1
|
Panda S, Subudhi E, Routray SP, Nair S. Systems pharmacology of phytochemical anacardic acid in the chemoprevention of hepatocellular carcinoma. Drug Metab Pers Ther 2025:dmdi-2024-0099. [PMID: 40260672 DOI: 10.1515/dmpt-2024-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is a common type of liver cancer that progresses quickly and has limited treatment options. Nutraceutical anacardic acid (AA), a bioactive compound derived from cashew nut shell, has emerged as a potential candidate for HCC treatment owing to its reported anti-inflammatory, anticancer and diverse pharmacological properties. In the present study, we investigate the potential of AA as an HCC inhibitor using molecular docking, gene ontology, and network pharmacology. METHODS The pharmacokinetic and physicochemical properties of AA were assessed using Swiss ADME. SuperPred, Similarity Ensemble Approach, ChEMBL and Swiss Target Prediction online tools were used for determining molecular targets of AA. In addition, GeneCards, NCBI, DisGeNET and UniProt ID were used to search the targets of HCC and the top 25 hub genes were determined using Cytohubba plugin. A protein protein interaction (PPI) network was constructed through the STRING database. Gene Ontology (GO) biological process and Kyoto Encyclopaedia of Genes and Genes (KEGG) pathway enrichment analysis were performed through FunRich and ShinyGO 0.77. Moreover, molecular docking studies were performed on NF-κB and GSK-3β. The expression levels of the hub genes were also validated by western blotting. RESULTS Comprehensive data analysis identified 375 targets for AA and 11,333 for HCC, with 264 targets in common. Network analysis determined 25 key HCC targets, including caspase-3, and NF-κB. Gene ontology and topology analysis highlighted essential pathways implicated in HCC progression such as the renin-angiotensin system, VEGF signalling, and apoptosis. Molecular docking analysis revealed strong binding affinity of HCC proteins with NF-κB and GSK-3β. Upregulation of p-NRF2 and p-GSK-3β, and downregulation of p-NF-κB and caspase-1 expression were validated using western blotting. CONCLUSIONS Taken together, our study highlights the potential of AA as a promising chemopreventive agent for HCC because of its significant modulatory effects on important regulatory proteins linked to cell division, inflammation, apoptosis, and antioxidant response.
Collapse
Affiliation(s)
- Sangita Panda
- Centre for Biotechnology, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, India
| | - Enketeswara Subudhi
- Centre for Biotechnology, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, India
| | - Sweta Padma Routray
- Centre for Biotechnology, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, India
| | - Sujit Nair
- 29396 University of Mumbai , Santa Cruz, Mumbai, India
| |
Collapse
|
2
|
Huang X, Feng Z, Liu D, Gou Y, Chen M, Tang D, Han C, Peng J, Peng D, Xue Y. PTMD 2.0: an updated database of disease-associated post-translational modifications. Nucleic Acids Res 2025; 53:D554-D563. [PMID: 39329270 PMCID: PMC11701619 DOI: 10.1093/nar/gkae850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Various post-translational modifications (PTMs) participate in nearly all aspects of biological processes by regulating protein functions, and aberrant states of PTMs are frequently associated with human diseases. Here, we present a comprehensive database of PTMs associated with diseases (PTMD 2.0), including 342 624 PTM-disease associations (PDAs) in 15 105 proteins for 93 types of PTMs and 2083 diseases. Based on the distinct PTM states in diseases, we classified all PDAs into six categories: upregulation (U) or downregulation (D) of PTM levels, absence (A) or presence (P) of PTMs, and creation (C) or disruption (N) of PTM sites. We provided detailed annotations for each PDA and carefully annotated disease-associated proteins by integrating the knowledge from 101 additional resources that covered 13 aspects, including disease-associated information, variation and mutation, protein-protein interaction, protein functional annotation, DNA and RNA element, protein structure, chemical-target relationship, mRNA expression, protein expression/proteomics, subcellular localization, biological pathway annotation, functional domain annotation and physicochemical property. With a data volume of ∼8 GB, we anticipate that PTMD 2.0 will serve as a fundamental resource for further analysing the relationships between PTMs and diseases. The online service of PTMD 2.0 is freely available at https://ptmd.biocuckoo.cn/.
Collapse
Affiliation(s)
- Xinhe Huang
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Zihao Feng
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Dan Liu
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Yujie Gou
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Miaomiao Chen
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Dachao Tang
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Cheng Han
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Jianzhen Peng
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Di Peng
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
- Nanjing University Institute of Artificial Intelligence Biomedicine, Xianlin Avenue 163, Nanjing 210031, China
| |
Collapse
|
3
|
Hou Y, Zhao Z, Li P, Cao Y, Zhang Y, Guo C, Nie X, Hou J. Combination therapies with Wnt signaling inhibition: A better choice for prostate cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189186. [PMID: 39332651 DOI: 10.1016/j.bbcan.2024.189186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
The intractability and high mortality rate of castration-resistant prostate cancer (CRPC) remain the most challenging problems in the field of prostate cancer (PCa). Emerging evidence has shown that the dysregulation of Wnt signaling pathways, which are highly conserved cascades that regulate embryonic development and maintain tissue homeostasis, is involved in various stages of PCa occurrence and progression. In this review, we systemically discuss the mechanisms by which the androgen receptor (AR) signaling pathway and Wnt signaling pathways participate in the occurrence of PCa and its progression to CRPC. Specifically, we elaborate on how Wnt signaling pathways induce the malignant transformation of prostate cells, promote the malignant progression of PCa and establish an immunosuppressive prostate tumor microenvironment through interaction with the AR pathway or in an AR-independent manner. We also discuss how Wnt signaling pathways enhances the stemness characteristics of prostate cancer stem cells (PCSCs) to induce the occurrence and metastasis of CPPC. Additionally, we discuss the latest progress in the use of different types of drugs that inhibit the Wnt signaling pathways in the treatment of PCa. We believe that the combination of Wnt signaling-based drugs with endocrine and other therapies is necessary and may enhance the clinical efficacy in the treatment of all types of PCa.
Collapse
Affiliation(s)
- Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng 475003, China
| | - Zhenhua Zhao
- Ma'anshan 86 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Ma'anshan 243100, China
| | - Pan Li
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yujia Cao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yi Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Changsheng Guo
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng 475003, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng 475003, China.
| |
Collapse
|
4
|
Roko G, Porada R, Gdula-Argasińska J, Piekoszewski W, Chabi-Sika K, Krakowska-Sieprawska A, Buszewski B, Librowski T, Baba-Moussa L. Comparison of supercritical CO 2 extraction and pressurized fluid extraction for isolation of alkaloids from Anacardium occidentale with the study of its anti-inflammatory activity. J Pharm Biomed Anal 2024; 241:115982. [PMID: 38237542 DOI: 10.1016/j.jpba.2024.115982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024]
Abstract
In recent years, there has been a growing interest in the therapeutic potential of natural compounds, particularly of plant origin, owing to their demonstrated anti-inflammatory properties. Among these, Anacardium occidentale, commonly known as cashew, has garnered significant attention due to its reputed health benefits. This study aim to establish a correlation between the bioactive compounds contained in the extracts of Anacardium occidentale and its anti-inflammatory activity. Dried Anacardium occidentale leaves powder was used as the extraction matrix. Extraction techniques are maceration, pressurized fluid extraction (PFE), and supercritical fluid extraction (SFE). The preliminary analysis of extracts was made by LC-MS/MS. The Response Surface Methodology (RSM), Principal Component Analysis (PCA), and heat maps were employed to model the influence of experimental conditions on extraction yield and peak area of specific compounds from the plant. To evaluate anti-inflammatory activity, RAW 264.7 cells were cultured, activated with LPS, and treated with varying concentrations of the plant extracts. Cell proliferation was assessed using the XTT assay. Indeed, Anacardium occidentale extracts contain anacardic acids, cardanols, and cardol, with distinct profiles yielded by SFE and ethanol-based methods. RSM shows that temperature and ethanol, as additives to CO2, significantly affect extraction efficiency in both PFE and SFE. Moreover, this composition with SFE demonstrate higher selectivity for specific group of compounds. The extracts exhibit anti-inflammatory properties without cytotoxicity in macrophages, reducing levels of pro-inflammatory proteins COX-2, COX-1, and TLR4 in activated cells. This suggests their potential as anti-inflammatory agents without adverse effects on cell viability or pro-inflammatory protein levels in non-activated cells. Overall, these findings underscore the promising therapeutic potential of Anacardium occidentale extracts in mitigating inflammation, while also providing crucial insights into optimizing the extraction process for targeted compound isolation. Thus, this makes a good prospect for the development of anti-inflammatory drugs from this plant.
Collapse
Affiliation(s)
- Gautier Roko
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Benin
| | - Radosław Porada
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Medical College, Jagiellonian University in Krakow, Medyczna Street 9, 30-688 Kraków, Poland
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Kamirou Chabi-Sika
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Benin
| | - Aneta Krakowska-Sieprawska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A, 10-719 Olsztyn, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland; Prof. Jan Czochralski Kuyavian-Pomeranian Research & Development Centre, Krasińskiego 4, 87-100 Toruń, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Faculty of Pharmacy, Medical College, Jagiellonian University in Krakow, Medyczna Street 9, 30-688 Kraków, Poland
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cellular Biology, University of Abomey-Calavi, Benin
| |
Collapse
|
5
|
Fernandes R, Costa C, Fernandes R, Barros AN. Inflammation in Prostate Cancer: Exploring the Promising Role of Phenolic Compounds as an Innovative Therapeutic Approach. Biomedicines 2023; 11:3140. [PMID: 38137361 PMCID: PMC10740737 DOI: 10.3390/biomedicines11123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) remains a significant global health concern, being a major cause of cancer morbidity and mortality worldwide. Furthermore, profound understanding of the disease is needed. Prostate inflammation caused by external or genetic factors is a central player in prostate carcinogenesis. However, the mechanisms underlying inflammation-driven PCa remain poorly understood. This review dissects the diagnosis methods for PCa and the pathophysiological mechanisms underlying the disease, clarifying the dynamic interplay between inflammation and leukocytes in promoting tumour development and spread. It provides updates on recent advances in elucidating and treating prostate carcinogenesis, and opens new insights for the use of bioactive compounds in PCa. Polyphenols, with their noteworthy antioxidant and anti-inflammatory properties, along with their synergistic potential when combined with conventional treatments, offer promising prospects for innovative therapeutic strategies. Evidence from the use of polyphenols and polyphenol-based nanoparticles in PCa revealed their positive effects in controlling tumour growth, proliferation, and metastasis. By consolidating the diverse features of PCa research, this review aims to contribute to increased understanding of the disease and stimulate further research into the role of polyphenols and polyphenol-based nanoparticles in its management.
Collapse
Affiliation(s)
- Raquel Fernandes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Cátia Costa
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rúben Fernandes
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, 4249-004 Porto, Portugal;
- CECLIN, Centro de Estudos Clínicos, Hospital Fernando Pessoa, 4420-096 Gondomar, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Novo Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| |
Collapse
|
6
|
Effects of the Acetyltransferase p300 on Tumour Regulation from the Novel Perspective of Posttranslational Protein Modification. Biomolecules 2023; 13:biom13030417. [PMID: 36979352 PMCID: PMC10046601 DOI: 10.3390/biom13030417] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
p300 acts as a transcription coactivator and an acetyltransferase that plays an important role in tumourigenesis and progression. In previous studies, it has been confirmed that p300 is an important regulator in regulating the evolution of malignant tumours and it also has extensive functions. From the perspective of non-posttranslational modification, it has been proven that p300 can participate in regulating many pathophysiological processes, such as activating oncogene transcription, promoting tumour cell growth, inducing apoptosis, regulating immune function and affecting embryo development. In recent years, p300 has been found to act as an acetyltransferase that catalyses a variety of protein modification types, such as acetylation, propanylation, butyylation, 2-hydroxyisobutyration, and lactylation. Under the catalysis of this acetyltransferase, it plays its crucial tumourigenic driving role in many malignant tumours. Therefore, the function of p300 acetyltransferase has gradually become a research hotspot. From a posttranslational modification perspective, p300 is involved in the activation of multiple transcription factors and additional processes that promote malignant biological behaviours, such as tumour cell proliferation, migration, and invasion, as well as tumour cell apoptosis, drug resistance, and metabolism. Inhibitors of p300 have been developed and are expected to become novel anticancer drugs for several malignancies. We review the characteristics of the p300 protein and its functional role in tumour from the posttranslational modification perspective, as well as the current status of p300-related inhibitor research, with a view to gaining a comprehensive understanding of p300.
Collapse
|
7
|
Cannabinoids Transmogrify Cancer Metabolic Phenotype via Epigenetic Reprogramming and a Novel CBD Biased G Protein-Coupled Receptor Signaling Platform. Cancers (Basel) 2023; 15:cancers15041030. [PMID: 36831374 PMCID: PMC9954791 DOI: 10.3390/cancers15041030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The concept of epigenetic reprogramming predicts long-term functional health effects. This reprogramming can be activated by exogenous or endogenous insults, leading to altered healthy and different disease states. The exogenous or endogenous changes that involve developing a roadmap of epigenetic networking, such as drug components on epigenetic imprinting and restoring epigenome patterns laid down during embryonic development, are paramount to establishing youthful cell type and health. This epigenetic landscape is considered one of the hallmarks of cancer. The initiation and progression of cancer are considered to involve epigenetic abnormalities and genetic alterations. Cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer development, including DNA methylation, histone modifications, nucleosome positioning, non-coding RNAs, and microRNA expression. Endocannabinoids are natural lipid molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind to and activate two primary cannabinoid receptors, type 1 (CB1) and type 2 (CB2), and together with their metabolizing enzymes, form the endocannabinoid system. This review focuses on the role of cannabinoid receptors CB1 and CB2 signaling in activating numerous receptor tyrosine kinases and Toll-like receptors in the induction of epigenetic landscape alterations in cancer cells, which might transmogrify cancer metabolism and epigenetic reprogramming to a metastatic phenotype. Strategies applied from conception could represent an innovative epigenetic target for preventing and treating human cancer. Here, we describe novel cannabinoid-biased G protein-coupled receptor signaling platforms (GPCR), highlighting putative future perspectives in this field.
Collapse
|
8
|
López-Bañuelos L, Vega L. Inhibition of Acetylation, is it Enough to Fight Cancer? Crit Rev Oncol Hematol 2022; 176:103752. [PMID: 35792250 DOI: 10.1016/j.critrevonc.2022.103752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/09/2022] Open
Abstract
Acetylation is a reversible post-translational modification (PTM) that regulates important cellular processes such as proliferation, DNA damage repair and cell cycle progress. When the balance is broken, these processes are affected and lead to carcinogenesis. Therefore, the study of acetylation has led to its proposal as a target pathway for anticancer therapies. Here, we discuss how acetylation regulates the cell cycle process, how it is modified in cancer cells and which are the key proteins in the regulation of apoptosis induction in cancer cells that can become targets to fight cancer. The inhibition of acetylation has been proposed as an emergent therapy against cancer, compounds such as 6-Penthadecyl salicylic acid (6SA), Curcumin, Garcinol and C646, among others, are currently studied because they show antitumor activity related to the inhibition of acetylation. Recently, the use of the acetylomics research tool has improved the study of acetylation as a target against tumor cells, but still the thresholds between promoting DNA instability and regulating gene expression by acetylation are not clear in many cell types.
Collapse
Affiliation(s)
- Laura López-Bañuelos
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute. Ave. IPN 2508, San Pedro Zacatenco, Mexico City, 07360, Mexico
| | - Libia Vega
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute. Ave. IPN 2508, San Pedro Zacatenco, Mexico City, 07360, Mexico.
| |
Collapse
|
9
|
Jianwei W, Ye T, Hongwei W, Dachuan L, Fei Z, Jianyuan J, Hongli W. The Role of TAK1 in RANKL-Induced Osteoclastogenesis. Calcif Tissue Int 2022; 111:1-12. [PMID: 35286417 DOI: 10.1007/s00223-022-00967-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 12/31/2022]
Abstract
Bone remodelling is generally a dynamic process orchestrated by bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoclasts are the only cell type capable of bone resorption to maintain bone homeostasis in the human body. However, excessive osteoclastogenesis can lead to osteolytic diseases. The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) has been widely considered to be an important modulator of osteoclastogenesis thereby participating in the pathogenesis of osteolytic diseases. Transforming growth factor β-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is an important intracellular molecule that regulates multiple signalling pathways, such as NF-κB and mitogen-activated protein kinase to mediate multiple physiological processes, including cell survival, inflammation, and tumourigenesis. Furthermore, increasing evidence has demonstrated that TAK1 is intimately involved in RANKL-induced osteoclastogenesis. Moreover, several detailed mechanisms by which TAK1 regulates RANKL-induced osteoclastogenesis have been clarified, and some potential approaches targeting TAK1 for the treatment of osteolytic diseases have emerged. In this review, we discuss how TAK1 functions in RANKL-mediated signalling pathways and highlight the significant role of TAK1 in RANKL-induced osteoclastogenesis. In addition, we discuss the potential clinical implications of TAK1 inhibitors for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Wu Jianwei
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Tian Ye
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Wang Hongwei
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Li Dachuan
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Zou Fei
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China
| | - Jiang Jianyuan
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China.
| | - Wang Hongli
- Department of Orthopaedics, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai City, 200040, Shanghai, China.
| |
Collapse
|
10
|
Sun C, An Q, Li R, Chen S, Gu X, An S, Wang Z. Calcitonin gene-related peptide induces the histone H3 lysine 9 acetylation in astrocytes associated with neuroinflammation in rats with neuropathic pain. CNS Neurosci Ther 2021; 27:1409-1424. [PMID: 34397151 PMCID: PMC8504526 DOI: 10.1111/cns.13720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Aims Calcitonin gene‐related peptide (CGRP) as a regulator of astrocyte activation may facilitate spinal nociceptive processing. Histone H3 lysine 9 acetylation (H3K9ac) is considered an important regulator of cytokine and chemokine gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K9ac in the activation of astrocytes, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain. Methods Astroglial cells (C6) were treated with CGRP and differentially enrichments of H3K9ac on gene promoters were examined using ChIP‐seq. A chronic constriction injury (CCI) rat model was used to evaluate the role of CGRP on astrocyte activation and H3K9ac signaling in CCI‐induced neuropathic pain. Specific inhibitors were employed to delineate the involved signaling. Results Intrathecal injection of CGRP and CCI increased the number of astrocytes displaying H3K9ac in the spinal dorsal horn of rats. Treatment of CGRP was able to up‐regulate H3K9ac and glial fibrillary acidic protein (GFAP) expression in astroglial cells. ChIP‐seq data indicated that CGRP significantly altered H3K9ac enrichments on gene promoters in astroglial cells following CGRP treatment, including 151 gaining H3K9ac and 111 losing this mark, which mostly enriched in proliferation, autophagy, and macrophage chemotaxis processes. qRT‐PCR verified expressions of representative candidate genes (ATG12, ATG4C, CX3CR1, MMP28, MTMR14, HMOX1, RET) and RTCA verified astrocyte proliferation. Additionally, CGRP treatment increased the expression of H3K9ac, CX3CR1, and IL‐1β in the spinal dorsal horn. CGRP antagonist and HAT inhibitor attenuated mechanical and thermal hyperalgesia in CCI rats. Such analgesic effects were concurrently associated with the reduced levels of H3K9ac, CX3CR1, and IL‐1β in the spinal dorsal horn of CCI rats. Conclusion Our findings highly indicate that CGRP is associated with the development of neuropathic pain through astrocytes‐mediated neuroinflammatory responses via H3K9ac in spinal dorsa horn following nerve injury. This study found that CGRP act on their astrocytic receptors and lead to H3K9 acetylation (H3K9ac), which are mainly associated with proliferation‐, autophagy‐, and inflammation‐related gene expression. The number of astrocytes with H3K9ac expression is increased after nerve injury. Inhibition of CGRP attenuates the development of neuropathic pain, which was accompanied by the suppression of H3K9ac, CX3CR1, and IL‐1β expression in CCI rats.
Collapse
Affiliation(s)
- Chenyan Sun
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Qi An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
11
|
Anacardic Acids from Amphipterygium adstringens Confer Cytoprotection against 5-Fluorouracil and Carboplatin Induced Blood Cell Toxicity While Increasing Antitumoral Activity and Survival in an Animal Model of Breast Cancer. Molecules 2021; 26:molecules26113241. [PMID: 34071241 PMCID: PMC8198955 DOI: 10.3390/molecules26113241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Amphipterygium adstringens (cuachalalate) contains anacardic acids (AAs) such as 6-pentadecyl salicylic acid (6SA) that show immunomodulatory and antitumor activity with minimal or no secondary adverse effects. By contrast, most chemotherapeutic agents, such as 5-fluorouracil (5-FU) and carboplatin (CbPt), induce myelosuppression and leukopenia. Here, we investigated the myeloprotective and antineoplastic potential of an AA extract or the 6SA as monotherapy or in combination with commonly used chemotherapeutic agents (5-FU and CbPt) to determine the cytoprotective action of 6SA on immune cells. Treatment of Balb/c breast tumor-bearing female mice with an AA mixture or 6SA did not induce the myelosuppression or leukopenia observed with 5-FU and CbPt. The co-administration of AA mixture or isolated 6SA with 5-FU or CbPt reduced the apoptosis of circulating blood cells and bone marrow cells. Treatment of 4T1 breast tumor-bearing mice with the AA mixture or 6SA reduced tumor growth and lung metastasis and increased the survival rate compared with monotherapies. An increased effect was observed in tumor reduction with the combination of 6SA and CbPt. In conclusion, AAs have important myeloprotective and antineoplastic effects, and they can improve the efficiency of chemotherapeutics, thereby protecting the organism against the toxic effects of drugs such as 5-FU and CbPt.
Collapse
|
12
|
Meng F, Liang Z, Zhao K, Luo C. Drug design targeting active posttranslational modification protein isoforms. Med Res Rev 2020; 41:1701-1750. [PMID: 33355944 DOI: 10.1002/med.21774] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Modern drug design aims to discover novel lead compounds with attractable chemical profiles to enable further exploration of the intersection of chemical space and biological space. Identification of small molecules with good ligand efficiency, high activity, and selectivity is crucial toward developing effective and safe drugs. However, the intersection is one of the most challenging tasks in the pharmaceutical industry, as chemical space is almost infinity and continuous, whereas the biological space is very limited and discrete. This bottleneck potentially limits the discovery of molecules with desirable properties for lead optimization. Herein, we present a new direction leveraging posttranslational modification (PTM) protein isoforms target space to inspire drug design termed as "Post-translational Modification Inspired Drug Design (PTMI-DD)." PTMI-DD aims to extend the intersections of chemical space and biological space. We further rationalized and highlighted the importance of PTM protein isoforms and their roles in various diseases and biological functions. We then laid out a few directions to elaborate the PTMI-DD in drug design including discovering covalent binding inhibitors mimicking PTMs, targeting PTM protein isoforms with distinctive binding sites from that of wild-type counterpart, targeting protein-protein interactions involving PTMs, and hijacking protein degeneration by ubiquitination for PTM protein isoforms. These directions will lead to a significant expansion of the biological space and/or increase the tractability of compounds, primarily due to precisely targeting PTM protein isoforms or complexes which are highly relevant to biological functions. Importantly, this new avenue will further enrich the personalized treatment opportunity through precision medicine targeting PTM isoforms.
Collapse
Affiliation(s)
- Fanwang Meng
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Anacardic 6-pentadecyl salicylic acid induces apoptosis in breast cancer tumor cells, immunostimulation in the host and decreases blood toxic effects of taxol in an animal model. Toxicol Appl Pharmacol 2020; 410:115359. [PMID: 33290779 DOI: 10.1016/j.taap.2020.115359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 01/12/2023]
Abstract
Many antineoplastic agents induce myelosuppression and leukopenia as secondary effects in patients. The development of anticancer agents that simultaneously provoke antitumor immune response represents an important therapeutic advance. The administration of 6-pentadecyl salicylic acid (6SA) contributes to the antitumor immunity using 4T1 breast cancer cells in Balb/c female mice, with Taxol as a positive control and in cotreatment with 6SA (6SA + Taxol; CoT). Our results show that 6SA reduces tumor volume and size by inducing caspase-8-mediated apoptosis without reducing tumor infiltrated lymphocytes. Also, 6SA reduced lung metastasis and increased the proportion of immune cells in blood, lymph nodes and bone marrow; more evidently, in the proportion of tumor-infiltrated natural killer (NK) cells and cytotoxic T lymphocytes. Taxol reduces helper and cytotoxic lymphocytes causing systemic immunosuppression and myelosuppression in bone marrow, whereas 6SA does not decrease any immune cell subpopulations in circulating blood and lymph nodes. More importantly, the CoT decreased the Taxol-induced cytotoxicity in circulating T cells and bone marrow. Treatment with 6SA increases the secretion of IL-2, IL-12, GM-CSF, TNF-α and IFN-γ and significantly reduces IL-10 and IL-17 secretion, suggesting that the reduction of regulatory T cells and tumor-associated macrophages contribute to the host control of tumor development. Finally, 6SA has an effective antineoplastic activity against breast cancer cells in an immunocompetent animal, reduces the myelosuppression and leukopenia that Taxol produces, improves the antitumoral immunological microenvironment and increases the overall survival of the animals improving the quality of life of patients with cancer.
Collapse
|
14
|
Jia Q, Zhang X, Zhang A, Wu R, Liu Z, Chen Y, Wang J, Lv L. rLj-RGD4, the shortened peptide of rLj-RGD3 from Lampetra japonica, protects against cerebral ischemia/reperfusion injury via the PI3K/Akt pathway. Peptides 2020; 129:170310. [PMID: 32389578 DOI: 10.1016/j.peptides.2020.170310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 11/23/2022]
Abstract
The toxic RGD peptide, rLj-RGD4, characterized by 4 (Arg-Gly-Asp) (RGD) motifs, is a novel mutant of rLj-RGD3 from the salivary gland of Lampetra japonica. Our previous study showd that rLj-RGD3 exerts a protective effect against cerebral ischemia injury in rats. Through the induction of middle cerebral artery occlusion/reperfusion (MCAO) injuries in rats, the present study investigated the effects and the mechanism through which rLj-RGD4 protects against ischemic stroke. In rats, treatment with rLj-RGD4 2 h after MCAO enhanced survival rate, improved movement and ameliorated the severity of brain infarction and apoptosis by diminishing pathological changes. This study demonstrated that rLj-RGD4 can reverse the downregulation of Bcl2, and the upregulation of Caspase-3. Mechanistic studies showed that rLj-RGD4 upregulated the expression levels of FAK, p-FAK, PI3K and p-Akt. In contrast, caspase-3 expression was inhibited. These results showed that rLj-RGD4 may reduce cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qilan Jia
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Xin Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Ailin Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Rui Wu
- School of Life Sciences, Liaoning Normal University, Dalian, Liaoning Province, 116029, China
| | - Zhien Liu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Yiheng Chen
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian, Liaoning Province, 116029, China.
| | - Li Lv
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
15
|
Augusto RL, Mendonça IP, de Albuquerque Rego GN, Pereira DD, da Penha Gonçalves LV, Dos Santos ML, de Souza RF, Moreno GMM, Cardoso PRG, de Souza Andrade D, da Silva-Júnior JC, Pereira MC, Peixoto CA, Medeiros-Linard CFB, de Souza IA, Andrade-da-Costa BLDS. Purified anacardic acids exert multiple neuroprotective effects in pesticide model of Parkinson's disease: in vivo and in silico analysis. IUBMB Life 2020; 72:1765-1779. [PMID: 32449271 DOI: 10.1002/iub.2304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/08/2022]
Abstract
Parkinson's disease (PD) induced by environmental toxins involves a multifactorial cascade of harmful factors, thus motivating the search for therapeutic agents able to act on the greatest number of molecular targets. This study evaluated the efficacy of 50 mg/kg purified anacardic acids (AAs), isolated from cashew nut shell liquid, on multiple steps of oxidative stress and inflammation induced by rotenone in the substantia nigra (SN) and striatum. Adult mice were divided into four groups: Control, rotenone, AAs + rotenone, and AAs alone. Lipoperoxidation, nitric oxide (NO) levels, and reduced glutathione (GSH)/oxidized gluthatione (GSSG) ratio were evaluated. NF-kB-p65, pro-IL-1β, cleaved IL-1β, metalloproteinase-9, Tissue Inhibitory Factor-1 (TIMP-1), tyrosine hydroxylase (TH), and glial fibrillary acidic protein (GFAP) levels were assessed by Western blot. In silico studies were also made using the SwissADME web tool. Rotenone increased lipoperoxidation and NO production and reduced TH levels and GSH/GSSG ratio in both SN and striatum. It also enhanced NF-kB-p65, pro, and cleaved IL-1β, MMP-9, GFAP levels compared to control and AAs groups. The AAs alone reduced pro-IL-1β in the striatum while they augmented TIMP1 and reduced MMP-9 amounts in both regions. AAs reversed rotenone-induced effects on lipoperoxidation, NO production, and GSH/GSSG ratio, as well as increased TH and attenuated pro-IL-1β and MMP-9 levels in both regions, NF-kB-p65 in the SN and GFAP in the striatum. Altogether, the in vivo and in silico analysis reinforced multiple and defined molecular targets of AAs, identifying that they are promising neuroprotective drug candidates for PD, acting against oxidative and inflammatory conditions induced by rotenone.
Collapse
Affiliation(s)
- Ricielle L Augusto
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, UFPE, Recife, Brazil
| | - Ingrid P Mendonça
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, UFPE, Recife, Brazil.,Departamento de Entomologia, Laboratório de Ultraestrutura, Instituto Aggeu Magalhães-FIOCRUZ, Recife, Brazil.,Instituto Nacional de Ciência e Tecnologia de Neuroimunomodulação (NIM), Rio de Janeiro, Brazil
| | | | - Danielle D Pereira
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, UFPE, Recife, Brazil
| | | | - Maria L Dos Santos
- Instituto de Química, Divisão de Química orgânica, Universidade de Brasília, UnB, Brasilia, Brazil
| | - Raphael F de Souza
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, UFPE, Recife, Brazil.,Departamento de Educação Física, Universidade Federal de Sergipe, UFS, São Cristóvam, Brazil
| | - Giselle M M Moreno
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, UFPE, Recife, Brazil
| | - Pablo R G Cardoso
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, UFPE, Recife, Brazil
| | - Daniele de Souza Andrade
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, UFPE, Recife, Brazil
| | - José C da Silva-Júnior
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, UFPE, Recife, Brazil
| | - Michelly C Pereira
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, UFPE, Recife, Brazil
| | - Christina A Peixoto
- Departamento de Entomologia, Laboratório de Ultraestrutura, Instituto Aggeu Magalhães-FIOCRUZ, Recife, Brazil.,Instituto Nacional de Ciência e Tecnologia de Neuroimunomodulação (NIM), Rio de Janeiro, Brazil
| | | | - Ivone A de Souza
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | | |
Collapse
|
16
|
Zafar F, Gupta A, Thangavel K, Khatana K, Sani AA, Ghosal A, Tandon P, Nishat N. Physicochemical and Pharmacokinetic Analysis of Anacardic Acid Derivatives. ACS OMEGA 2020; 5:6021-6030. [PMID: 32226883 PMCID: PMC7098041 DOI: 10.1021/acsomega.9b04398] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/18/2020] [Indexed: 05/23/2023]
Abstract
Anacardic acid (AA) and its derivatives are well-known for their therapeutic applications ranging from antitumor, antibacterial, antioxidant, anticancer, and so forth. However, their poor pharmacokinetic and safety properties create significant hurdles in the formulation of the final drug molecule. As a part of our endeavor to enhance the potential and exploration of the anticancer activities, a detailed study on the properties of selected AA derivatives was performed in this work. A comprehensive analysis of the drug-like properties of 100 naturally occurring AA derivatives was performed, and the results were compared with certain marketed anticancer drugs. The work focused on the understanding of the interplay among eight physicochemical properties. The relationships between the physicochemical properties, absorption, distribution, metabolism, and excretion attributes, and the in silico toxicity profile for the set of AA derivatives were established. The ligand efficacy of the finally scrutinized 17 AA derivatives on the basis of pharmacokinetic properties and toxicity parameters was further subjected to dock against the potential anticancer target cyclin-dependent kinase 2 (PDB ID: 1W98). In the docked complex, the ligand molecules (AA derivatives) selectively bind with the target residues, and a high binding affinity of the ligand molecules was ensured by the full fitness score using the SwissDock Web server. The BOILED-Egg model shows that out of 17 scrutinized molecules, 3 molecules exhibit gastrointestinal absorption capability and 14 molecules exhibit permeability through the blood-brain barrier penetration. The analysis can also provide some useful insights to chemists to modify the existing natural scaffolds in designing new anacardic anticancer drugs. The increased probability of success may lead to the identification of drug-like candidates with favorable safety profiles after further clinical evaluation.
Collapse
Affiliation(s)
- Fahmina Zafar
- Inorganic
Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Anjali Gupta
- Division
of Chemistry, School of Basic and Applied Science, Galgotias University, Greater
Noida 201310, Uttar Pradesh, India
| | - Karthick Thangavel
- Department
of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Kavita Khatana
- Division
of Chemistry, School of Basic and Applied Science, Galgotias University, Greater
Noida 201310, Uttar Pradesh, India
| | - Ali Alhaji Sani
- Division
of Chemistry, School of Basic and Applied Science, Galgotias University, Greater
Noida 201310, Uttar Pradesh, India
| | - Anujit Ghosal
- Inorganic
Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
- Division
of Chemistry, School of Basic and Applied Science, Galgotias University, Greater
Noida 201310, Uttar Pradesh, India
- School
of Life Sciences, Beijing Institute of Technology, Beijing 100811, China
| | - Poonam Tandon
- Department
of Physics, University of Lucknow, Lucknow 226007, India
| | - Nahid Nishat
- Inorganic
Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
17
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
18
|
Filipczak N, Jaromin A, Piwoni A, Mahmud M, Sarisozen C, Torchilin V, Gubernator J. A Triple Co-Delivery Liposomal Carrier That Enhances Apoptosis via an Intrinsic Pathway in Melanoma Cells. Cancers (Basel) 2019; 11:cancers11121982. [PMID: 31835393 PMCID: PMC6966600 DOI: 10.3390/cancers11121982] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022] Open
Abstract
The effectiveness of existing anti-cancer therapies is based mainly on the stimulation of apoptosis of cancer cells. Most of the existing therapies are somewhat toxic to normal cells. Therefore, the quest for nontoxic, cancer-specific therapies remains. We have demonstrated the ability of liposomes containing anacardic acid, mitoxantrone and ammonium ascorbate to induce the mitochondrial pathway of apoptosis via reactive oxygen species (ROS) production by the killing of cancer cells in monolayer culture and shown its specificity towards melanoma cells. Liposomes were prepared by a lipid hydration, freeze-and-thaw (FAT) procedure and extrusion through polycarbonate filters, a remote loading method was used for dug encapsulation. Following characterization, hemolytic activity, cytotoxicity and apoptosis inducing effects of loaded nanoparticles were investigated. To identify the anticancer activity mechanism of these liposomes, ROS level and caspase 9 activity were measured by fluorescence and by chemiluminescence respectively. We have demonstrated that the developed liposomal formulations produced a high ROS level, enhanced apoptosis and cell death in melanoma cells, but not in normal cells. The proposed mechanism of the cytotoxic action of these liposomes involved specific generation of free radicals by the iron ions mechanism.
Collapse
Affiliation(s)
- Nina Filipczak
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.J.); (A.P.); (M.M.); (J.G.)
- Correspondence: or ; Tel.: +48-713-756-318
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.J.); (A.P.); (M.M.); (J.G.)
| | - Adriana Piwoni
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.J.); (A.P.); (M.M.); (J.G.)
| | - Mohamed Mahmud
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.J.); (A.P.); (M.M.); (J.G.)
- Department of Food Science and Technology, Faculty of Agriculture, University of Misurata, Misurata 2478, Libya
| | - Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (C.S.); (V.T.)
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (C.S.); (V.T.)
- Department of Oncology, Radiotherapy and Plastic Surgery I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.J.); (A.P.); (M.M.); (J.G.)
| |
Collapse
|
19
|
Rusu ME, Simedrea R, Gheldiu AM, Mocan A, Vlase L, Popa DS, Ferreira IC. Benefits of tree nut consumption on aging and age-related diseases: Mechanisms of actions. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Zhao K, Jia Y, Peng J, Pang C, Zhang T, Han W, Jiang J, Lu X, Zhu J, Qian Y. Anacardic acid inhibits RANKL-induced osteoclastogenesis in vitro and prevents ovariectomy-induced bone loss in vivo. FASEB J 2019; 33:9100-9115. [PMID: 31050917 DOI: 10.1096/fj.201802575rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Postmenopausal osteoporosis is the most common form of primary osteoporosis, and the incidence of the condition is rapidly increasing. In consideration of the limitations of current therapeutic options for the treatment of postmenopausal osteoporosis, there is an urgent need to develop safer alternatives. Anacardic acid, a natural phenolic acid compound extracted from cashew nut shell, possesses potent antitumor and anti-inflammatory effects and inhibits NF-κB signaling. However, its effect on osteoclasts remains unknown. This study reports the first evidence for the antiosteoclastogenic and antiresorptive effects of anacardic acid on bone marrow-derived macrophage-derived osteoclasts. Mechanistically, anacardic acid disrupts the phosphorylation of TGF-β activated kinase 1 and subsequently suppresses multiple receptor activator of NF-κB ligand-induced signaling cascades, ultimately inhibiting the induction and activation of the crucial osteoclast transcriptional factor nuclear factor of activated T-cell cytoplasmic 1. Consistent with cellular results in vitro, anacardic acid treatment improves bone density in the murine model of ovariectomy-induced bone loss. Taken together, our study provides promising evidence for the therapeutic application of anacardic acid as a new potential pharmacological treatment for osteoporosis.-Zhao, K., Jia, Y., Peng, J., Pang, C., Zhang, T., Han, W., Jiang, J., Lu, X., Zhu, J., Qian, Y. Anacardic acid inhibits RANKL-induced osteoclastogenesis in vitro and prevents ovariectomy-induced bone loss in vivo.
Collapse
Affiliation(s)
- Kangxian Zhao
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yewei Jia
- Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Jiaxuan Peng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China; and
| | - Cong Pang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China; and
| | - Tan Zhang
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Weiqi Han
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Jiawei Jiang
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.,Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Xuanyuan Lu
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Jiling Zhu
- Department of Clinical Medicine, Medical College of Shaoxing University, Shaoxing, China
| | - Yu Qian
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China; and
| |
Collapse
|
21
|
Yang GH, Zhang C, Wang N, Meng Y, Wang YS. Anacardic acid suppresses fibroblast-like synoviocyte proliferation and invasion and ameliorates collagen-induced arthritis in a mouse model. Cytokine 2018; 111:350-356. [PMID: 30273785 DOI: 10.1016/j.cyto.2018.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/01/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Anacardic acid, which is abundant in nutshell of Anacardium occidentale, has multiple pharmacological activities. In this study, we examined the therapeutic potential of anacardic acid in treating rheumatoid arthritis (RA). We explored the effects of anacardic acid on collagen-induced arthritis (CIA) in mice and on the proliferation and invasion of RA fibroblast-like synoviocytes (RA-FLSs). The underlying molecular mechanism was investigated. Anacardic acid treatment markedly suppressed paw swelling, joint destruction, and arthritis scores in CIA mice. The serum levels of tumor necrosis factor alpha (TNF- α) and interleutkin-1beta (IL- 1β) were significantly lowered by anacardic acid. In vitro assays demonstrated that anacardic acid impaired the proliferation and invasion abilities of RA-FLSs in the presence of TNF- α or IL- 1β. Western blot analysis revealed the reduction of Akt protein expression and phoshporylation in RA-FLSs by anacardic acid. However, the mRNA level of Akt remained unchanged. Anacardic acid treatment significantly increased the expression of miR-633 in RA-FLSs. Akt was identified as a novel target of miR-633. Overexpression of miR-633 significantly inhibited the proliferation and invasion of RA-FLSs, which was rescued by enforced expression of Akt. Depletion of miR-633 prevented anacardic acid-mediated suppression of proliferation and invasion of RA-FLSs, which was accompanied by increased expression of Akt protein. In conclusion, anacardic acid may serve as a promising agent in the treatment of RA.
Collapse
MESH Headings
- Anacardic Acids/pharmacology
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Collagen/pharmacology
- Disease Models, Animal
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Interleukin-1beta/metabolism
- Mice
- Mice, Inbred DBA
- MicroRNAs/metabolism
- Neoplasm Invasiveness/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Synoviocytes/drug effects
- Synoviocytes/metabolism
- Synoviocytes/pathology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Guo-Hui Yang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi Zhang
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Wang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Meng
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi-Sheng Wang
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
22
|
Chanda A, Sarkar A, Bonni S. The SUMO System and TGFβ Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers (Basel) 2018; 10:cancers10080264. [PMID: 30096838 PMCID: PMC6115711 DOI: 10.3390/cancers10080264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO), or SUMOylation, can regulate the stability, subcellular localization or interactome of a protein substrate with key consequences for cellular processes including the Epithelial-Mesenchymal Transition (EMT). The secreted protein Transforming Growth Factor beta (TGFβ) is a potent inducer of EMT in development and homeostasis. Importantly, the ability of TGFβ to induce EMT has been implicated in promoting cancer invasion and metastasis, resistance to chemo/radio therapy, and maintenance of cancer stem cells. Interestingly, TGFβ-induced EMT and the SUMO system intersect with important implications for cancer formation and progression, and novel therapeutics identification.
Collapse
Affiliation(s)
- Ayan Chanda
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Anusi Sarkar
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
23
|
Nag M, Wang Y, De Paris K, E Fogle J. Histone Modulation Blocks Treg-Induced Foxp3 Binding to the IL-2 Promoter of Virus-Specific CD8⁺ T Cells from Feline Immunodeficiency Virus-Infected Cats. Viruses 2018; 10:v10060287. [PMID: 29861472 PMCID: PMC6024775 DOI: 10.3390/v10060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/05/2022] Open
Abstract
CD8+ T cells are critical for controlling HIV infection. During the chronic phase of lentiviral infection, CD8+ T cells lose their proliferative capacity and exhibit impaired antiviral function. This loss of CD8+ T cell function is due, in part, to CD4+CD25+ T regulatory (Treg) cell-mediated suppression. Our research group has demonstrated that lentivirus-activated CD4+CD25+ Treg cells induce the repressive transcription factor forkhead box P3 (Foxp3) in autologous CD8+ T cells following co-culture. We have recently reported that Treg-induced Foxp3 binds the interleukin-2 (IL-2), interferon-γ (IFN- γ), and tumor necrosis factor-α (TNF-α) promoters in virus-specific CD8+ T cells. These data suggest an important role of Foxp3-mediated CD8+ T cell dysfunction in lentiviral infection. To elucidate the mechanism of this suppression, we previously reported that decreased methylation facilitates Foxp3 binding in mitogen-activated CD8+ T cells from feline immunodeficiency virus (FIV)-infected cats. We demonstrated the reduced binding of Foxp3 to the IL-2 promoter by increasing methylation of CD8+ T cells. In the studies presented here, we ask if another form of epigenetic modulation might alleviate Foxp3-mediated suppression in CD8+ T cells. We hypothesized that decreasing histone acetylation in virus-specific CD8+ T cells would decrease Treg-induced Foxp3 binding to the IL-2 promoter. Indeed, using anacardic acid (AA), a known histone acetyl transferase (HAT) inhibitor, we demonstrate a reduction in Foxp3 binding to the IL-2 promoter in virus-specific CD8+ T cells co-cultured with autologous Treg cells. These data identify a novel mechanism of Foxp3-mediated CD8+ T cell dysfunction during lentiviral infection.
Collapse
Affiliation(s)
- Mukta Nag
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Yan Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
24
|
Dhanyakrishnan R, Sunitha MC, Prakash Kumar B, Sandya S, Nevin KG. Morphological and molecular effects of phenolic extract from coconut kernel on human prostate cancer cell growth in vitro. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2018. [DOI: 10.3233/mnm-17174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Coconut is an indispensable ingredient in the diet and traditional medicine of individuals belonging to the Indian subcontinent. Coconut is of high nutritional value owing to the presence of all essential dietary components, viz, saturated fatty acids, arginine rich proteins, fibre and minor components like vitamin E, phytosterols, polyphenols and flavonoids. The polyphenolic content present in coconut kernel is of particular interest due to their numerous reported beneficial effects such as reduction of oxidative stress, combating cancer and in modulating anti-inflammatory pathways. Therefore, in the present study the cytotoxic effect of the polyphenol rich fraction from coconut kernel (CKf) was evaluated in human prostate cancer (DU-145) cells. Individual components present in CKf was determined by LC-MS analysis. It showed that CKf contained several bioactive molecules which have potential anticancer activity viz, coumaric acid, myristin, chlorogenic acid and triterpenoid methyl esters. The cytotoxic effect of CKf at various concentrations (2.5–20 μg/ml) on DU-145 was assessed using MTT assay, AO/EB staining, mitochondrial superoxide/ROS production and changes in intracellular calcium levels, 24 hrs post treatment. Changes in the cell morphology and nucleus were observed using Scanning Electron Microscopy and Confocal microscopy. ROS and mitochondrial superoxide levels was evaluated using DCHF-DA and MitoSOX staining respectively. The impact of ROS on changes in cellular calcium levels was also studied using Fura-2-AM. LDH leakage from C K f treated and control cells were observed colorimetrically. Further, PCR analysis was done to detect changes in mitochondria associated apoptotic gene expression. It was also observed that C K f treatment increased the expression of pro-apoptotic genes - Bax, Bid, Bak and p53 in a dose-dependent manner. Based on the above results, it can be concluded that C K f may be used as a part of a dietary regime for controlling the progression of prostate cancer.
Collapse
Affiliation(s)
| | - Mary Chacko Sunitha
- School of Biosciences, Mahatma Gandhi University, PD Hills PO, Kottayam, Kerala, India
| | | | - Sukumaran Sandya
- Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore
- Spectroscopy/Analytical/Test Facility, Entrepreneurship Centre, Society for Innovation and Development (SID), Indian Institute of Science, Bangalore
| | | |
Collapse
|
25
|
Park M, Upton D, Blackmon M, Dixon V, Craver S, Neal D, Perkins D. Anacardic acid inhibits pancreatic cancer cell growth, and potentiates chemotherapeutic effect by Chmp1A - ATM - p53 signaling pathway. Altern Ther Health Med 2018; 18:71. [PMID: 29463243 PMCID: PMC5819688 DOI: 10.1186/s12906-018-2139-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pancreatic cancer is one of the leading causes of cancer related death and its incidence has risen steadily. Although anticancer drugs have been developed based on the new molecular findings, the drugs have produced unsatisfactory results due to toxicity and resistance. Thus, a complementary therapeutic intervention is urgently needed for pancreatic cancer patients. METHODS The aim of this study was to assess the potential therapeutic effect of Anacardic acid on pancreatic cancer in vitro and elucidate its underlying mechanisms. Human pancreatic cancer cells were treated with Anacardic acid and assessed for the cytotoxic effect using MTT and spheroid formation assays. Using the same methods, the synergy between Anacardic acid and 5-Fluorouracil or Gemcitabine was determined. To elucidate the underlying molecular mechanisms, Western blot analysis and immunocytochemistry were performed on cancer cells treated with Anacardic acid alone or in combination with 5-Fluorouracil or Gemcitabine. Chromatin Modifying Protein 1A (Chmp1A), Ataxia Telangiectasia Mutated (ATM), and p53 were the primary signaling molecules examined. In addition, Chmp1A was silenced with shRNA to examine the necessity of Chmp1A for the anticancer effect of Anacardic acid, 5-Fluorouracil, or Gemcitabine. RESULTS Anacardic acid induced an anticancer effect in pancreatic cancer cell lines in a dose dependent manner, and increased the cytotoxicity of 5-Fluorouracil or Gemcitabine in MTT cell viability assays. In spheroid formation assays, spheroids formed were smaller in size and in number upon Anacardic acid treatment compared to control. Mechanistically, Anacardic acid exerted its anticancer activity via the activation of Chmp1A, ATM, and p53. Interestingly, 5-Fluorouracil and Gemcitabine also induced an increase in Chmp1A protein level, suggesting that Chmp1A might mediate the cytotoxic action of chemotherapeutics. Silencing experiments indicate that Chmp1A is required for the action of Anacardic acid, but not for 5-Fluorouracil or Gemcitabine. CONCLUSIONS Our data suggests that Anacardic Acid might be a promising complementary supplement to slow the initiation or progression of pancreatic cancer.
Collapse
|
26
|
Lim W, Park S, Bazer FW, Song G. Naringenin-Induced Apoptotic Cell Death in Prostate Cancer Cells Is Mediated via the PI3K/AKT and MAPK Signaling Pathways. J Cell Biochem 2017; 118:1118-1131. [PMID: 27606834 DOI: 10.1002/jcb.25729] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most common cancer in men and the second most common cause of cancer-related deaths in men. Although, various drugs targeting the androgen receptor are normally used, the patients frequently undergo recurrence of the disease. To overcome these limitations, natural compounds have been researched for evidence that they suppress progression and metastasis of various cancer cells. In the present study, we investigated effects of naringenin, a natural anti-oxidant flavonoid derived from citrus, on prostate cancer cells (PC3 and LNCaP). Results of present study with PC3 and LNCaP cells revealed that naringenin inhibited proliferation and migration, while inducing apoptosis and ROS production by those cells. In addition, naringenin-induced loss of mitochondrial membrane potential and increased Bax and decreased Bcl-2 proteins in PC3 cells, but not LNCaP cells. In a dose-dependent manner, naringenin decreased phosphorylation of ERK1/2, P70S6K, S6, and P38 in PC3 cells, and reduced phosphorylation of ERK1/2, P53, P38, and JNK proteins in LNCaP cells. However, naringenin activated phosphorylation of AKT in both PC3 and LNCaP cells. Then, targeted signaling proteins associated with viability of PC3 and LNCaP cells were analyzed using pharmacological inhibitors of AKT and ERK1/2 cell signaling pathways. Moreover, we compared the apoptotic effects of naringenin and paclitaxel alone and in combination to find that naringenin enhanced the efficiency of paclitaxel to suppress progression of prostate cancer cell lines. Collectively, these results indicate that naringenin is a potential chemotherapeutic agent for treatment of prostate cancer. J. Cell. Biochem. 118: 1118-1131, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biotechnology and Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sunwoo Park
- Department of Biotechnology and Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, 77843-2471, Texas
| | - Gwonhwa Song
- Department of Biotechnology and Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
27
|
Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae. Apoptosis 2016; 22:463-474. [DOI: 10.1007/s10495-016-1330-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Combinatorial treatment with anacardic acid followed by TRAIL augments induction of apoptosis in TRAIL resistant cancer cells by the regulation of p53, MAPK and NFκβ pathways. Apoptosis 2016; 21:578-93. [PMID: 26921178 DOI: 10.1007/s10495-016-1223-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TRAIL, an apoptosis inducing cytokine currently in phase II clinical trial, was investigated for its capability to induce apoptosis in six different human tumor cell lines out of which three cell lines showed resistance to TRAIL induced apoptosis. To investigate whether Anacardic acid (A1) an active component of Anacardium occidentale can sensitize the resistant cell lines to TRAIL induced apoptosis, we treated the resistant cells with suboptimal concentration of A1 and showed that it is a potent enhancer of TRAIL induced apoptosis which up-regulates the expression of both DR4 and DR5 receptors, which has been observed in the cellular, protein and mRNA levels. The death receptors upregulation consequent to A1 treatment was corroborated by the activation of p53 as well as phosphorylation of p38 and JNK MAP kinases and concomitant inactivation of NFκβ and ERK signaling cascades. Also, A1 modulated the expression of key apoptotic players like Bax, Bcl-2 and CAD along with the abatement of tumor angiogenesis in vivo in EAT mouse model. Thus, post A1 treatment the TRAIL resistant cells turned into TRAIL sensitive cells. Hence our results demonstrate that A1 can synergize TRAIL induced apoptosis through the upregulation of death receptors and downregulation of anti-apoptotic proteins in cancer context.
Collapse
|
29
|
Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics 2016; 8:98. [PMID: 27651838 PMCID: PMC5025578 DOI: 10.1186/s13148-016-0264-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 01/24/2023] Open
Abstract
Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.
Collapse
Affiliation(s)
- Inês Graça
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Eva Pereira-Silva
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Simon J Crabb
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
30
|
Maeda T, Nakanishi Y, Hirotani Y, Fuchinoue F, Enomoto K, Sakurai K, Amano S, Nemoto N. Immunohistochemical co-expression status of cytokeratin 5/6, androgen receptor, and p53 as prognostic factors of adjuvant chemotherapy for triple negative breast cancer. Med Mol Morphol 2015; 49:11-21. [PMID: 26009308 DOI: 10.1007/s00795-015-0109-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022]
Abstract
Triple negative breast cancer (TNBC) is immunohistochemically characterised by the lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor type 2 (HER2). TNBC is known for its poor prognosis and high recurrence probability. There is no effective targeted treatment for TNBC, but only adjuvant chemotherapies. There are two TNBC subtypes, basal-like and non-basal-like, which are defined based on positive cytokeratin (CK) 5/6 and/or epidermal growth factor receptor (EGFR) expression. In particular, CK5/6 expression is reported to correlate with TNBC recurrence. TNBC lacks ER-α expression, but some TNBCs are known to express the androgen receptor (AR). Moreover, although p53 accumulation is detected in various malignant tumors, its influence on adjuvant chemotherapy for patients with TNBC remains unclear. The aim of this study was to assess the combined immunohistochemical expression of CK 5/6, AR, and p53 as a potential prognostic marker of adjuvant chemotherapy for patients with TNBC. The expression of CK5/6, AR, and p53 in formalin-fixed and paraffin-embedded (FFPE) surgical sections from 52 patients with TNBC was analysed by immunohistochemistry (IHC) and the co-expression patterns in individual cells were investigated by immunofluorescent (IF) staining. Low AR expression was correlated with high clinical stage (P < 0.05) and low nuclear grade (P < 0.05). The expression of CK5/6 and p53 did not correlate with clinicopathological features. Patients who needed adjuvant chemotherapy presented the worst prognosis. In particular, when the IHC expression pattern was CK5/6 (-), AR (-), and p53 (+), the disease free survival (DFS) and overall survival (OS) were the worst. On the other hand, patients with AR (+) and p53 (-) TNBC presented a good prognosis. The analysis of the co-expression status of these three markers showed that no cells presented both AR and CK5/6 expression. Furthermore, TP53 mRNA expression was higher in patients with AR-negative TNBC (P < 0.05) and in patients with the worst prognosis (P < 0.05) than in the other patients. These results suggested that, in patients with CK5/6-negative TNBC, AR expression correlated with good prognosis, but p53 accumulation correlated with poor prognosis. The present IHC markers allowed us to predict the post-surgery prognosis of patients with TNBC. In conclusion, TNBCs are heterogeneous. Patients with the CK5/6 (-), AR (-), and p53 (+) TNBC subtype, evaluated by IHC, presented the worst prognosis. These IHC markers will be helpful to follow patients with TNBC.
Collapse
Affiliation(s)
- Tetsuyo Maeda
- Department of Breast Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yoko Nakanishi
- Department of Pathology, Nihon University School of Medicine, 30-1 Ohyaguchi-kamimachi, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Yukari Hirotani
- Department of Pathology, Nihon University School of Medicine, 30-1 Ohyaguchi-kamimachi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Fumi Fuchinoue
- Department of Pathology, Nihon University School of Medicine, 30-1 Ohyaguchi-kamimachi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Katsuhisa Enomoto
- Department of Breast Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kenichi Sakurai
- Department of Breast Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Sadao Amano
- Department of Breast Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Norimichi Nemoto
- Department of Pathology, Nihon University School of Medicine, 30-1 Ohyaguchi-kamimachi, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
31
|
Potential biological applications of bio-based anacardic acids and their derivatives. Int J Mol Sci 2015; 16:8569-90. [PMID: 25894225 PMCID: PMC4425097 DOI: 10.3390/ijms16048569] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/05/2023] Open
Abstract
Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30-35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported.
Collapse
|
32
|
Leite ADS, Dantas AF, Oliveira GLDS, Gomes Júnior AL, de Lima SG, Citó AMDGL, de Freitas RM, Melo-Cavalcante AADC, Dantas Lopes JA. Evaluation of toxic, cytotoxic, mutagenic, and antimutagenic activities of natural and technical cashew nut shell liquids using the Allium cepa and Artemia salina bioassays. BIOMED RESEARCH INTERNATIONAL 2015; 2015:626835. [PMID: 25861638 PMCID: PMC4377390 DOI: 10.1155/2015/626835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 01/11/2023]
Abstract
The cashew nut releases a substance that is known as cashew nut shell liquid (CNSL). There are both natural (iCNSL) and technical (tCNSL) cashew nut shell liquids. This study used an Artemia salina bioassay to evaluate the toxic effects of iCNSL and tCNSL cashew nut shell liquids. It also evaluated the toxicity, cytotoxicity, and mutagenicity of CNSL and its effects on the damage induced by copper sulfate (CuSO4·5H2O) on the meristems' root of Allium cepa. Effects of the damage induced by CuSO4·5H2O were evaluated before (pre-), during (co-), and after (post-) treatments. The iCNSL contained 94.5% anacardic acid, and the tCNSL contained 91.3% cardanol. The liquids were toxic to A. salina. Toxicity, cytotoxicity, and mutagenicity were observed with iCNSL compared with the negative control. Similarly, iCNSL failed to inhibit the toxicity and cytotoxicity of CuSO4·5H2O. The tCNSL was not toxic, cytotoxic, or mutagenic in any of the concentrations. However, the lowest iCNSL concentrations and all of the tCNSL concentrations had preventive, antimutagenic, and reparative effects on micronuclei and on chromosomal aberrations in the A. cepa. Therefore, protective, modulating, and reparative effects may be observed in the A. cepa, depending on the concentration and type of CNSL used.
Collapse
Affiliation(s)
- Aracelli de Sousa Leite
- Laboratório de Pesquisa em Genética Toxicológica de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Piauí, 6409-550 Teresina, PI, Brazil
- Programa de Pós-Graduação em Biotecnologia (RENORBIO) da Universidade Federal do Piauí, 6409-550 Teresina, PI, Brazil
| | - Alisson Ferreira Dantas
- Programa de Pós-Graduação em Biologia Animal, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - George Laylson da Silva Oliveira
- Laboratório de Pesquisa em Neuroquímica Experimental do Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Piauí, 6409-550 Teresina, PI, Brazil
| | - Antonio L. Gomes Júnior
- Laboratório de Pesquisa em Genética Toxicológica de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Piauí, 6409-550 Teresina, PI, Brazil
| | - Sidney Gonçalo de Lima
- Departamento de Química, CCN, Universidade Federal do Piauí, 6409-550 Teresina, PI, Brazil
| | | | - Rivelilson M. de Freitas
- Laboratório de Pesquisa em Neuroquímica Experimental do Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Piauí, 6409-550 Teresina, PI, Brazil
| | - Ana Amélia de C. Melo-Cavalcante
- Laboratório de Pesquisa em Genética Toxicológica de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Piauí, 6409-550 Teresina, PI, Brazil
- Programa de Pós-Graduação em Biotecnologia (RENORBIO) da Universidade Federal do Piauí, 6409-550 Teresina, PI, Brazil
| | - José Arimateia Dantas Lopes
- Programa de Pós-Graduação em Biotecnologia (RENORBIO) da Universidade Federal do Piauí, 6409-550 Teresina, PI, Brazil
- Laboratório de Pesquisa em Neuroquímica Experimental do Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Piauí, 6409-550 Teresina, PI, Brazil
| |
Collapse
|
33
|
Dietary polyphenols in prevention and treatment of prostate cancer. Int J Mol Sci 2015; 16:3350-76. [PMID: 25654230 PMCID: PMC4346900 DOI: 10.3390/ijms16023350] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the most prevalent disease affecting males in many Western countries, with an estimated 29,480 deaths in 2014 in the US alone. Incidence rates for prostate cancer deaths have been decreasing since the early 1990s in men of all races/ethnicities, though they remain about 60% higher in African Americans than in any other group. The relationship between dietary polyphenols and the prevention of prostate cancer has been examined previously. Although results are sometimes inconsistent and variable, there is a general agreement that polyphenols hold great promise for the future management of prostate cancer. Various dietary components, including polyphenols, have been shown to possess anti-cancer properties. Generally considered as non-toxic, dietary polyphenols act as key modulators of signaling pathways and are therefore considered ideal chemopreventive agents. Besides possessing various anti-tumor properties, dietary polyphenols also contribute to epigenetic changes associated with the fate of cancer cells and have emerged as potential drugs for therapeutic intervention. Polyphenols have also been shown to affect post-translational modifications and microRNA expressions. This article provides a systematic review of the health benefits of selected dietary polyphenols in prostate cancer, especially focusing on the subclasses of polyphenols, which have a great effect on disease prevention and treatment.
Collapse
|
34
|
Ji W, Ma X, Xie H, Chen L, Wang X, Zhao H, Huang L. Molecularly imprinted polymers with synthetic dummy template for simultaneously selective removal and enrichment of ginkgolic acids from Ginkgo biloba L. leaves extracts. J Chromatogr A 2014; 1368:44-51. [DOI: 10.1016/j.chroma.2014.09.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 01/23/2023]
|
35
|
Falasca M, Casari I, Maffucci T. Cancer chemoprevention with nuts. J Natl Cancer Inst 2014; 106:dju238. [PMID: 25210199 DOI: 10.1093/jnci/dju238] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It is well established that increased nut consumption is associated with a reduced risk of major chronic diseases, such as cardiovascular disease and type 2 diabetes mellitus. On the other hand, the association between nut consumption and cancer mortality is less clear. Recent studies have suggested that nut consumption is associated with reduced cancer mortality. This evidence reinforces the interest to investigate the chemopreventive properties of nuts, and it raises questions about the specific cancer type(s) and setting that can be more affected by nut consumption, as well as the cellular mechanisms involved in this protective effect. Here we discuss recent studies on the association of nut consumption and cancer, and we propose specific cellular mechanisms by which nut components can affect cancer progression.
Collapse
Affiliation(s)
- Marco Falasca
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Inositide Signalling Group.
| | - Ilaria Casari
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Inositide Signalling Group
| | - Tania Maffucci
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Inositide Signalling Group
| |
Collapse
|
36
|
Yiannakopoulou E. Targeting epigenetic mechanisms and microRNAs by aspirin and other non steroidal anti-inflammatory agents - implications for cancer treatment and chemoprevention. Cell Oncol (Dordr) 2014; 37:167-78. [DOI: 10.1007/s13402-014-0175-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 12/21/2022] Open
|
37
|
Xiu YL, Zhao Y, Gou WF, Chen S, Takano Y, Zheng HC. Anacardic acid enhances the proliferation of human ovarian cancer cells. PLoS One 2014; 9:e99361. [PMID: 24921663 PMCID: PMC4055655 DOI: 10.1371/journal.pone.0099361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/14/2014] [Indexed: 12/28/2022] Open
Abstract
Background Anacardic acid (AA) is a mixture of 2-hydroxy-6-alkylbenzoic acid homologs. Certain antitumor activities of AA have been reported in a variety of cancers. However, the function of AA in ovarian cancer, to date, has remained unknown. Methods Ovarian cancer cell lines were exposed to AA, after which cell proliferation, apoptosis, invasion and migration assays were performed. Phalloidin staining was used to observe lamellipodia formation. Reverse transcription polymerase chain reaction (RT-PCR) and western blotting were used to assess the mRNA and protein expression levels of Phosphatidylinositol 3-kinase (PI3K), vascular endothelial growth factor (VEGF) and caspase 3. Results Our results showed that AA promotes ovarian cancer cell proliferation, inhibits late apoptosis, and induces cell migration and invasion, as well as lamellipodia formation. AA exposure significantly up-regulated PI3K and VEGF mRNA and protein expression, while, in contrast, it down-regulated caspase 3 mRNA and protein expression in comparison to untreated control cells. Conclusion Taken together, our results demonstrate for the first time that AA may potentiate the proliferation, invasion, metastasis and lamellipodia formation in ovarian cancer cell lines via PI3K, VEGF and caspase 3 pathways.
Collapse
Affiliation(s)
- Yin-Ling Xiu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Wen-Feng Gou
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang, P.R. China
| | - Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Yasuo Takano
- Clinical Cancer Institute, Kanagawa Cancer Center, Yokohama, Japan
| | - Hua-Chuan Zheng
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang, P.R. China
- * E-mail:
| |
Collapse
|
38
|
The ROS/SUMO axis contributes to the response of acute myeloid leukemia cells to chemotherapeutic drugs. Cell Rep 2014; 7:1815-23. [PMID: 24910433 DOI: 10.1016/j.celrep.2014.05.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/07/2014] [Accepted: 05/08/2014] [Indexed: 01/11/2023] Open
Abstract
Chemotherapeutic drugs used in the treatment of acute myeloid leukemias (AMLs) are thought to induce cancer cell death through the generation of DNA double-strand breaks. Here, we report that one of their early effects is the loss of conjugation of the ubiquitin-like protein SUMO from its targets via reactive oxygen species (ROS)-dependent inhibition of the SUMO-conjugating enzymes. Desumoylation regulates the expression of specific genes, such as the proapoptotic gene DDIT3, and helps induce apoptosis in chemosensitive AMLs. In contrast, chemotherapeutics do not activate the ROS/SUMO axis in chemoresistant cells. However, pro-oxidants or inhibition of the SUMO pathway by anacardic acid restores DDIT3 expression and apoptosis in chemoresistant cell lines and patient samples, including leukemic stem cells. Finally, inhibition of the SUMO pathway decreases tumor growth in mice xenografted with AML cells. Thus, targeting the ROS/SUMO axis might constitute a therapeutic strategy for AML patients resistant to conventional chemotherapies.
Collapse
|
39
|
Huang H, Hua X, Liu N, Li X, Liu S, Chen X, Zhao C, Lan X, Yang C, Dou QP, Liu J. Anacardic acid induces cell apoptosis associated with induction of ATF4-dependent endoplasmic reticulum stress. Toxicol Lett 2014; 228:170-8. [PMID: 24853302 DOI: 10.1016/j.toxlet.2014.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Anacardic acid (6-pentadecylsalicylic acid, AA), a natural compound isolated from the traditional medicine Amphipterygium adstringens, has been reported to possess antitumor activities. However, its molecular targets have not been thoroughly studied. Here, we report that AA is a potent inducer of endoplasmic reticulum (ER) stress, leading to apoptosis in hepatoma HepG2 and myeloma U266 cells. Induction of ER stress by AA was supported by a dose- and time-dependent increase in expression of the ER signaling downstream molecules, such as GRP78/BiP, phosphorylated eIF2α, ATF4 and CHOP in both HepG2 and U266 cell lines. Blockage of ATF4 expression by siRNA partially inhibited, while knockdown of CHOP expression by siRNA slightly increased AA-induced cell death in these cells. In addition, AA suppressed HepG2 xenograft tumor growth, associated with increased ER stress in vivo. These results suggest that AA induces tumor cell apoptosis associated with ATF4-dependent ER stress.
Collapse
Affiliation(s)
- Hongbiao Huang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong 510182, People's Republic of China
| | - Xianliang Hua
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong 510182, People's Republic of China
| | - Ningning Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong 510182, People's Republic of China; Guangzhou Research Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, People's Republic of China
| | - Xiaofen Li
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong 510182, People's Republic of China
| | - Shouting Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong 510182, People's Republic of China
| | - Xin Chen
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong 510182, People's Republic of China
| | - Chong Zhao
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong 510182, People's Republic of China
| | - Xiaoying Lan
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong 510182, People's Republic of China
| | - Changshan Yang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong 510182, People's Republic of China
| | - Q Ping Dou
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong 510182, People's Republic of China; The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI 48201-2013, USA
| | - Jinbao Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong 510182, People's Republic of China.
| |
Collapse
|
40
|
Li R, Shen Y, Zhang X, Ma M, Chen B, van Beek TA. Efficient purification of ginkgolic acids from Ginkgo biloba leaves by selective adsorption on Fe3O4 magnetic nanoparticles. JOURNAL OF NATURAL PRODUCTS 2014; 77:571-575. [PMID: 24484321 DOI: 10.1021/np400821r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ginkgolic acids (GAs; anacardic acids; 6-alkylsalicylic acids) are both unwanted constituents in standardized Ginkgo biloba (Ginkgo) extracts and desirable constituents for pharmacological assays. Thus, for the quality control of Ginkgo extracts, the availability of pure GAs is important. In this investigation, inexpensive and easily prepared Fe3O4 magnetic nanoparticles (MNPs) in methanol were used to selectively adsorb GAs from crude petroleum ether extracts of Ginkgo leaves in the presence of various lipids including other alkylphenols (cardanols and cardols). The adsorption capacity of the MNPs is high, at 4-5% (w/w). The moiety responsible for the adsorption is the salicylic acid group, which binds strongly to Fe(III). Desorption with acidified methanol gave an extract with a GA content of 73%. This could be further separated by preparative HPLC on a C8 column. In total, eight different GAs were captured by MNPs. The MNP adsorption step can replace more traditional column chromatography and liquid-liquid extraction steps and is superior in terms of solvent consumption, selectivity, labor, and energy consumption. MNPs might become an efficient separation technique for selected high-value phytochemicals that contain a salicylic acid moiety.
Collapse
Affiliation(s)
- Renkai Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University , Changsha 410081, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
High-throughput screen of natural product libraries for hsp90 inhibitors. BIOLOGY 2014; 3:101-38. [PMID: 24833337 PMCID: PMC4009755 DOI: 10.3390/biology3010101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Hsp90 has become the target of intensive investigation, as inhibition of its function has the ability to simultaneously incapacitate proteins that function in pathways that represent the six hallmarks of cancer. While a number of Hsp90 inhibitors have made it into clinical trials, a number of short-comings have been noted, such that the search continues for novel Hsp90 inhibitors with superior pharmacological properties. To identify new potential Hsp90 inhibitors, we have utilized a high-throughput assay based on measuring Hsp90-dependent refolding of thermally denatured luciferase to screen natural compound libraries. Over 4,000 compounds were screen with over 100 hits. Data mining of the literature indicated that 51 compounds had physiological effects that Hsp90 inhibitors also exhibit, and/or the ability to downregulate the expression levels of Hsp90-dependent proteins. Of these 51 compounds, seven were previously characterized as Hsp90 inhibitors. Four compounds, anthothecol, garcinol, piplartine, and rottlerin, were further characterized, and the ability of these compounds to inhibit the refolding of luciferase, and reduce the rate of growth of MCF7 breast cancer cells, correlated with their ability to suppress the Hsp90-dependent maturation of the heme-regulated eIF2α kinase, and deplete cultured cells of Hsp90-dependent client proteins. Thus, this screen has identified an additional 44 compounds with known beneficial pharmacological properties, but with unknown mechanisms of action as possible new inhibitors of the Hsp90 chaperone machine.
Collapse
|
42
|
Expression of pituitary tumor transforming gene (PTTG) in human pituitary macroadenomas. Tumour Biol 2013; 34:1559-67. [DOI: 10.1007/s13277-013-0686-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/03/2013] [Indexed: 11/27/2022] Open
|