1
|
Park SS, Kwon MR, Ju EJ, Shin SH, Park J, Ko EJ, Son GW, Lee HW, Kim YJ, Moon GJ, Park Y, Song SY, Jeong S, Choi EK. Targeting phosphomevalonate kinase enhances radiosensitivity via ubiquitination of the replication protein A1 in lung cancer cells. Cancer Sci 2023; 114:3583-3594. [PMID: 37650703 PMCID: PMC10475767 DOI: 10.1111/cas.15896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 09/01/2023] Open
Abstract
Radiotherapy (RT) plays an important role in localized lung cancer treatments. Although RT locally targets and controls malignant lesions, RT resistance prevents RT from being an effective treatment for lung cancer. In this study, we identified phosphomevalonate kinase (PMVK) as a novel radiosensitizing target and explored its underlying mechanism. We found that cell viability and survival fraction after RT were significantly decreased by PMVK knockdown in lung cancer cell lines. RT increased apoptosis, DNA damage, and G2/M phase arrest after PMVK knockdown. Also, after PMVK knockdown, radiosensitivity was increased by inhibiting the DNA repair pathway, homologous recombination, via downregulation of replication protein A1 (RPA1). RPA1 downregulation was induced through the ubiquitin-proteasome system. Moreover, a stable shRNA PMVK mouse xenograft model verified the radiosensitizing effects of PMVK in vivo. Furthermore, PMVK expression was increased in lung cancer tissues and significantly correlated with patient survival and recurrence. Our results demonstrate that PMVK knockdown enhances radiosensitivity through an impaired HR repair pathway by RPA1 ubiquitination in lung cancer, suggesting that PMVK knockdown may offer an effective therapeutic strategy to improve the therapeutic efficacy of RT.
Collapse
Affiliation(s)
- Seok Soon Park
- ASAN Medical Center, Asan Institute for Life SciencesSeoulKorea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, ASAN Medical CenterSeoulKorea
| | - Mi Ri Kwon
- ASAN Medical Center, Asan Institute for Life SciencesSeoulKorea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and TechnologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Eun Jin Ju
- ASAN Medical Center, Asan Institute for Life SciencesSeoulKorea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, ASAN Medical CenterSeoulKorea
| | - Seol Hwa Shin
- ASAN Medical Center, Asan Institute for Life SciencesSeoulKorea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, ASAN Medical CenterSeoulKorea
| | - Jin Park
- ASAN Medical Center, Asan Institute for Life SciencesSeoulKorea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, ASAN Medical CenterSeoulKorea
| | - Eun Jung Ko
- ASAN Medical Center, Asan Institute for Life SciencesSeoulKorea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, ASAN Medical CenterSeoulKorea
| | - Ga Won Son
- ASAN Medical Center, Asan Institute for Life SciencesSeoulKorea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and TechnologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Hye Won Lee
- ASAN Medical Center, Asan Institute for Life SciencesSeoulKorea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and TechnologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Yeon Joo Kim
- Department of Radiation Oncology, ASAN Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Gyeong Joon Moon
- Department of Convergence Medicine, ASAN Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Center for Cell Therapy, ASAN Medical CenterSeoulKorea
| | - Yun‐Yong Park
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Si Yeol Song
- Asan Preclinical Evaluation Center for Cancer Therapeutix, ASAN Medical CenterSeoulKorea
- Department of Radiation Oncology, ASAN Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Seong‐Yun Jeong
- ASAN Medical Center, Asan Institute for Life SciencesSeoulKorea
- Asan Preclinical Evaluation Center for Cancer Therapeutix, ASAN Medical CenterSeoulKorea
- Department of Convergence Medicine, ASAN Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Eun Kyung Choi
- Asan Preclinical Evaluation Center for Cancer Therapeutix, ASAN Medical CenterSeoulKorea
- Department of Radiation Oncology, ASAN Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| |
Collapse
|
2
|
Kumar K, Kumar S, Datta K, Fornace AJ, Suman S. High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development. Curr Oncol 2023; 30:5497-5514. [PMID: 37366899 DOI: 10.3390/curroncol30060416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within a cell, causing extensive DNA damage relative to the same dose of low-LET photon radiation. Based on the DNA damage tolerance of a cell, cellular responses are initiated for recovery, cell death, senescence, or proliferation, which are determined through a concerted action of signaling networks classified as DNA damage response (DDR) signaling. The IR-induced DDR initiates cell cycle arrest to repair damaged DNA. When DNA damage is beyond the cellular repair capacity, the DDR for cell death is initiated. An alternative DDR-associated anti-proliferative pathway is the onset of cellular senescence with persistent cell cycle arrest, which is primarily a defense mechanism against oncogenesis. Ongoing DNA damage accumulation below the cell death threshold but above the senescence threshold, along with persistent SASP signaling after chronic exposure to space radiation, pose an increased risk of tumorigenesis in the proliferative gastrointestinal (GI) epithelium, where a subset of IR-induced senescent cells can acquire a senescence-associated secretory phenotype (SASP) and potentially drive oncogenic signaling in nearby bystander cells. Moreover, DDR alterations could result in both somatic gene mutations as well as activation of the pro-inflammatory, pro-oncogenic SASP signaling known to accelerate adenoma-to-carcinoma progression during radiation-induced GI cancer development. In this review, we describe the complex interplay between persistent DNA damage, DDR, cellular senescence, and SASP-associated pro-inflammatory oncogenic signaling in the context of GI carcinogenesis.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
3
|
Radiotherapy Side Effects: Comprehensive Proteomic Study Unraveled Neural Stem Cell Degenerative Differentiation upon Ionizing Radiation. Biomolecules 2022; 12:biom12121759. [PMID: 36551187 PMCID: PMC9775306 DOI: 10.3390/biom12121759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Cranial radiation therapy is one of the most effective treatments for childhood brain cancers. Despite the ameliorated survival rate of juvenile patients, radiation exposure-induced brain neurogenic region injury could markedly impair patients' cognitive functions and even their quality of life. Determining the mechanism underlying neural stem cells (NSCs) response to irradiation stress is a crucial therapeutic strategy for cognitive impairment. The present study demonstrated that X-ray irradiation arrested NSCs' cell cycle and impacted cell differentiation. To further characterize irradiation-induced molecular alterations in NSCs, two-dimensional high-resolution mass spectrometry-based quantitative proteomics analyses were conducted to explore the mechanism underlying ionizing radiation's influence on stem cell differentiation. We observed that ionizing radiation suppressed intracellular protein transport, neuron projection development, etc., particularly in differentiated cells. Redox proteomics was performed for the quantification of cysteine thiol modifications in order to profile the oxidation-reduction status of proteins in stem cells that underwent ionizing radiation treatment. Via conjoint screening of protein expression abundance and redox status datasets, several significantly expressed and oxidized proteins were identified in differentiating NSCs subjected to X-ray irradiation. Among these proteins, succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial (sdha) and the acyl carrier protein, mitochondrial (Ndufab1) were highly related to neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Huntington's disease, illustrating the dual-character of NSCs in cell differentiation: following exposure to ionizing radiation, the normal differentiation of NSCs was compromised, and the upregulated oxidized proteins implied a degenerative differentiation trajectory. These findings could be integrated into research on neurodegenerative diseases and future preventive strategies.
Collapse
|
4
|
Liu R, Liu L, Bian Y, Zhang S, Wang Y, Chen H, Jiang X, Li G, Chen Q, Xue C, Li M, Liu L, Liu X, Ma S. The Dual Regulation Effects of ESR1/NEDD4L on SLC7A11 in Breast Cancer Under Ionizing Radiation. Front Cell Dev Biol 2022; 9:772380. [PMID: 35252218 PMCID: PMC8888677 DOI: 10.3389/fcell.2021.772380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most important treatments for breast cancer. Ferroptosis is a recently recognized form of regulated cell death that is characterized by lipid peroxidation. However, whether ionizing radiation (IR) could induce ferroptosis in breast cancer and how it works remain unknown. Bioinformatics analysis were performed to screen ferroptosis-related genes differentially expressed in breast tumor tissue and normal tissue. Then, breast cancer cell lines with different estrogen receptor (ER) phenotypes were used for studies in vitro, including ER-positive (MCF-7 and ZR-75-1) and ER-negative (MDA-MB-231) cells. The dynamic changes of mRNA and protein levels were examined after x-ray of 8 Gy by qRT-PCR and Western blotting, respectively. Immunoprecipitation (IP) was used to explore the interaction between proteins. Luciferase assay was used to analyze the transcriptional regulation effect of ESR1 on SLC7A11. BODIPY C11 and trypan blue dyes were used to determine lipid peroxidation and cell death, respectively. The result showed that the ferroptosis-related gene SLC7A11 was higher in breast cancer tissues compared with normal tissues and associated with poor survival. A positive correlation exists between ESR1 and SLC7A11 expression. ESR1 promoted SLC7A11 expression at the early stage after IR. ESR1/SLC7A11 knockdown significantly enhanced IR-induced ferroptosis in ER-positive cells. At 12 h after IR, the IP data showed the interaction between E3 ubiquitin ligase NEDD4L and SLC7A11 increased, followed by the ubiquitylation and degradation of SLC7A11. Thus, SLC7A11 expression was regulated by both ESR1 and NEDD4L, in opposite ways. For the first time, we elucidated that ESR1 and NEDD4L functioned together after radiation treatment and finally induced ferroptosis in breast cancer cells, which provides novel insight into the guidance of clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Rui Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Lin Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yan Bian
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Shinan Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yue Wang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Huajian Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xinyue Jiang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Guanghui Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Qing Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chang Xue
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Mengke Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Lianchang Liu
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China.,The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Ouellette MM, Zhou S, Yan Y. Cell Signaling Pathways That Promote Radioresistance of Cancer Cells. Diagnostics (Basel) 2022; 12:diagnostics12030656. [PMID: 35328212 PMCID: PMC8947583 DOI: 10.3390/diagnostics12030656] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Radiation therapy (RT) is a standard treatment for solid tumors and about 50% of patients with cancer, including pediatric cancer, receive RT. While RT has significantly improved the overall survival and quality of life of cancer patients, its efficacy has still been markedly limited by radioresistance in a significant number of cancer patients (intrinsic or acquired), resulting in failure of the RT control of the disease. Radiation eradicates cancer cells mainly by causing DNA damage. However, radiation also concomitantly activates multiple prosurvival signaling pathways, which include those mediated by ATM, ATR, AKT, ERK, and NF-κB that promote DNA damage checkpoint activation/DNA repair, autophagy induction, and/or inhibition of apoptosis. Furthermore, emerging data support the role of YAP signaling in promoting the intrinsic radioresistance of cancer cells, which occurs through its activation of the transcription of many essential genes that support cell survival, DNA repair, proliferation, and the stemness of cancer stem cells. Together, these signaling pathways protect cancer cells by reducing the magnitude of radiation-induced cytotoxicity and promoting radioresistance. Thus, targeting these prosurvival signaling pathways could potentially improve the radiosensitivity of cancer cells. In this review, we summarize the contribution of these pathways to the radioresistance of cancer cells.
Collapse
Affiliation(s)
- Michel M. Ouellette
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Correspondence:
| |
Collapse
|
6
|
Pathikonda S, Cheng SH, Yu KN. Role of PARP1 regulation in radiation-induced rescue effect. JOURNAL OF RADIATION RESEARCH 2020; 61:352-367. [PMID: 32329510 PMCID: PMC7299272 DOI: 10.1093/jrr/rraa023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/14/2020] [Accepted: 03/20/2020] [Indexed: 05/04/2023]
Abstract
Radiation-induced rescue effect (RIRE) in cells refers to the phenomenon where irradiated cells (IRCs) receive help from feedback signals produced by partnered bystander unirradiated cells (UIRCs) or from the conditioned medium (CM) that has previously conditioned the UIRCs. In the present work, we explored the role of poly (ADP-ribose) polymerase 1 (PARP1) regulation in RIRE and the positive feedback loop between PARP1 and nuclear factor-kappa-light-chain-enhancer of activated B cell (NF-κB) in RIRE using various cell lines, including HeLa, MCF7, CNE-2 and HCT116 cells. We first found that when the IRCs (irradiated with 2 Gy X-ray) were treated with CM, the relative mRNA expression levels of both tumor suppressor p53-binding protein 1 (53BP1) and PARP1, the co-localization factor between 53BP1 and γH2AX as well as the fluorescent intensity of PARP1 were reduced. We also found that IRCs treated with the PARP1 inhibitor, Olaparib (AZD2281) had a higher 53BP1 expression. These results illustrated that PARP1 was involved in RIRE transcriptionally and translationally. We further revealed that treatment of IRCs with CM together with Olaparib led to significantly lower mRNA expression levels and fluorescent intensities of NF-κB, while treatment of IRCs with CM together the NF-κB inhibitor BAY-11-7082 led to significantly lower mRNA expression levels as well as fluorescent intensities of PARP1. These results illustrated that PARP1 and NF-κB were involved in the positive feedback loop transcriptionally and translationally. Thus, the results supported the occurrence of a PARP1-NF-κB positive feedback loop in RIRE. The present work provided insights into potential exploitation of inhibition of PARP1 and/or the PARP1-NF-κB positive feedback loop in designing adjuncts to cancer radiotherapeutics.
Collapse
Affiliation(s)
- Spoorthy Pathikonda
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
| | - Shuk Han Cheng
- Department of Biomedical Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
- Corresponding author. Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong. Tel: (852)-344-27812; Fax: (852)-344-20538;
| |
Collapse
|
7
|
Ke Y, Wu C, Zeng Y, Chen M, Li Y, Xie C, Zhou Y, Zhong Y, Yu H. Radiosensitization of Clioquinol Combined with Zinc in the Nasopharyngeal Cancer Stem-like Cells by Inhibiting Autophagy in Vitro and in Vivo. Int J Biol Sci 2020; 16:777-789. [PMID: 32071548 PMCID: PMC7019136 DOI: 10.7150/ijbs.40305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Loco-regional recurrence of nasopharyngeal carcinoma (NPC) after radiation therapy is one of the main types of treatment failure. This study is aimed to explore the possible causes of inside-field recurrence of NPC patients in order to develop effective treatment methods. Our study indicated that CD44 and autophagy proteins in tumor tissues of patients with recurrent NPC are higher than that of the relapse free patients. The in vitro experiments further confirmed that cancer stem cells (CSCs) were more radioresistant with enhanced autophagy activity. Treatment with clioquinol (CQ) combined with zinc could obviously enhance the radiosensitivity of CNE-2s cells through autophagy inhibition, activation of the caspase system and impairment of DNA damage repair. The in vivo experiments have further consolidated our findings. Our results suggest that CSCs and enhanced autophagy activity may be involved in the inside-field recurrence of NPC, and CQ combined with zinc could be an important therapeutic approach for recurrent NPC.
Collapse
Affiliation(s)
- Yuan Ke
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chaoyan Wu
- Department of Integrated Traditional Chinese Medicine and Western medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifei Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengge Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yonghong Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Ouellette MM, Yan Y. Radiation‐activated prosurvival signaling pathways in cancer cells. PRECISION RADIATION ONCOLOGY 2019. [DOI: 10.1002/pro6.1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Michel M. Ouellette
- Department of Internal MedicineUniversity of Nebraska Medical Center Omaha Nebraska USA
| | - Ying Yan
- Department of Radiation OncologyUniversity of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
9
|
Michaelidesová A, Konířová J, Bartůněk P, Zíková M. Effects of Radiation Therapy on Neural Stem Cells. Genes (Basel) 2019; 10:E640. [PMID: 31450566 PMCID: PMC6770913 DOI: 10.3390/genes10090640] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
Brain and nervous system cancers in children represent the second most common neoplasia after leukemia. Radiotherapy plays a significant role in cancer treatment; however, the use of such therapy is not without devastating side effects. The impact of radiation-induced damage to the brain is multifactorial, but the damage to neural stem cell populations seems to play a key role. The brain contains pools of regenerative neural stem cells that reside in specialized neurogenic niches and can generate new neurons. In this review, we describe the advances in radiotherapy techniques that protect neural stem cell compartments, and subsequently limit and prevent the occurrence and development of side effects. We also summarize the current knowledge about neural stem cells and the molecular mechanisms underlying changes in neural stem cell niches after brain radiotherapy. Strategies used to minimize radiation-related damages, as well as new challenges in the treatment of brain tumors are also discussed.
Collapse
Affiliation(s)
- Anna Michaelidesová
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Radiation Dosimentry, Nuclear Physics Institute of the Czech Academy of Sciences, v. v. i., Na Truhlářce 39/64, 180 00 Prague 8, Czech Republic
| | - Jana Konířová
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Radiation Dosimentry, Nuclear Physics Institute of the Czech Academy of Sciences, v. v. i., Na Truhlářce 39/64, 180 00 Prague 8, Czech Republic
| | - Petr Bartůněk
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Martina Zíková
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
10
|
Differentiation Induction as a Response to Irradiation in Neural Stem Cells In Vitro. Cancers (Basel) 2019; 11:cancers11070913. [PMID: 31261863 PMCID: PMC6678856 DOI: 10.3390/cancers11070913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy plays a significant role in brain cancer treatment; however, the use of this therapy is often accompanied by neurocognitive decline that is, at least partially, a consequence of radiation-induced damage to neural stem cell populations. Our findings describe features that define the response of neural stem cells (NSCs) to ionizing radiation. We investigated the effects of irradiation on neural stem cells isolated from the ventricular-subventricular zone of mouse brain and cultivated in vitro. Our findings describe the increased transcriptional activity of p53 targets and proliferative arrest after irradiation. Moreover, we show that most cells do not undergo apoptosis after irradiation but rather cease proliferation and start a differentiation program. Induction of differentiation and the demonstrated potential of irradiated cells to differentiate into neurons may represent a mechanism whereby damaged NSCs eliminate potentially hazardous cells and circumvent the debilitating consequences of cumulative DNA damage.
Collapse
|
11
|
Ajayi OD, Leggett CL, Myburgh SJ, Hendriksen SM, Logue CJ, Walter JW, Masters TC, Westgard BC. Esophageal Stricture Following Radiation, Concurrent Immunochemotherapy, Treated With Hyperbaric Oxygen and Dilation. Mayo Clin Proc Innov Qual Outcomes 2019; 3:241-245. [PMID: 31193834 PMCID: PMC6543450 DOI: 10.1016/j.mayocpiqo.2019.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 11/04/2022] Open
Abstract
Low-dose palliative radiation may offer symptomatic relief in patients with spinal metastases from primary renal cell cancer and is unlikely to result in radiation injury. Patients with advanced malignancy requiring palliative radiation are often also receiving chemotherapy. Synergistic adverse effects resulting from combined palliative radiation and novel antiprogrammed cell death-1 (anti-PD 1) and/or multityrosine kinase inhibitors are rare. We report about a 60-year-old woman with metastatic clear-cell renal cancer, status post-left nephrectomy, with debilitating mid-back pain from metastatic tumor burden and foraminal nerve compression. Her chemotherapeutic regimen was repeatedly altered because of progression of disease until she was maintained on the anti-PD 1 checkpoint inhibitor, nivolumab. She received palliative radiation to her thoracic spine over a 2-week period, and nivolumab was then switched to cabozantinib midway through a course of palliative radiation. The patient rapidly developed severe esophagitis, progressing to esophageal stricture, and required placement of a percutaneous endoscopic gastrostomy tube. She was successfully treated with serial esophageal dilation and hyperbaric oxygen treatments to diminish inflammation and improve tissue vascularity. Concurrent use of anti-PD 1 and/or multityrosine kinase drugs may accelerate development of radiation injury regardless of radiation dosage. Radiation-induced esophageal stricture was managed successfully in this patient with serial esophageal dilation and adjuvant hyperbaric oxygen.
Collapse
Affiliation(s)
- Olayinka D Ajayi
- Division of Hyperbaric Medicine, Department of Emergency Medicine, Hennepin Healthcare, Minneapolis, MN
| | - Cadman L Leggett
- Division of Gastroenterology and Hepatology, Mayo Clinic, Minneapolis, MN
| | - Sarel J Myburgh
- Division of Gastroenterology and Hepatology, Mayo Clinic, Minneapolis, MN
| | - Stephen M Hendriksen
- Division of Hyperbaric Medicine, Department of Emergency Medicine, Hennepin Healthcare, Minneapolis, MN.,University of Minnesota Medical School, Minneapolis, MN
| | - Christopher J Logue
- Division of Hyperbaric Medicine, Department of Emergency Medicine, Hennepin Healthcare, Minneapolis, MN.,University of Minnesota Medical School, Minneapolis, MN
| | - Joseph W Walter
- Division of Hyperbaric Medicine, Department of Emergency Medicine, Hennepin Healthcare, Minneapolis, MN.,University of Minnesota Medical School, Minneapolis, MN
| | - Thomas C Masters
- Division of Hyperbaric Medicine, Department of Emergency Medicine, Hennepin Healthcare, Minneapolis, MN.,University of Minnesota Medical School, Minneapolis, MN
| | - Bjorn C Westgard
- Division of Hyperbaric Medicine, Department of Emergency Medicine, Hennepin Healthcare, Minneapolis, MN.,University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
12
|
Cho HT, Kim JH, Heo W, Lee HS, Lee JJ, Park TS, Lee JH, Kim YJ. Explosively Puffed Ginseng Ameliorates Ionizing Radiation-Induced Injury of Colon by Decreasing Oxidative Stress-Related Apoptotic Cell Execution in Mice. J Med Food 2019; 22:490-498. [DOI: 10.1089/jmf.2018.4293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hyung Taek Cho
- Department of Food and Biotechnology, Korea University, Sejong-si, Korea
| | - Jun Ho Kim
- Department of Food Science and Biotechnology, Andong National University, Gyeongsangbuk-do, Korea
| | - Wan Heo
- Department of Food and Biotechnology, Korea University, Sejong-si, Korea
| | - Hyun-Sun Lee
- Agency for Korea National Food Cluster, Iksan-si, Korea
| | - Jeong Jun Lee
- Development Center, Naturetech Co., Ltd., Chungcheongbuk-do, Korea
| | - Tae-Sik Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Inchon-si, Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong-si, Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong-si, Korea
| |
Collapse
|
13
|
Heydarian A, Khorramymehr S, Vasaghi-Gharamaleki B. Short-term effects of X-ray on viscoelastic properties of epithelial cells. Proc Inst Mech Eng H 2019; 233:535-543. [DOI: 10.1177/0954411919837563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Examining the effects of ionizing radiation on the living cell is significant due to its usage in recent centuries. Investigations into the long- and short-term effects of ionizing radiation began simultaneously with its discovery. Previous studies were done on the effects of radiation on cell DNA or the biochemical cycle based on the electromagnetic radiation wavelength, intensity, and exposure time. Considering some dependent parameters like cell communication, the differentiation and the mechanical interactions of intercellular environment, and cell mechanical properties, the effects of ionizing radiation on the viscoelastic properties of cells seem to be important. The current research investigated the short-term biomechanical effects of ionizing radiation and examined the mechanical properties of cells using magnetic tweezer cytometry with nanomagnetic particles. To evaluate these effects, cells were incubated with nanomagnetic particles and then separated into controlled and irradiated groups. A 3 mGy cm2 X-ray was radiated to the irradiated group for 0.02 s. The dishes of both groups were inserted into magnetic tweezer cytometry for applying a magnetic force pulse, and the cell membrane displacement was detected by an image processing system. The creep response of the membrane was determined for viscoelastic model curve fitting. The frequency responses of the model for both groups were calculated. The results showed that radiation could decrease cell extensibility from 0.084 ± 0.001 to 0.019 ± 0.001 µm and change the storage and loss modulus as the indicator of the viscoelastic property of the material. This research explains that radiation could affect cellular mechanical properties.
Collapse
Affiliation(s)
- Ashkan Heydarian
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Siamak Khorramymehr
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
14
|
Komova O, Krasavin E, Nasonova E, Mel’nikova L, Shmakova N, Cunha M, Testa E, Beuve M. Relationship between radioadaptive response and individual radiosensitivity to low doses of gamma radiation: an extended study of chromosome damage in blood lymphocytes of three donors. Int J Radiat Biol 2017; 94:54-61. [DOI: 10.1080/09553002.2018.1399226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Olga Komova
- Laboratory of Radiation Biology, Department of Radiation Cytology, Joint Institute for Nuclear Research (JINR), Dubna, Russia
| | - Eugene Krasavin
- Laboratory of Radiation Biology, Department of Radiation Cytology, Joint Institute for Nuclear Research (JINR), Dubna, Russia
| | - Elena Nasonova
- Laboratory of Radiation Biology, Department of Radiation Cytology, Joint Institute for Nuclear Research (JINR), Dubna, Russia
| | - Larisa Mel’nikova
- Laboratory of Radiation Biology, Department of Radiation Cytology, Joint Institute for Nuclear Research (JINR), Dubna, Russia
| | - Nina Shmakova
- Laboratory of Radiation Biology, Department of Radiation Cytology, Joint Institute for Nuclear Research (JINR), Dubna, Russia
| | - Micaela Cunha
- Department of Radiation Sciences, Université de Lyon, Lyon, France
- Department of Radiation Sciences, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
| | - Etienne Testa
- Department of Radiation Sciences, Université de Lyon, Lyon, France
- Department of Radiation Sciences, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
| | - Michaël Beuve
- Department of Radiation Sciences, Université de Lyon, Lyon, France
- Department of Radiation Sciences, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
| |
Collapse
|
15
|
Baselet B, Belmans N, Coninx E, Lowe D, Janssen A, Michaux A, Tabury K, Raj K, Quintens R, Benotmane MA, Baatout S, Sonveaux P, Aerts A. Functional Gene Analysis Reveals Cell Cycle Changes and Inflammation in Endothelial Cells Irradiated with a Single X-ray Dose. Front Pharmacol 2017; 8:213. [PMID: 28487652 PMCID: PMC5404649 DOI: 10.3389/fphar.2017.00213] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose: Epidemiological data suggests an excess risk of cardiovascular disease (CVD) at low doses (0.05 and 0.1 Gy) of ionizing radiation (IR). Furthermore, the underlying biological and molecular mechanisms of radiation-induced CVD are still unclear. Because damage to the endothelium could be critical in IR-related CVD, this study aimed to identify the effects of radiation on immortalized endothelial cells in the context of atherosclerosis. Material and Methods: Microarrays and RT-qPCR were used to compare the response of endothelial cells irradiated with a single X-ray dose (0.05, 0.1, 0.5, 2 Gy) measured after various post-irradiation (repair) times (1 day, 7 days, 14 days). To consolidate and mechanistically support the endothelial cell response to X-ray exposure identified via microarray analysis, DNA repair signaling (γH2AX/TP53BP1-foci quantification), cell cycle progression (BrdU/7AAD flow cytometric analysis), cellular senescence (β-galactosidase assay with CPRG and IGFBP7 quantification) and pro-inflammatory status (IL6 and CCL2) was assessed. Results: Microarray results indicated persistent changes in cell cycle progression and inflammation. Cells underwent G1 arrest in a dose-dependent manner after high doses (0.5 and 2 Gy), which was compensated by increased proliferation after 1 week and almost normalized after 2 weeks. However, at this point irradiated cells showed an increased β-Gal activity and IGFBP7 secretion, indicative of premature senescence. The production of pro-inflammatory cytokines IL6 and CCL2 was increased at early time points. Conclusions: IR induces pro-atherosclerotic processes in endothelial cells in a dose-dependent manner. These findings give an incentive for further research on the shape of the dose-response curve, as we show that even low doses of IR can induce premature endothelial senescence at later time points. Furthermore, our findings on the time- and dose-dependent response regarding differentially expressed genes, cell cycle progression, inflammation and senescence bring novel insights into the underlying molecular mechanisms of the endothelial response to X-ray radiation. This may in turn lead to the development of risk-reducing strategies to prevent IR-induced CVD, such as the use of cell cycle modulators and anti-inflammatory drugs as radioprotectors and/or radiation mitigators.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and SafetyMol, Belgium.,Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology & Therapeutics, Université catholique de LouvainBrussels, Belgium
| | - Niels Belmans
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and SafetyMol, Belgium.,Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt UniversityHasselt, Belgium
| | - Emma Coninx
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and SafetyMol, Belgium
| | - Donna Lowe
- Centre for Radiation, Chemical and Environmental Hazards, Public Health EnglandDidcot, UK
| | - Ann Janssen
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and SafetyMol, Belgium
| | - Arlette Michaux
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and SafetyMol, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and SafetyMol, Belgium.,Biomedical Engineering Program and Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA
| | - Kenneth Raj
- Centre for Radiation, Chemical and Environmental Hazards, Public Health EnglandDidcot, UK
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and SafetyMol, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and SafetyMol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and SafetyMol, Belgium.,Department of Molecular Biotechnology, Ghent UniversityGhent, Belgium
| | - Pierre Sonveaux
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology & Therapeutics, Université catholique de LouvainBrussels, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Institute for Environment, Health and SafetyMol, Belgium
| |
Collapse
|
16
|
Jelonek K, Pietrowska M, Widlak P. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity. Int J Radiat Biol 2017; 93:683-696. [PMID: 28281355 DOI: 10.1080/09553002.2017.1304590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Blood is the most common replacement tissue used to study systemic responses of organisms to different types of pathological conditions and environmental insults. Local irradiation during cancer radiotherapy induces whole body responses that can be observed at the blood proteome and metabolome levels. Hence, comparative blood proteomics and metabolomics are emerging approaches used in the discovery of radiation biomarkers. These techniques enable the simultaneous measurement of hundreds of molecules and the identification of sets of components that can discriminate different physiological states of the human body. Radiation-induced changes are affected by the dose and volume of irradiated tissues; hence, the molecular composition of blood is a hypothetical source of biomarkers for dose assessment and the prediction and monitoring of systemic responses to radiation. This review aims to provide a comprehensive overview on the available evidence regarding molecular responses to ionizing radiation detected at the level of the human blood proteome and metabolome. It focuses on patients exposed to radiation during cancer radiotherapy and emphasizes effects related to radiation-induced toxicity and inflammation. CONCLUSIONS Systemic responses to radiation detected at the blood proteome and metabolome levels are primarily related to the intensity of radiation-induced toxicity, including inflammatory responses. Thus, several inflammation-associated molecules can be used to monitor or even predict radiation-induced toxicity. However, these abundant molecular features have a rather limited applicability as universal biomarkers for dose assessment, reflecting the individual predisposition of the immune system and tissue-specific mechanisms involved in radiation-induced damage.
Collapse
Affiliation(s)
- Karol Jelonek
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| | - Monika Pietrowska
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| | - Piotr Widlak
- a Center for Translational Research and Molecular Biology of Cancer , Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch , Gliwice , Poland
| |
Collapse
|
17
|
Moskalev A, Shaposhnikov M, Plyusnina E, Plyusnin S, Shostal O, Aliper A, Zhavoronkov A. Exhaustive data mining comparison of the effects of low doses of ionizing radiation, formaldehyde and dioxins. BMC Genomics 2014; 15 Suppl 12:S5. [PMID: 25563934 PMCID: PMC4303946 DOI: 10.1186/1471-2164-15-s12-s5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Ionizing radiation in low doses is the ubiquitous environmental factor with harmful stochastic effects. Formaldehyde is one of the most reactive household and industrial pollutants. Dioxins are persistent organic pollutants and most potent synthetic poisons effective even at trace concentrations. Environmental pollutants are capable of altering the expression of a variety of genes. To identify the similarities and differences in the effects of low-dose ionizing radiation, formaldehyde and dioxin on gene expression, we performed the bioinformatic analysis of all available published data. Results We found that that in addition to the common p53-, ATM- and MAPK-signaling stress response pathways, genes of cell cycle regulation and proinflammatory cytokines, the studied pollutants induce a variety of other molecular processes. Conclusions The observed patterns provide new insights into the mechanisms of the adverse effects associated with these pollutants. They can also be useful in the development of new bio-sensing methods for detection of pollutants in the environment and combating the deleterious effects.
Collapse
|
18
|
HEIN ASHLEYL, OUELLETTE MICHELM, YAN YING. Radiation-induced signaling pathways that promote cancer cell survival (review). Int J Oncol 2014; 45:1813-9. [PMID: 25174607 PMCID: PMC4203326 DOI: 10.3892/ijo.2014.2614] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is a staple cancer treatment approach that has significantly improved local disease control and the overall survival of cancer patients. However, its efficacy is still limited by the development of radiation resistance and the presence of residual disease after therapy that leads to cancer recurrence. Radiation impedes cancer cell growth by inducing cytotoxicity, mainly caused by DNA damage. However, radiation can also simultaneously induce multiple pro-survival signaling pathways, such as those mediated by AKT, ERK and ATM/ATR, which can lead to suppression of apoptosis, induction of cell cycle arrest and/or initiation of DNA repair. These signaling pathways act conjointly to reduce the magnitude of radiation-induced cytotoxicity and promote the development of radioresistance in cancer cells. Thus, targeting these pro-survival pathways has great potential for the radiosensitization of cancer cells. In the present review, we summarize the current literature on how these radiation‑activated signaling pathways promote cancer cell survival.
Collapse
Affiliation(s)
- ASHLEY L. HEIN
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - MICHEL M. OUELLETTE
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - YING YAN
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
19
|
Wu LH, Li P, Zhao QL, Piao JL, Jiao YF, Kadowaki M, Kondo T. Arbutin, an intracellular hydroxyl radical scavenger, protects radiation-induced apoptosis in human lymphoma U937 cells. Apoptosis 2014; 19:1654-63. [DOI: 10.1007/s10495-014-1032-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Yang Z, Chen H, Yang X, Wan X, He L, Miao R, Yang H, Zhong Y, Wang L, Zhao H. A phylogenetic analysis of the ubiquitin superfamily based on sequence and structural information. Mol Biol Rep 2014; 41:6083-8. [PMID: 24997693 DOI: 10.1007/s11033-014-3486-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 06/17/2014] [Indexed: 11/26/2022]
Abstract
Ubiquitin belongs to an important class of protein modifier and gene expression regulator proteins that participates in various cellular processes. A large number of ubiquitin-related proteins have been identified during the last two decades. However, the evolutionary history of this ancient gene family remains largely unknown. We analyzed the members of the superfamily using both sequence- and structure-based methodology to better understand the evolution of ubiquitin-related proteins. As a part of these analyses we used the MEME algorithm to extract common sequence motifs across the superfamily, and we inferred the phylogeny and distribution of the superfamily members across multiple species. A total of 23 families were identified in the gene family. Several common sequence motifs were revealed and evaluated. We also found that the number of genes for ubiquitin-related proteins encoded within a specific genome correlates with the biological complexity of that particular species. This analysis should provide valuable insight into the sequence/function relationships and evolutionary history of ubiquitin and ubiquitin-related proteins.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, CAMS & PUMC, Beijing, 100730, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Part I-mechanism of adaptation: high nitric oxide adapted A549 cells show enhanced DNA damage response and activation of antiapoptotic pathways. Tumour Biol 2013; 35:2403-15. [PMID: 24241898 DOI: 10.1007/s13277-013-1318-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/14/2013] [Indexed: 12/21/2022] Open
Abstract
Our previous studies demonstrate that A549, a human lung adenocarcinoma line, could be adapted to the free radical nitric oxide (NO([Symbol: see text])). NO([Symbol: see text]) has been shown to be overexpressed in human tumors. The original cell line, A549 (parent), and the newly adapted A549-HNO (which has a more aggressive phenotype) serves as a useful model system to study the role of NO([Symbol: see text]) in tumor biology. It is well known that DNA damage response (DDR) is altered in cancer cells and NO([Symbol: see text]) is known to cause DNA damage. Modulations in molecular mechanisms involved in DNA damage response in A549-HNO cells can provide better insights into the enhanced growth behavior of these cells. Thus, here, we carried out a series of time course experiments by treating A549 and A549-HNO cells with NO([Symbol: see text]) donor and examining levels of proteins involved in the DDR pathway. We observed induced expression of key components of DDR pathway in A549-HNO cells. The HNO cells showed sustained expression of key proteins involved in both nonhomologous end joining (NHEJ) and homologous recombination pathways, whereas parent cells only expressed low levels of NHEJ pathway proteins. Further with prolonged NO([Symbol: see text]) exposure, ATR, Chk1, and p53 were activated and upregulated in HNO cells. Activation of p53 results in inhibition of apoptosis through induced Mcl1 expression. It also leads to cell cycle modulation. Interestingly, several reports show that cancer stem cells have enhanced expression of proteins involved in DNA damage response and also activated an antiapoptotic response. Our results here suggest that our HNO adapted A549 cells have increased activation of DNA damage response pathway proteins which can lead to better DNA repair function. Enhanced DDR leads to activation of antiapoptosis response and modulation in the cell cycle which may lead to better survival of these cells under harsh conditions. Thus, our present investigation further supports the hypothesis that HNO exposure leads to survival of these cells.
Collapse
|
22
|
Zhou Y, Xu Y, Wang H, Niu J, Hou H, Jiang Y. Histone deacetylase inhibitor, valproic acid, radiosensitizes the C6 glioma cell line in vitro.. Oncol Lett 2013; 7:203-208. [PMID: 24348849 PMCID: PMC3861595 DOI: 10.3892/ol.2013.1666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/24/2013] [Indexed: 11/25/2022] Open
Abstract
Valproic acid (VPA) is a well-tolerated drug that is used to treat seizure disorders and that has recently been shown to inhibit histone deacetylase. The present study investigated the effects of VPA on the radiosensitization of the rat C6 glioma cell line in vitro. To select an appropriate treatment concentration and time, MTT and flow cytometry assays were performed to measure the inhibitory effects of VPA at various concentrations and incubation time-points. The radiosensitizing effect of VPA was determined using clonogenic experiments. VPA- and radiation-induced C6 apoptosis was analyzed using quantitative polymerase chain reaction and western blot analysis. Cell proliferation was significantly inhibited by VPA in a time- and dose-dependent manner (P<0.05). VPA enhanced radiation-induced C6 cell death and there was clear inhibition of clonogenic formation [sensitizer enhancement ratio (SER), 1.30]. This effect was closely associated with the concentration of VPA. VPA treatment decreased the mRNA and protein levels of Bcl-2, whereas increased changes were detected with Bax. At a concentration of 0.5 mmol/l, VPA had a low toxicity and enhanced the radiosensitization of the C6 cells. VPA may radiosensitize glioma cells by inhibiting cellular proliferation and inducing apoptosis by regulating apoptosis-related molecular changes.
Collapse
Affiliation(s)
- Yong Zhou
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ying Xu
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Han Wang
- Department of Radiotherapy, Shandong Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Junjie Niu
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Huaying Hou
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
23
|
Robertson A, Allen J, Laney R, Curnow A. The cellular and molecular carcinogenic effects of radon exposure: a review. Int J Mol Sci 2013; 14:14024-63. [PMID: 23880854 PMCID: PMC3742230 DOI: 10.3390/ijms140714024] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 02/06/2023] Open
Abstract
Radon-222 is a naturally occurring radioactive gas that is responsible for approximately half of the human annual background radiation exposure globally. Chronic exposure to radon and its decay products is estimated to be the second leading cause of lung cancer behind smoking, and links to other forms of neoplasms have been postulated. Ionizing radiation emitted during the radioactive decay of radon and its progeny can induce a variety of cytogenetic effects that can be biologically damaging and result in an increased risk of carcinogenesis. Suggested effects produced as a result of alpha particle exposure from radon include mutations, chromosome aberrations, generation of reactive oxygen species, modification of the cell cycle, up or down regulation of cytokines and the increased production of proteins associated with cell-cycle regulation and carcinogenesis. A number of potential biomarkers of exposure, including translocations at codon 249 of TP53 in addition to HPRT mutations, have been suggested although, in conclusion, the evidence for such hotspots is insufficient. There is also substantial evidence of bystander effects, which may provide complications when calculating risk estimates as a result of exposure, particularly at low doses where cellular responses often appear to deviate from the linear, no-threshold hypothesis. At low doses, effects may also be dependent on cellular conditions as opposed to dose. The cellular and molecular carcinogenic effects of radon exposure have been observed to be both numerous and complex and the elevated chronic exposure of man may therefore pose a significant public health risk that may extend beyond the association with lung carcinogenesis.
Collapse
Affiliation(s)
- Aaron Robertson
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-1872-256-432; Fax: +44-1872-256-497
| | - James Allen
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| | - Robin Laney
- Clinical Oncology, Sunrise Centre, Royal Cornwall Hospital, Truro, Cornwall TR1 3LJ, UK; E-Mail:
| | - Alison Curnow
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| |
Collapse
|