1
|
Kawahara T, Shareef HK, Aljarah AK, Ide H, Li Y, Kashiwagi E, Netto GJ, Zheng Y, Miyamoto H. ELK1 is up-regulated by androgen in bladder cancer cells and promotes tumor progression. Oncotarget 2016; 6:29860-76. [PMID: 26342199 PMCID: PMC4745768 DOI: 10.18632/oncotarget.5007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/12/2015] [Indexed: 12/15/2022] Open
Abstract
Little is known about biological significance of ELK1, a transcriptional factor that activates downstream targets including c-fos proto-oncogene, in bladder cancer. Recent preclinical evidence also suggests the involvement of androgen receptor (AR) signaling in bladder cancer progression. In this study, we aim to investigate the functions of ELK1 in bladder cancer growth and their regulation by AR signals. Immunohistochemistry in bladder tumor specimens showed that the levels of phospho-ELK1 (p-ELK1) expression were significantly elevated in urothelial neoplasms, compared with non-neoplastic urothelium tissues, and were also correlated with AR positivity. Patients with p-ELK1-positive non-muscle-invasive and muscle-invasive tumors had significantly higher risks for tumor recurrence and progression, respectively. In AR-positive bladder cancer cell lines, dihydrotestosterone treatment increased ELK1 expression (mRNA, protein) and its nuclear translocation, ELK1 transcriptional activity, and c-fos expression, which was restored by an anti-androgen hydroxyflutamide. ELK1 silencing via short hairpin RNA (shRNA) resulted in decreases in cell viability/colony formation, and cell migration/invasion as well as an increase in apoptosis. Importantly, ELK1 appears to require activated AR to regulate bladder cancer cell proliferation, but not cell migration. Androgen also failed to significantly induce AR transactivation in ELK1-knockdown cells. In accordance with our in vitro findings, ELK1-shRNA expression considerably retarded tumor formation as well as its growth in xenograft-bearing male mice. Our results suggest that ELK1 plays an important role in bladder tumorigenesis and cancer progression, which is further induced by AR activation. Accordingly, ELK1 inhibition, together with AR inactivation, has the potential of being a therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Takashi Kawahara
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Urology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hasanain Khaleel Shareef
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biology, University of Babylon College of Science for Women, Babylon, Iraq
| | - Ali Kadhim Aljarah
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biology, University of Baghdad College of Science, Baghdad, Iraq
| | - Hiroki Ide
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Urology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Eiji Kashiwagi
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George J Netto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yichun Zheng
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Urology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hiroshi Miyamoto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
2
|
Kawahara T, Aljarah AK, Shareef HK, Inoue S, Ide H, Patterson JD, Kashiwagi E, Han B, Li Y, Zheng Y, Miyamoto H. Silodosin inhibits prostate cancer cell growth via ELK1 inactivation and enhances the cytotoxic activity of gemcitabine. Prostate 2016; 76:744-56. [PMID: 26864615 DOI: 10.1002/pros.23164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/22/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Biological significance of ELK1, a transcriptional factor whose phosphorylation is necessary for c-fos proto-oncogene activation, in prostate cancer remains far from fully understood. In this study, we aim to investigate the role of ELK1 in tumor growth as well as the efficacy of a selective α1A-adrenergic blocker, silodosin, in ELK1 activity in prostate cancer cells. METHODS We first immunohistochemically determined the levels of phospho-ELK1 (p-ELK1) expression in radical prostatectomy specimens. We then assessed the effects of ELK1 knockdown via short hairpin RNA and silodosin on cell proliferation, migration, and invasion in prostate cancer lines. RESULTS The levels of p-ELK1 expression were significantly higher in carcinoma than in benign (P < 0.001) or high-grade prostatic intraepithelial neoplasia (HGPIN) (P = 0.002) as well as in HGPIN than in benign (P < 0.001). Kaplan-Meier and log-rank tests revealed that moderate-strong positivity of p-ELK1 in carcinomas tended to correlate with biochemical recurrence after radical prostatectomy (P = 0.098). In PC3 and DU145 expressing ELK1 (mRNA/protein) but no androgen receptor (AR), ELK1 silencing resulted in considerable decreases in the expression of c-fos as well as in cell migration/invasion and matrix metalloproteinase-2 expression, but not in cell viability. Silodosin treatment reduced the expression/activity of ELK1 in these cells as well as the viability of AR-positive LNCaP and C4-2 cells and the migration of both AR-positive and AR-negative cells, but not the viability of AR-negative or ELK1-negative cells. Interestingly, silodosin significantly increased sensitivity to gemcitabine, but not to cisplatin or docetaxel, even in AR-negative cells. CONCLUSIONS ELK1 is likely to be activated in prostate cancer cells and promote tumor progression. Furthermore, silodosin that inactivates ELK1 in prostate cancer cells not only inhibits their growth but also enhances the cytotoxic activity of gemcitabine. Thus, ELK1 inhibition has the potential of being a therapeutic approach for prostate cancer.
Collapse
Affiliation(s)
- Takashi Kawahara
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ali Kadhim Aljarah
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biology, University of Baghdad College of Science, Baghdad, Iraq
| | - Hasanain Khaleel Shareef
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biology, University of Babylon College of Science for Women, Babylon, Iraq
| | - Satoshi Inoue
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hiroki Ide
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John D Patterson
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eiji Kashiwagi
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bin Han
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yi Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Yichun Zheng
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Hiroshi Miyamoto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
3
|
Barkeer S, Guha N, Hothpet V, Saligrama Adavigowda D, Hegde P, Padmanaban A, Yu LG, Swamy BM, Inamdar SR. Molecular mechanism of anticancer effect of Sclerotium rolfsii lectin in HT29 cells involves differential expression of genes associated with multiple signaling pathways: A microarray analysis. Glycobiology 2015; 25:1375-91. [PMID: 26347523 DOI: 10.1093/glycob/cwv067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022] Open
Abstract
Sclerotium rolfsii lectin (SRL) is a lectin isolated from fungus S. rolfsii and has high binding specificity toward the oncofetal Thomsen-Friedenreich carbohydrate antigen (Galβ1-3GalNAc-α-O-Ser/Thr, T or TF), which is expressed in more than 90% of human cancers. Our previous studies have shown that binding of SRL to human colon, breast and ovarian cancer cells induces cell apoptosis in vitro and suppresses tumor growth in vivo. This study investigated the SRL-mediated cell signaling in human colon cancer HT29 cells by mRNA and miRNA microarrays. It was found that SRL treatment results in altered expression of several hundred molecules including mitogen-activated protein kinase (MAPK) and c-JUN-associated, apoptosis-associated and cell cycle and DNA replication-associated signaling molecules. Pathway analysis using GeneSpring 12.6.1 revealed that SRL treatment induces changes of MAPK and c-JUN-associated signaling pathways as early as 2 h while changes of cell cycle, DNA replication and apoptosis pathways were significantly affected only after 24 h. A significant change of cell miRNA expression was also observed after 12 h treatment of the cells with SRL. These changes were further validated by quantitative real time polymerase chain reaction and immunoblotting. This study thus suggests that the presence of SRL affects multiple signaling pathways in cancer cells with early effects on cell proliferation pathways associated with MAPK and c-JUN, followed by miRNA-associated cell activity and apoptosis. This provides insight information into the molecular mechanism of the anticancer activity of this fungal lectin.
Collapse
Affiliation(s)
- Srikanth Barkeer
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | - Nilanjan Guha
- Agilent Technologies India Pvt. Ltd, Bangalore 560048, India
| | | | | | - Prajna Hegde
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India
| | | | - Lu-Gang Yu
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, India Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
4
|
Kasza A. Signal-dependent Elk-1 target genes involved in transcript processing and cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1026-33. [PMID: 23711433 DOI: 10.1016/j.bbagrm.2013.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 11/25/2022]
Abstract
Elk-1 was regarded as a transcription factor engaged mainly in the regulation of cell growth, differentiation, and survival. Recent findings show the engagement of Elk-1 in the control of expression of genes encoding proteins involved in transcript turnover, such as MCPIP1/ZC3H12A and tristetraprolin (TTP/ZFP36). Thus, Elk-1 plays an important role in the control of gene expression not only through the stimulation of expression of transcription factors, but also through regulation of transcript half-live. Moreover, Elk-1 is engaged in the regulation of expression of genes encoding proteins that control proteolytic activity, such as inhibitor of plasminogen activator-1 (PAI-1) and metalloproteinases-2 and -9 (MMP-2 and MMP-9). This review summarizes the biological roles of proteins with expression regulated by Elk-1, involved in transcripts turnover or in cell migration. The broad range of function of these proteins illustrates the complex role of Elk-1 in the regulation of cancer and inflammation.
Collapse
Affiliation(s)
- Aneta Kasza
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|