a host of other neurodegenerative central nervous system (CNS) proteinopathies are characterized by the accumulation of misfolded protein aggregates. Simplistically, these aggregates can be divided into smaller, soluble, oligomeric and larger, less-soluble or insoluble, fibrillar forms. Perhaps the major ongoing debate in the neurodegenerative disease field is whether the smaller oligomeric or larger fibrillar aggregates are the primary neurotoxin. Herein, we propose an integrative hypothesis that provides new insights into how a variety of misfolded protein aggregates can result in neurodegeneration. Results We introduce the concept that a wide range of highly stable misfolded protein aggregates in AD and other neurodegenerative proteinopathies are recognized as non-self and chronically activate the innate immune system. This pro-inflammatory state leads to physiological senescence of CNS cells. Once CNS cells undergo physiological senescence, they secrete a variety of pro-inflammatory molecules. Thus, the senescence of cells, which was initially triggered by inflammatory stimuli, becomes a self-reinforcing stimulus for further inflammation and senescence. Ultimately, senescent CNS cells become functionally impaired and eventually die, and this neurodegeneration leads to brain organ failure. Conclusion This integrative hypothesis, which we will refer to as the proteinopathy-induced senescent cell hypothesis of AD and other neurodegenerative diseases, links CNS proteinopathies to inflammation, physiological senescence, cellular dysfunction, and ultimately neurodegeneration. Future studies characterizing the senescent phenotype of CNS cells in AD and other neurodegenerative diseases will test the validity of this hypothesis. The implications of CNS senescence as a contributing factor to the neurodegenerative cascade and its implications for therapy are discussed.
Collapse
Affiliation(s)
- Todd E Golde
- Department of Neuroscience, Mayo Clinic, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA.
| | | |
Collapse
|
4
|
Abstract
Oncogene-induced cellular senescence constitutes a strong anti-proliferative response, which can be set in motion following either oncogene activation or loss of tumour suppressor signalling. It serves to limit the expansion of early neoplastic cells and as such is a potent cancer-protective response to oncogenic events. Recently emerging evidence points to a crucial role in oncogene-induced cellular senescence for the 'senescence-messaging secretome' or SMS, setting the stage for cross-talk between senescent cells and their environment. How are such signals integrated into a coordinated response and what are the implications of this unexpected finding?
Collapse
Affiliation(s)
- Thomas Kuilman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | |
Collapse
|
5
|
Lemire JM, Chan CK, Bressler S, Miller J, LeBaron RG, Wight TN. Interleukin-1β selectively decreases the synthesis of versican by arterial smooth muscle cells. J Cell Biochem 2007; 101:753-66. [PMID: 17226775 DOI: 10.1002/jcb.21235] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteoglycans accumulate in lesions of atherosclerosis but little is known as to which factors regulate the synthesis of these molecules. Interleukin-1beta (IL-1beta) is a cytokine involved in vascular lesion development but it is not clear whether it has specific effects on proteoglycan synthesis by arterial smooth muscle cells (ASMC). Monkey ASMC were treated with IL-1beta and proteoglycan synthesis assessed using [(35)S]-sulfate and [(35)S]-Trans amino acid labeling. Four prominent size populations of proteoglycans, as determined by SDS-PAGE gradient gel electrophoresis, were observed in the culture medium and identified as versican, biglycan, decorin, and an unknown population that migrated to the gel interface. IL-1beta treatment decreased significantly the synthesis of versican, while increasing the synthesis of decorin, but having no effect on biglycan synthesis. Northern blot analyses confirmed this selective effect on versican and decorin mRNA transcripts. Nuclear run-on and RNA inhibition studies showed that decreased mRNA for versican was due to increased mRNA degradation and not to changes in transcription. In addition, IL-1beta increased the synthesis of the population of proteoglycans that separated at the SDS-PAGE gel interface. Chondroitinase ABC lyase digestion of this population revealed a complex of proteins composed of versican (350 kDa), an unidentified protein (215 kDa), and a 23 kDa protein identified by sequence analyses as serglycin. These data demonstrate that IL-1beta selectively downregulates versican synthesis by ASMC, while positively regulating the synthesis of other proteoglycans.
Collapse
MESH Headings
- Amino Acids/metabolism
- Animals
- Arteries/cytology
- Arteries/drug effects
- Arteries/metabolism
- Biglycan
- Blotting, Northern
- Cells, Cultured
- Decorin
- Electrophoresis, Polyacrylamide Gel
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Interleukin-1beta/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Proteoglycans/genetics
- Proteoglycans/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sulfates/metabolism
- Sulfur Radioisotopes
- Time Factors
- Versicans/genetics
- Versicans/metabolism
Collapse
Affiliation(s)
- Joan M Lemire
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
6
|
Andreeva V, Prudovsky I, Thomas M. Stimulation of quiescent cells by individual polypeptide growth factors is limited to one cell cycle. Eur J Cell Biol 2004; 83:327-35. [PMID: 15503856 DOI: 10.1078/0171-9335-00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since little is known about the function of polypeptide growth factors as regulators of multiple cell cycles, we compared the ability of FGF1, PDGF-AB and serum to induce a second round of DNA synthesis in Swiss 3T3 cells previously exposed to either FGF1, PDGF-AB or serum during the first cell cycle using [14C]- and [3H]thymidine in a double labeling system to distinguish between the first and second cell cycles. Surprisingly, we observed that cells exposed to either FGF1 or PDGF-AB in the first cell cycle were unable to synthesize DNA in response to FGF1 or PDGF-AB in the second cell cycle; yet these cells responded well to serum as a second cycle mitogen. Interestingly, while cells exposed to either FGF1 or PDGF-AB in the second cycle displayed normal receptor-mediated signaling and expressed cyclin D and E, they, like senescent fibroblasts and endothelial cells, failed to express cyclin A, and the continuous exposure of cells to either FGF1 or PDGF-AB resulted in a decrease in the kinase activity of the cyclin E/cdk2 complex. In addition, an increased association of this complex was observed with p21 CIP in an FGF1-dependent manner as well as with p27 KIP in a PDGF-AB-dependent manner. Lastly, the downregulation of p21 expression using an antisense strategy was able to partially rescue the replicative response of Swiss 3T3 cells to FGF1 in the second cycle. These data suggest that (i) FGF1 and PDGF-AB may limit their mitogenic effect to a single cell cycle, (ii) entry into the second round of replication is serum dependent and (iii) the self-limiting nature of FGF1 and PDGF-AB correlates with the accumulation of the cdk inhibitors, p21 and p27, respectively.
Collapse
Affiliation(s)
- Viktoria Andreeva
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | | | | |
Collapse
|
7
|
Abstract
The pathogenesis of fibrosis in scleroderma involves a complex set of interactions between the fibroblast and its surroundings. Multiple fibrotic pathways are activated for reasons that are not completely clear, but involve immune activation, microvascular damage, and fibroblast transformation into the myofibroblast. Differential proliferation and apoptosis preserve the myofibroblast phenotype rather that leading to a selective depletion of activated fibroblasts after an acute injury has healed. Disproportionate fibroblast activity could result from a combination of possible cellular and matrix defects that include fibrillin protein abnormalities, autoantibody formation, type II immune response, excessive endothelial reaction to injury, and excessive fibroblast response to TGF-beta. Development of therapies that are targeted to correcting these abnormalities will eventually lead to effective treatment for the fibrotic complications of scleroderma.
Collapse
Affiliation(s)
- Eugene Y Kissin
- Section of Rheumatology and Arthritis Center, Boston University School of Medicine, 71 East Concord Street, Boston, MA 02118, USA
| | | |
Collapse
|
8
|
von der Thüsen JH, Kuiper J, van Berkel TJC, Biessen EAL. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 2003; 55:133-66. [PMID: 12615956 DOI: 10.1124/pr.55.1.5] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interleukins are considered to be key players in the chronic vascular inflammatory response that is typical of atherosclerosis. Thus, the expression of proinflammatory interleukins and their receptors has been demonstrated in atheromatous tissue, and the serum levels of several of these cytokines have been found to be positively correlated with (coronary) arterial disease and its sequelae. In vitro studies have confirmed the involvement of various interleukins in pro-atherogenic processes, such as the up-regulation of adhesion molecules on endothelial cells, the activation of macrophages, and smooth muscle cell proliferation. Furthermore, studies in mice deficient or transgenic for specific interleukins have demonstrated that, whereas some interleukins are indeed intrinsically pro-atherogenic, others may have anti-atherogenic qualities. As the roles of individual interleukins in atherosclerosis are being uncovered, novel anti-atherogenic therapies, aimed at the modulation of interleukin function, are being explored. Several approaches have produced promising results in this respect, including the transfer of anti-inflammatory interleukins and the administration of decoys and antibodies directed against proinflammatory interleukins. The chronic nature of the disease and the generally pleiotropic effects of interleukins, however, will demand high specificity of action and/or effective targeting to prevent the emergence of adverse side effects with such treatments. This may prove to be the real challenge for the development of interleukin-based anti-atherosclerotic therapies, once the mediators and their targets have been delineated.
Collapse
Affiliation(s)
- Jan H von der Thüsen
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
9
|
Weber E, Rossi A, Solito R, Sacchi G, Agliano' M, Gerli R. Focal adhesion molecules expression and fibrillin deposition by lymphatic and blood vessel endothelial cells in culture. Microvasc Res 2002; 64:47-55. [PMID: 12074630 DOI: 10.1006/mvre.2002.2397] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microfibrils of anchoring filaments, a typical ultrastructural feature of initial lymphatic vessels, consist mainly of fibrillin and are similar to the microfibrils of elastic fibers. As we previously demonstrated, they radiate from focal adhesions of lymphatic endothelium to the perivascular elastic network. Although present in large blood vessels, fibrillin microfibrils have never been detected in blood capillaries. Here we report immunohistochemical evidence that cultured bovine aortic and lymphatic endothelial cells express fibrillin microfibrils. These microfibrils form an irregular web in lymphatic endothelial cells, whereas in blood vessel endothelial cells they are arranged in a honeycomb pattern. Cultured lymphatic and blood vessel endothelial cells also produce focal adhesion molecules: focal adhesion kinase, vinculin, talin, and cytoskeletal beta-actin. Our data suggest that anchoring filaments of initial lymphatic vessels in vivo may be produced by endothelium. Through their connection with focal adhesions, they may form a mechanical anchorage for the thin wall of initial lymphatic vessels and a transduction device for mechanical signals from the extracellular matrix into biochemical signals in endothelial cells. The complex anchoring filaments-focal adhesions may control the permeability of lymphatic endothelium and finely adjust lymph formation to the physiological conditions of the extracellular matrix. The different deposition of fibrillin microfibrils in blood vessel endothelial cells may be related to the necessity of withstanding shear forces. Thus, in our opinion, differences in fibrillin deposition imply a different role of fibrillin in blood vessel and lymphatic endothelium.
Collapse
Affiliation(s)
- Elisabetta Weber
- Dipartimento di Neuroscienze, Sezione di Medicina Molecolare, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|