1
|
Guerrero-Gonzalez JM, Kirk GR, Birn R, Bigler ED, Bowen K, Broman AT, Rosario BL, Butt W, Beers SR, Bell MJ, Alexander AL, Ferrazzano PA. Multi-modal MRI of hippocampal morphometry and connectivity after pediatric severe TBI. Brain Imaging Behav 2024; 18:159-170. [PMID: 37955810 PMCID: PMC10844146 DOI: 10.1007/s11682-023-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
This investigation explores memory performance using the California Verbal Learning Test in relation to morphometric and connectivity measures of the memory network in severe traumatic brain injury. Twenty-two adolescents with severe traumatic brain injury were recruited for multimodal MRI scanning 1-2 years post-injury at 13 participating sites. Analyses included hippocampal volume derived from anatomical T1-weighted imaging, fornix white matter microstructure from diffusion tensor imaging, and hippocampal resting-state functional magnetic resonance imaging connectivity as well as diffusion-based structural connectivity. A typically developing control cohort of forty-nine age-matched children also underwent scanning and neurocognitive assessment. Results showed hippocampus volume was decreased in traumatic brain injury with respect to controls. Further, hippocampal volume loss was associated with worse performance on memory and learning in traumatic brain injury subjects. Similarly, hippocampal fornix fractional anisotropy was reduced in traumatic brain injury with respect to controls, while decreased fractional anisotropy in the hippocampal fornix also was associated with worse performance on memory and learning in traumatic brain injury subjects. Additionally, reduced structural connectivity of left hippocampus to thalamus and calcarine sulcus was associated with memory and learning in traumatic brain injury subjects. Functional connectivity in the left hippocampal network was also associated with memory and learning in traumatic brain injury subjects. These regional findings from a multi-modal neuroimaging approach should not only be useful for gaining valuable insight into traumatic brain injury induced memory and learning disfunction, but may also be informative for monitoring injury progression, recovery, and for developing rehabilitation as well as therapy strategies.
Collapse
Affiliation(s)
- Jose M Guerrero-Gonzalez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA.
| | - Gregory R Kirk
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - Rasmus Birn
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin D Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
- Department of Neurology & Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | | | - Aimee T Broman
- Department of Biostatistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Bedda L Rosario
- Department of Epidemiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Warwick Butt
- Department of Critical Care, Faculty of Medicine, Melbourne University, Melbourne, Australia
| | - Sue R Beers
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J Bell
- Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - Peter A Ferrazzano
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| |
Collapse
|
2
|
Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol Rev 2023; 33:5-41. [PMID: 33656702 DOI: 10.1007/s11065-020-09474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Region of interest (ROI) volumetric assessment has become a standard technique in quantitative neuroimaging. ROI volume is thought to represent a coarse proxy for making inferences about the structural integrity of a brain region when compared to normative values representative of a healthy sample, adjusted for age and various demographic factors. This review focuses on structural volumetric analyses that have been performed in the study of neuropathological effects from mild traumatic brain injury (mTBI) in relation to neuropsychological outcome. From a ROI perspective, the probable candidate structures that are most likely affected in mTBI represent the target regions covered in this review. These include the corpus callosum, cingulate, thalamus, pituitary-hypothalamic area, basal ganglia, amygdala, and hippocampus and associated structures including the fornix and mammillary bodies, as well as whole brain and cerebral cortex along with the cerebellum. Ventricular volumetrics are also reviewed as an indirect assessment of parenchymal change in response to injury. This review demonstrates the potential role and limitations of examining structural changes in the ROIs mentioned above in relation to neuropsychological outcome. There is also discussion and review of the role that post-traumatic stress disorder (PTSD) may play in structural outcome in mTBI. As emphasized in the conclusions, structural volumetric findings in mTBI are likely just a single facet of what should be a multimodality approach to image analysis in mTBI, with an emphasis on how the injury damages or disrupts neural network integrity. The review provides an historical context to quantitative neuroimaging in neuropsychology along with commentary about future directions for volumetric neuroimaging research in mTBI.
Collapse
|
3
|
Sefcikova V, Sporrer JK, Juvekar P, Golby A, Samandouras G. Converting sounds to meaning with ventral semantic language networks: integration of interdisciplinary data on brain connectivity, direct electrical stimulation and clinical disconnection syndromes. Brain Struct Funct 2022; 227:1545-1564. [PMID: 35267079 PMCID: PMC9098557 DOI: 10.1007/s00429-021-02438-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Numerous traditional linguistic theories propose that semantic language pathways convert sounds to meaningful concepts, generating interpretations ranging from simple object descriptions to communicating complex, analytical thinking. Although the dual-stream model of Hickok and Poeppel is widely employed, proposing a dorsal stream, mapping speech sounds to articulatory/phonological networks, and a ventral stream, mapping speech sounds to semantic representations, other language models have been proposed. Indeed, despite seemingly congruent models of semantic language pathways, research outputs from varied specialisms contain only partially congruent data, secondary to the diversity of applied disciplines, ranging from fibre dissection, tract tracing, and functional neuroimaging to neuropsychiatry, stroke neurology, and intraoperative direct electrical stimulation. The current review presents a comprehensive, interdisciplinary synthesis of the ventral, semantic connectivity pathways consisting of the uncinate, middle longitudinal, inferior longitudinal, and inferior fronto-occipital fasciculi, with special reference to areas of controversies or consensus. This is achieved by describing, for each tract, historical concept evolution, terminations, lateralisation, and segmentation models. Clinical implications are presented in three forms: (a) functional considerations derived from normal subject investigations, (b) outputs of direct electrical stimulation during awake brain surgery, and (c) results of disconnection syndromes following disease-related lesioning. The current review unifies interpretation of related specialisms and serves as a framework/thinking model for additional research on language data acquisition and integration.
Collapse
Affiliation(s)
- Viktoria Sefcikova
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Juliana K Sporrer
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Parikshit Juvekar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George Samandouras
- UCL Queen Square Institute of Neurology, University College London, London, UK.,Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
4
|
Robles DJ, Dharani A, Rostowsky KA, Chaudhari NN, Ngo V, Zhang F, O'Donnell LJ, Green L, Sheikh-Bahaei N, Chui HC, Irimia A. Older age, male sex, and cerebral microbleeds predict white matter loss after traumatic brain injury. GeroScience 2022; 44:83-102. [PMID: 34704219 PMCID: PMC8811069 DOI: 10.1007/s11357-021-00459-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022] Open
Abstract
Little is known on how mild traumatic brain injury affects white matter based on age at injury, sex, cerebral microbleeds, and time since injury. Here, we study the fractional anisotropy of white matter to study these effects in 109 participants aged 18-77 (46 females, age μ ± σ = 40 ± 17 years) imaged within [Formula: see text] 1 week and [Formula: see text] 6 months post-injury. Age is found to be linearly associated with white matter degradation, likely due not only to injury but also to cumulative effects of other pathologies and to their interactions with injury. Age is associated with mean anisotropy decreases in the corpus callosum, middle longitudinal fasciculi, inferior longitudinal and occipitofrontal fasciculi, and superficial frontal and temporal fasciculi. Over [Formula: see text] 6 months, the mean anisotropies of the corpus callosum, left superficial frontal fasciculi, and left corticospinal tract decrease significantly. Independently of other predictors, age and cerebral microbleeds contribute to anisotropy decrease in the callosal genu. Chronically, the white matter of commissural tracts, left superficial frontal fasciculi, and left corticospinal tract degrade appreciably, independently of other predictors. Our findings suggest that large commissural and intra-hemispheric structures are at high risk for post-traumatic degradation. This study identifies detailed neuroanatomic substrates consistent with brain injury patients' age-dependent deficits in information processing speed, interhemispheric communication, motor coordination, visual acuity, sensory integration, reading speed/comprehension, executive function, personality, and memory. We also identify neuroanatomic features underlying white matter degradation whose severity is associated with the male sex. Future studies should compare our findings to functional measures and other neurodegenerative processes.
Collapse
Affiliation(s)
- David J Robles
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ammar Dharani
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kenneth A Rostowsky
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nikhil N Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Van Ngo
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lauren Green
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nasim Sheikh-Bahaei
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Wilde EA, Hyseni I, Lindsey HM, Faber J, McHenry JM, Bigler ED, Biekman BD, Hollowell LL, McCauley SR, Hunter JV, Ewing-Cobbs L, Aitken ME, MacLeod M, Chu ZD, Noble-Haeusslein LJ, Levin HS. A Preliminary DTI Tractography Study of Developmental Neuroplasticity 5-15 Years After Early Childhood Traumatic Brain Injury. Front Neurol 2022; 12:734055. [PMID: 35002913 PMCID: PMC8732947 DOI: 10.3389/fneur.2021.734055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Plasticity is often implicated as a reparative mechanism when addressing structural and functional brain development in young children following traumatic brain injury (TBI); however, conventional imaging methods may not capture the complexities of post-trauma development. The present study examined the cingulum bundles and perforant pathways using diffusion tensor imaging (DTI) in 21 children and adolescents (ages 10–18 years) 5–15 years after sustaining early childhood TBI in comparison with 19 demographically-matched typically-developing children. Verbal memory and executive functioning were also evaluated and analyzed in relation to DTI metrics. Beyond the expected direction of quantitative DTI metrics in the TBI group, we also found qualitative differences in the streamline density of both pathways generated from DTI tractography in over half of those with early TBI. These children exhibited hypertrophic cingulum bundles relative to the comparison group, and the number of tract streamlines negatively correlated with age at injury, particularly in the late-developing anterior regions of the cingulum; however, streamline density did not relate to executive functioning. Although streamline density of the perforant pathway was not related to age at injury, streamline density of the left perforant pathway was significantly and positively related to verbal memory scores in those with TBI, and a moderate effect size was found in the right hemisphere. DTI tractography may provide insight into developmental plasticity in children post-injury. While traditional DTI metrics demonstrate expected relations to cognitive performance in group-based analyses, altered growth is reflected in the white matter structures themselves in some children several years post-injury. Whether this plasticity is adaptive or maladaptive, and whether the alterations are structure-specific, warrants further investigation.
Collapse
Affiliation(s)
- Elisabeth A Wilde
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT, United States.,H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Radiology, Baylor College of Medicine, Houston, TX, United States
| | - Ilirjana Hyseni
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Hannah M Lindsey
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT, United States.,Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Jessica Faber
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - James M McHenry
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Erin D Bigler
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT, United States.,Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Brian D Biekman
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| | - Laura L Hollowell
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| | - Stephen R McCauley
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Jill V Hunter
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States.,Department of Radiology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, United States
| | - Linda Ewing-Cobbs
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mary E Aitken
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Marianne MacLeod
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| | - Zili D Chu
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, United States
| | - Linda J Noble-Haeusslein
- Departments of Psychology and Neurology, University of Texas at Austin, Austin, TX, United States
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Recla M, Molteni E, Manfredi V, Arrigoni F, Nordio A, Galbiati S, Pastore V, Modat M, Strazzer S. Feasibility Randomized Trial for an Intensive Memory-Focused Training Program for School-Aged Children with Acquired Brain Injury. Brain Sci 2020; 10:E430. [PMID: 32645968 PMCID: PMC7407971 DOI: 10.3390/brainsci10070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Memory deficits are common sequelae of pediatric Acquired Brain Injury (ABI). Only methods for non-focused cognitive remediation are available to the pediatric field. The aims of this feasibility trial are the description, implementation, and test of an intensive program specific to the training and re-adaptation of memory function in children, called Intensive Memory-Focused Training Program (IM-FTP); (2) Methods: Eleven children and adolescents with ABI (mean age at injury = 12.2 years, brain tumor survivors excluded) were clinically assessed and rehabilitated over 1-month through IM-FTP, including physio-kinesis/occupational, speech, and neuropsychology treatments. Each patient received a psychometric evaluation and a brain functional MRI at enrollment and at discharge. Ten pediatric controls with ABI (mean age at injury = 13.8 years) were clinically assessed, and rehabilitated through a standard program; (3) Results: After treatment, both groups had marked improvement in both immediate and delayed recall. IM-FTP was associated with better learning of semantically related and unrelated words, and larger improvement in immediate recall in prose memory. Imaging showed functional modification in the left frontal inferior cortex; (4) Conclusions: We described an age-independent reproducible multidisciplinary memory-focused rehabilitation protocol, which can be adapted to single patients while preserving inter-subject comparability, and is applicable up to a few months after injury. IM-FTP will now be employed in a powered clinical trial.
Collapse
Affiliation(s)
- Monica Recla
- Neurophysiatric Department, Neuropsychological and Cognitive-behavioral Service, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy; (V.M.); (S.G.); (V.P.)
| | - Erika Molteni
- School of Biomedical Engineering & Imaging Sciences, and Centre for Medical Engineering, King’s College, London SE1 7EU, UK; (E.M.); (M.M.)
| | - Valentina Manfredi
- Neurophysiatric Department, Neuropsychological and Cognitive-behavioral Service, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy; (V.M.); (S.G.); (V.P.)
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy; (F.A.); (A.N.)
| | - Andrea Nordio
- Neuroimaging Lab, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy; (F.A.); (A.N.)
| | - Susanna Galbiati
- Neurophysiatric Department, Neuropsychological and Cognitive-behavioral Service, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy; (V.M.); (S.G.); (V.P.)
| | - Valentina Pastore
- Neurophysiatric Department, Neuropsychological and Cognitive-behavioral Service, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy; (V.M.); (S.G.); (V.P.)
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, and Centre for Medical Engineering, King’s College, London SE1 7EU, UK; (E.M.); (M.M.)
| | - Sandra Strazzer
- Neurophysiatric Department, Scientific Institute, I.R.C.C.S. Eugenio Medea, 23842 Bosisio Parini, Italy;
| |
Collapse
|
7
|
Kim E, Seo HG, Lee HH, Lee SH, Choi SH, Cho WS, Wagner AK, Oh BM. Altered White Matter Integrity after Mild to Moderate Traumatic Brain Injury. J Clin Med 2019; 8:jcm8091318. [PMID: 31461987 PMCID: PMC6780936 DOI: 10.3390/jcm8091318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022] Open
Abstract
(1) Background: White matter changes among individuals with mild-to-moderate traumatic brain injury (TBI) may be sensitive imaging markers reflecting functional impairment, particularly in the context of post-concussion syndrome. The objective of this study was to examine the altered white matter integrity in mild-to-moderate TBI patients compared with age-matched normal controls. (2) Methods: Diffusion tensor imaging data from 15 individuals with TBI and 15 control subjects were retrospectively obtained. We investigated and compared white matter integrity in both groups, with regard to fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) and examined the relationship with cognitive dysfunction and impaired balance in patients. (3) Results: In comparison with controls, the TBI patients had significantly decreased FA as well as increased RD, in the right corticospinal tract. Decreased RD was observed in the left cerebellar area near the middle cerebellar peduncle. Decreased AD was observed in the left inferior cerebellar peduncle, showing positive correlation with poor balance control. We observed decreased FA and increased AD in the left superior longitudinal fasciculus showing positive and negative correlation, respectively, with cognitive function in the TBI group. (4) Conclusions: Altered white matter integrity in mild-to-moderate TBI cases may be indicative of cognitive dysfunction and impaired balance.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyun Haeng Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Korea
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul 03080, Korea
| | - Seung Hak Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Korea
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 03080, Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburg, PA 15260, USA
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| |
Collapse
|
8
|
Molteni E, Pagani E, Strazzer S, Arrigoni F, Beretta E, Boffa G, Galbiati S, Filippi M, Rocca MA. Fronto-temporal vulnerability to disconnection in paediatric moderate and severe traumatic brain injury. Eur J Neurol 2019; 26:1183-1190. [PMID: 30964589 DOI: 10.1111/ene.13963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/03/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND In patients with moderate and severe paediatric traumatic brain injury (TBI), we investigated the presence and severity of white matter (WM) tract damage, cortical lobar and deep grey matter (GM) atrophies, their interplay and their correlation with outcome rating scales. METHODS Diffusion tensor (DT) and 3D T1-weighted MRI scans were obtained from 22 TBI children (13 boys; mean age at insult = 11.6 years; 72.7% in chronic condition) and 31 age-matched healthy children. Patients were tested with outcome rating scales and the Wechsler Intelligence Scale for Children (WISC). DT MRI indices were obtained from several supra- and infra-tentorial WM tracts. Cortical lobar and deep GM volumes were derived. Comparisons between patients and controls, and between patients in acute (<6 months from the event) vs. chronic (≥6 months) condition were performed. RESULTS Patients showed a widespread pattern of decreased WM FA and GM atrophy. Compared to acute, chronic patients showed severer atrophy in the right frontal lobe and reduced FA in the left inferior longitudinal fasciculus and corpus callosum (CC). Decreased axial diffusivity was observed in acute patients versus controls in the inferior fronto-occipital fasciculus and CC. Chronic patients showed increased axial diffusivity in the same structures. Uncinate fasciculus DT MRI abnormalities correlated with atrophy in the frontal and temporal lobes. Hippocampal atrophy correlated with reduced WISC scores, whereas putamen atrophy correlated with lower functional independence measure scores. CONCLUSIONS The study isolated a distributed fronto-temporal network of structures particularly vulnerable to axonal damage and atrophy that may contribute to cognitive deficits following TBI.
Collapse
Affiliation(s)
- E Molteni
- Acquired Brain Injury Unit, Scientific Institute IRCCS Eugenio Medea, Lecco, Italy
| | - E Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Strazzer
- Acquired Brain Injury Unit, Scientific Institute IRCCS Eugenio Medea, Lecco, Italy
| | - F Arrigoni
- Acquired Brain Injury Unit, Scientific Institute IRCCS Eugenio Medea, Lecco, Italy
| | - E Beretta
- Acquired Brain Injury Unit, Scientific Institute IRCCS Eugenio Medea, Lecco, Italy
| | - G Boffa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Galbiati
- Acquired Brain Injury Unit, Scientific Institute IRCCS Eugenio Medea, Lecco, Italy
| | - M Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - M A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Abstract
Over 1.4 million people in the United States experience traumatic brain injury (TBI) each year and approximately 52,000 people die annually due to complications related to TBI. Traditionally, TBI has been viewed as a static injury with significant consequences for frontal lobe functioning that plateaus after some window of recovery, remaining relatively stable thereafter. However, over the past decade there has been growing consensus that the consequences of TBI are dynamic, with unique characteristics expressed at the individual level and over the life span. This chapter first discusses the pathophysiology of TBI in order to understand its dynamic process and then describes the behavioral changes that are the result of injury with focus on frontal lobe functions. It integrates a historical perspective on structural and functional brain-imaging approaches used to understand how TBI impacts the frontal lobes, as well as more recent approaches to examine large-scale network changes after TBI. The factors most useful for outcome prediction are surveyed, along with how the theoretical frameworks used to predict recovery have developed over time. In this chapter, the authors argue for the need to understand outcome after TBI as a dynamic process with individual trajectories, taking a network theory perspective to understand the consequences of disrupting frontal systems in TBI. Within this framework, understanding frontal lobe dysfunction within a larger coordinated neural network to study TBI may provide a novel perspective in outcome prediction and in developing individualized treatments.
Collapse
Affiliation(s)
- Rachel A Bernier
- Department of Psychology, Pennsylvania State University, University Park, State College, PA, United States
| | - Frank G Hillary
- Department of Psychology, Pennsylvania State University, University Park, State College, PA, United States.
| |
Collapse
|
10
|
Wilde EA, Ware AL, Li X, Wu TC, McCauley SR, Barnes A, Newsome MR, Biekman BD, Hunter JV, Chu ZD, Levin HS. Orthopedic Injured versus Uninjured Comparison Groups for Neuroimaging Research in Mild Traumatic Brain Injury. J Neurotrauma 2018; 36:239-249. [PMID: 29786476 DOI: 10.1089/neu.2017.5513] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To address controversy surrounding the most appropriate comparison group for mild traumatic brain injury (mTBI) research, mTBI patients 12-30 years of age were compared with an extracranial orthopedic injury (OI) patient group and an uninjured, typically developing (TD) participant group with comparable demographic backgrounds. Injured participants underwent subacute (within 96 h) and late (3 months) diffusion tensor imaging (DTI); TD controls underwent DTI once. Group differences in fractional anisotropy (FA) and mean diffusivity (MD) of commonly studied white matter tracts were assessed. For FA, subacute group differences occurred in the bilateral inferior frontal occipital fasciculus (IFOF) and right inferior longitudinal fasciculus (ILF), and for MD, differences were found in the total corpus callosum, right uncinate fasciculus, IFOF, ILF, and bilateral cingulum bundle (CB). In these analyses, differences (lower FA and higher MD) were generally observed between the mTBI and TD groups but not between the mTBI and OI groups. After a 3 month interval, groups significantly differed in left IFOF FA and in right IFOF and CB MD; the TD group had significantly higher FA and lower MD than both injury groups, which did not differ. There was one exception to this pattern, in which the OI group demonstrated significantly lower FA in the left ILF than the TD group, although neither group differed from the mTBI group. The mTBI and OI groups had generally similar longitudinal results. Findings suggest that different conclusions about group-level DTI analyses could be drawn, depending on the selected comparison group, highlighting the need for additional research in this area. Where possible, mTBI studies may benefit from the inclusion of both OI and TD controls.
Collapse
Affiliation(s)
- Elisabeth A Wilde
- 1 Michael E. DeBakey VA Medical Center, Houston, Texas.,2 George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,3 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas.,4 Department of Neurology, Baylor College of Medicine, Houston, Texas.,5 Department of Radiology, and Baylor College of Medicine, Houston, Texas.,7 Department of Neurology, University of Utah, Salt Lake City, Utah
| | - Ashley L Ware
- 3 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas.,8 Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas
| | - Xiaoqi Li
- 3 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Trevor C Wu
- 3 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas.,9 Hauenstein Neurosciences, Mercy Health St. Mary's, Grand Rapids, Michigan
| | - Stephen R McCauley
- 3 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas.,4 Department of Neurology, Baylor College of Medicine, Houston, Texas.,6 Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Amanda Barnes
- 10 Department of Obstetrics and Gynecology, University of Southern California Medical Center, Los Angeles, California
| | - Mary R Newsome
- 1 Michael E. DeBakey VA Medical Center, Houston, Texas.,3 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
| | - Brian D Biekman
- 3 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas.,8 Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston, Houston, Texas
| | - Jill V Hunter
- 3 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas.,5 Department of Radiology, and Baylor College of Medicine, Houston, Texas.,11 Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas
| | - Zili D Chu
- 5 Department of Radiology, and Baylor College of Medicine, Houston, Texas.,11 Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas
| | - Harvey S Levin
- 1 Michael E. DeBakey VA Medical Center, Houston, Texas.,3 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas.,4 Department of Neurology, Baylor College of Medicine, Houston, Texas.,6 Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Main KL, Soman S, Pestilli F, Furst A, Noda A, Hernandez B, Kong J, Cheng J, Fairchild JK, Taylor J, Yesavage J, Wesson Ashford J, Kraemer H, Adamson MM. DTI measures identify mild and moderate TBI cases among patients with complex health problems: A receiver operating characteristic analysis of U.S. veterans. Neuroimage Clin 2017; 16:1-16. [PMID: 28725550 PMCID: PMC5503837 DOI: 10.1016/j.nicl.2017.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 06/10/2017] [Accepted: 06/23/2017] [Indexed: 01/10/2023]
Abstract
Standard MRI methods are often inadequate for identifying mild traumatic brain injury (TBI). Advances in diffusion tensor imaging now provide potential biomarkers of TBI among white matter fascicles (tracts). However, it is still unclear which tracts are most pertinent to TBI diagnosis. This study ranked fiber tracts on their ability to discriminate patients with and without TBI. We acquired diffusion tensor imaging data from military veterans admitted to a polytrauma clinic (Overall n = 109; Age: M = 47.2, SD = 11.3; Male: 88%; TBI: 67%). TBI diagnosis was based on self-report and neurological examination. Fiber tractography analysis produced 20 fiber tracts per patient. Each tract yielded four clinically relevant measures (fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity). We applied receiver operating characteristic (ROC) analyses to identify the most diagnostic tract for each measure. The analyses produced an optimal cutpoint for each tract. We then used kappa coefficients to rate the agreement of each cutpoint with the neurologist's diagnosis. The tract with the highest kappa was most diagnostic. As a check on the ROC results, we performed a stepwise logistic regression on each measure using all 20 tracts as predictors. We also bootstrapped the ROC analyses to compute the 95% confidence intervals for sensitivity, specificity, and the highest kappa coefficients. The ROC analyses identified two fiber tracts as most diagnostic of TBI: the left cingulum (LCG) and the left inferior fronto-occipital fasciculus (LIF). Like ROC, logistic regression identified LCG as most predictive for the FA measure but identified the right anterior thalamic tract (RAT) for the MD, RD, and AD measures. These findings are potentially relevant to the development of TBI biomarkers. Our methods also demonstrate how ROC analysis may be used to identify clinically relevant variables in the TBI population.
Collapse
Key Words
- AD, axial diffusivity
- Axon degeneration
- CC, corpus callosum
- Concussion
- DAI, diffuse axonal injury
- DTI, diffusion tensor imaging
- FA, fractional anisotropy
- GN, genu
- Imaging
- LAT, left anterior thalamic tract
- LCG, left cingulum
- LCH, left cingulum – hippocampus
- LCS, left cortico-spinal tract
- LIF, left inferior fronto-occipital fasciculus
- LIL, left inferior longitudinal fasciculus
- LSL, left superior longitudinal fasciculus
- LST, left superior longitudinal fasciculus – temporal
- LUN, left uncinate
- MD, mean diffusivity
- Neurodegeneration
- PTSD, post-traumatic stress disorder
- RAT, right anterior thalamic tract
- RCG, right cingulum
- RCH, right cingulum – Hippocampus
- RCS, right cortico-spinal tract
- RD, radial diffusivity
- RIF, right inferior fronto-occipital fasciculus
- RIL, right inferior longitudinal fasciculus
- ROC, receiver operating characteristic
- RSL, right superior longitudinal fasciculus
- RST, right superior longitudinal fasciculus – temporal
- RUN, right uncinate
- SP, splenium
- TBI, traumatic brain injury
- Traumatic brain injury
Collapse
Affiliation(s)
- Keith L. Main
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
- Defense and Veterans Brain Injury Center (DVBIC), Silver Spring, MD, United States
- General Dynamics Health Solutions (GDHS), Fairfax, VA, United States
| | - Salil Soman
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Ansgar Furst
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Art Noda
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Beatriz Hernandez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Jennifer Kong
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
| | - Jauhtai Cheng
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
| | - Jennifer K. Fairchild
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Joy Taylor
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Jerome Yesavage
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - J. Wesson Ashford
- War Related Illness and Injury Study Center, Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Helena Kraemer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Maheen M. Adamson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford School of Medicine, Stanford, CA, United States
- Defense and Veterans Brain Injury Center (DVBIC), Veterans Affairs, Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, United States
| |
Collapse
|
12
|
Kishima H, Kato A, Oshino S, Tani N, Maruo T, Khoo HM, Yanagisawa T, Edakawa K, Kobayashi M, Tanaka M, Hosomi K, Hirata M, Yoshimine T. Navigation-assisted trans-inferotemporal cortex selective amygdalohippocampectomy for mesial temporal lobe epilepsy; preserving the temporal stem. Neurol Res 2017; 39:223-230. [PMID: 28067149 DOI: 10.1080/01616412.2016.1275458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Selective amygdalohippocampectomy (SAH) can be used to obtain satisfactory seizure control in patients with mesial temporal lobe epilepsy (MTLE). Several SAH procedures have been reported to achieve satisfactory outcomes for seizure control, but none yield fully satisfactory outcomes for memory function. We hypothesized that preserving the temporal stem might play an important role. To preserve the temporal stem, we developed a minimally invasive surgical procedure, 'neuronavigation-assisted trans-inferotemporal cortex SAH' (TITC-SAH). METHODS TITC-SAH was performed in 23 patients with MTLE (MTLE on the language-non-dominant hemisphere, n = 11). The inferior horn of the lateral ventricle was approached via the inferior or middle temporal gyrus along the inferior temporal sulcus under neuronavigation guidance. The hippocampus was dissected in a subpial manner and resected en bloc together with the parahippocampal gyrus. Seizure control at one year and memory function at 6 months postoperatively were evaluated. RESULTS One year after TITC-SAH, 20 of the 23 patients were seizure-free (ILAE class 1), 2 were class 2, and 1 was class 3. Verbal memory improved significantly in 13 patients with a diagnosis of hippocampal sclerosis, for whom WMS-R scores were available both pre- and post-operatively. Improvements were seen regardless of whether the SAH was on the language-dominant or non-dominant hemisphere. No major complication was observed. CONCLUSION Navigation-assisted TITC-SAH performed for MTLE offers a simple, minimally invasive procedure that appears to yield excellent outcomes in terms of seizure control and preservation of memory function, because this procedure does not damage the temporal stem. TITC-SAH should be one of the feasible surgical procedures for MTLE. ABBREVIATIONS SAH: Amygdalohippocampectomy; MTLE: Mesial temporal lobe epilepsy (MTLE); TITC-SAH: Ttrans-inferotemporal cortex SAH; ILAE: International League Against Epilepsy (ILAE); MRI: Magnetic resonance imaging; EEG: Electroencephalography (EEG); FDG-PET: 8F-fluorodeoxyglucose (FDG)-positron emission tomography; ECoG: Electrocorticography; MEG: Magnetoencephalography; IMZ-SPECT: N-isopropyl-p(123I)-iodoamphetamine single photon emission computed tomography; WMS-R: Wechsler Memory Scale-Revised.
Collapse
Affiliation(s)
- Haruhiko Kishima
- a Department of Neurosurgery , Osaka University Graduate School of Medicine , Suita, Osaka , Japan.,b Epilepsy Center , Osaka University Hospital , Suita , Japan
| | - Amami Kato
- c Department of Neurosurgery , Kinki University School of Medicine , Osaka-sayama , Japan
| | - Satoru Oshino
- a Department of Neurosurgery , Osaka University Graduate School of Medicine , Suita, Osaka , Japan.,b Epilepsy Center , Osaka University Hospital , Suita , Japan
| | - Naoki Tani
- b Epilepsy Center , Osaka University Hospital , Suita , Japan.,d Department of Neurosurgery , Osaka General Medical Center , Osaka , Japan
| | - Tomoyuki Maruo
- b Epilepsy Center , Osaka University Hospital , Suita , Japan.,e Department of Neurosurgery , Otemae Hospital , Osaka-sayama , Japan
| | - Hui Ming Khoo
- a Department of Neurosurgery , Osaka University Graduate School of Medicine , Suita, Osaka , Japan.,b Epilepsy Center , Osaka University Hospital , Suita , Japan
| | - Takufumi Yanagisawa
- a Department of Neurosurgery , Osaka University Graduate School of Medicine , Suita, Osaka , Japan.,b Epilepsy Center , Osaka University Hospital , Suita , Japan.,f Global Center for Medical Engineering and Informatics Division of Clinical Neuroengineering , Osaka University , Osaka , Japan
| | - Kotaro Edakawa
- a Department of Neurosurgery , Osaka University Graduate School of Medicine , Suita, Osaka , Japan.,b Epilepsy Center , Osaka University Hospital , Suita , Japan
| | - Maki Kobayashi
- a Department of Neurosurgery , Osaka University Graduate School of Medicine , Suita, Osaka , Japan.,b Epilepsy Center , Osaka University Hospital , Suita , Japan
| | - Masataka Tanaka
- a Department of Neurosurgery , Osaka University Graduate School of Medicine , Suita, Osaka , Japan.,b Epilepsy Center , Osaka University Hospital , Suita , Japan
| | - Koichi Hosomi
- a Department of Neurosurgery , Osaka University Graduate School of Medicine , Suita, Osaka , Japan.,b Epilepsy Center , Osaka University Hospital , Suita , Japan
| | - Masayuki Hirata
- a Department of Neurosurgery , Osaka University Graduate School of Medicine , Suita, Osaka , Japan.,b Epilepsy Center , Osaka University Hospital , Suita , Japan.,f Global Center for Medical Engineering and Informatics Division of Clinical Neuroengineering , Osaka University , Osaka , Japan
| | - Toshiki Yoshimine
- f Global Center for Medical Engineering and Informatics Division of Clinical Neuroengineering , Osaka University , Osaka , Japan
| |
Collapse
|
13
|
Gilmore CS, Camchong J, Davenport ND, Nelson NW, Kardon RH, Lim KO, Sponheim SR. Deficits in Visual System Functional Connectivity after Blast-Related Mild TBI are Associated with Injury Severity and Executive Dysfunction. Brain Behav 2016; 6:e00454. [PMID: 27257516 PMCID: PMC4873652 DOI: 10.1002/brb3.454] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Approximately, 275,000 American service members deployed to Iraq or Afghanistan have sustained a mild traumatic brain injury (mTBI), with 75% of these incidents involving an explosive blast. Visual processing problems and cognitive dysfunction are common complaints following blast-related mTBI. METHODS In 127 veterans, we examined resting fMRI functional connectivity (FC) of four key nodes within the visual system: lateral geniculate nucleus (LGN), primary visual cortex (V1), lateral occipital gyrus (LO), and fusiform gyrus (FG). Regression analyses were performed (i) to obtain correlations between time-series from each seed and all voxels in the brain, and (ii) to identify brain regions in which FC variability was related to blast mTBI severity. Blast-related mTBI severity was quantified as the sum of the severity scores assigned to each of the three most significant blast-related injuries self-reported by subjects. Correlations between FC and performance on executive functioning tasks were performed across participants with available behavioral data (n = 94). RESULTS Greater blast mTBI severity scores were associated with lower FC between: (A) LGN seed and (i) medial frontal gyrus, (ii) lingual gyrus, and (iii) right ventral anterior nucleus of thalamus; (B) V1 seed and precuneus; (C) LO seed and middle and superior frontal gyri; (D) FG seed and (i) superior and medial frontal gyrus, and (ii) left middle frontal gyrus. Finally, lower FC between visual network regions and frontal cortical regions predicted worse performance on the WAIS digit-symbol coding task. CONCLUSION These are the first published results that directly illustrate the relationship between blast-related mTBI severity, visual pathway neural networks, and executive dysfunction - results that highlight the detrimental relationship between blast-related brain injury and the integration of visual sensory input and executive processes.
Collapse
Affiliation(s)
- Casey S. Gilmore
- Defense and Veterans Brain Injury CenterMinneapolisMinnesota
- Minneapolis Veterans Affairs Health Care SystemMinneapolisMinnesota
| | - Jazmin Camchong
- Department of PsychiatryUniversity of MinnesotaMinneapolisMinnesota
| | - Nicholas D. Davenport
- Minneapolis Veterans Affairs Health Care SystemMinneapolisMinnesota
- Department of PsychiatryUniversity of MinnesotaMinneapolisMinnesota
| | - Nathaniel W. Nelson
- Minneapolis Veterans Affairs Health Care SystemMinneapolisMinnesota
- Univ. of St. ThomasGraduate School of Professional PsychologyMinneapolisMinnesota
| | - Randy H. Kardon
- Department of Ophthalmology & Visual ScienceUniversity of IowaIowa CityIowa
- Iowa City Veterans Affairs Health Care SystemIowa CityIowa
| | - Kelvin O. Lim
- Defense and Veterans Brain Injury CenterMinneapolisMinnesota
- Minneapolis Veterans Affairs Health Care SystemMinneapolisMinnesota
- Department of PsychiatryUniversity of MinnesotaMinneapolisMinnesota
| | - Scott R. Sponheim
- Minneapolis Veterans Affairs Health Care SystemMinneapolisMinnesota
- Department of PsychiatryUniversity of MinnesotaMinneapolisMinnesota
| |
Collapse
|
14
|
Bigler ED. Neuroimaging as a biomarker in symptom validity and performance validity testing. Brain Imaging Behav 2015; 9:421-44. [DOI: 10.1007/s11682-015-9409-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Bigler ED, Stern Y. Traumatic brain injury and reserve. HANDBOOK OF CLINICAL NEUROLOGY 2015; 128:691-710. [DOI: 10.1016/b978-0-444-63521-1.00043-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Bigler ED. Magnetic resonance imaging in the evaluation of cognitive function. Pediatr Blood Cancer 2014; 61:1724-8. [PMID: 24920351 DOI: 10.1002/pbc.25110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/10/2023]
Abstract
Image quality of magnetic resonance imaging (MRI) scans of the brain currently approximate gross anatomy as would be viewed at autopsy. During the first decade of the 21st Century incredible advances in image processing and quantification have occurred permitting more refined methods for studying brain-behavior-cognitive functioning. The current presentation overviews the current status of MRI methods for routine clinical assessment of brain pathology, how these techniques identify neuropathology and how pathological findings are quantified. Diffusion tensor imaging (DTI), functional MRI (fMRI), and resting state fMRI are all reviewed, emphasizing how these techniques permit an examination of brain function and connectivity. General regional relationships of brain function associated with cognitive control will be highlighted.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology, Brigham Young University, Provo, Utah; Neuroscience Center, Brigham Young University, Provo, Utah; Department of Psychiatry, University of Utah, Salt Lake City, Utah; The Brain Institute of Utah, University of Utah, Salt Lake City, Utah
| |
Collapse
|
17
|
Spitz G, Maller JJ, Ng A, O'Sullivan R, Ferris NJ, Ponsford JL. Detecting Lesions after Traumatic Brain Injury Using Susceptibility Weighted Imaging: A Comparison with Fluid-Attenuated Inversion Recovery and Correlation with Clinical Outcome. J Neurotrauma 2013; 30:2038-50. [DOI: 10.1089/neu.2013.3021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gershon Spitz
- School of Psychology and Psychiatry, Monash University, Melbourne, Australia
- Monash-Epworth Rehabilitation Research Center, Epworth Hospital, Melbourne, Australia
| | - Jerome J. Maller
- Central Clinical School, Monash University, Melbourne, Australia
- Monash Alfred Psychiatry Research Center, Alfred Hospital, Melbourne, Australia
| | - Amanda Ng
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
- Monash e-Research Center, Monash University, Melbourne, Australia
- Life Sciences Computation Center, Victorian Life Sciences Computation Initiative, Melbourne, Australia
| | | | | | - Jennie L. Ponsford
- School of Psychology and Psychiatry, Monash University, Melbourne, Australia
- Monash-Epworth Rehabilitation Research Center, Epworth Hospital, Melbourne, Australia
| |
Collapse
|
18
|
Liégeois FJ, Mahony K, Connelly A, Pigdon L, Tournier JD, Morgan AT. Pediatric traumatic brain injury: language outcomes and their relationship to the arcuate fasciculus. BRAIN AND LANGUAGE 2013; 127:388-98. [PMID: 23756046 PMCID: PMC3988975 DOI: 10.1016/j.bandl.2013.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 04/15/2013] [Accepted: 05/07/2013] [Indexed: 05/12/2023]
Abstract
Pediatric traumatic brain injury (TBI) may result in long-lasting language impairments alongside dysarthria, a motor-speech disorder. Whether this co-morbidity is due to the functional links between speech and language networks, or to widespread damage affecting both motor and language tracts, remains unknown. Here we investigated language function and diffusion metrics (using diffusion-weighted tractography) within the arcuate fasciculus, the uncinate fasciculus, and the corpus callosum in 32 young people after TBI (approximately half with dysarthria) and age-matched healthy controls (n=17). Only participants with dysarthria showed impairments in language, affecting sentence formulation and semantic association. In the whole TBI group, sentence formulation was best predicted by combined corpus callosum and left arcuate volumes, suggesting this "dual blow" seriously reduces the potential for functional reorganisation. Word comprehension was predicted by fractional anisotropy in the right arcuate. The co-morbidity between dysarthria and language deficits therefore seems to be the consequence of multiple tract damage.
Collapse
Affiliation(s)
- Frédérique J Liégeois
- Developmental Cognitive Neuroscience Unit, University College London, Institute of Child Health, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
19
|
Dennis M, Spiegler BJ, Juranek JJ, Bigler ED, Snead OC, Fletcher JM. Age, plasticity, and homeostasis in childhood brain disorders. Neurosci Biobehav Rev 2013; 37:2760-73. [PMID: 24096190 PMCID: PMC3859812 DOI: 10.1016/j.neubiorev.2013.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/29/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022]
Abstract
It has been widely accepted that the younger the age and/or immaturity of the organism, the greater the brain plasticity, the young age plasticity privilege. This paper examines the relation of a young age to plasticity, reviewing human pediatric brain disorders, as well as selected animal models, human developmental and adult brain disorder studies. As well, we review developmental and childhood acquired disorders that involve a failure of regulatory homeostasis. Our core arguments are as follows:
Collapse
Affiliation(s)
- Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Bigler ED. Traumatic brain injury, neuroimaging, and neurodegeneration. Front Hum Neurosci 2013; 7:395. [PMID: 23964217 PMCID: PMC3734373 DOI: 10.3389/fnhum.2013.00395] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 07/05/2013] [Indexed: 12/14/2022] Open
Abstract
Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology, Brigham Young University Provo, UT, USA ; Neuroscience Center, Brigham Young University Provo, UT, USA ; Department of Psychiatry, University of Utah Salt Lake City, UT, USA ; The Brain Institute of Utah, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
21
|
Spitz G, Maller JJ, O'Sullivan R, Ponsford JL. White matter integrity following traumatic brain injury: the association with severity of injury and cognitive functioning. Brain Topogr 2013; 26:648-60. [PMID: 23532465 DOI: 10.1007/s10548-013-0283-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/19/2013] [Indexed: 11/24/2022]
Abstract
Traumatic brain injury (TBI) frequently results in impairments of memory, speed of information processing, and executive functions that may persist over many years. Diffuse axonal injury is one of the key pathologies following TBI, causing cognitive impairments due to the disruption of cortical white matter pathways. The current study examined the association between injury severity, cognition, and fractional anisotropy (FA) following TBI. Two diffusion tensor imaging techniques-region-of-interest tractography and tract-based spatial statistics-were used to assess the FA of white matter tracts. This study examined the comparability of these two approaches as they relate to injury severity and cognitive performance. Sixty-eight participants with mild-to-severe TBI, and 25 healthy controls, underwent diffusion tensor imaging analysis. A subsample of 36 individuals with TBI also completed cognitive assessment. Results showed reduction in FA values for those with moderate and severe TBI, compared to controls and individuals with mild TBI. Although FA tended to be lower for individuals with mild TBI no significant differences were found compared to controls. Information processing speed and executive abilities were most strongly associated with the FA of white matter tracts. The results highlight similarities and differences between region-of-interest tractography and tract-based spatial statistics approaches, and suggest that they may be used together to explore pathology following TBI.
Collapse
Affiliation(s)
- Gershon Spitz
- School of Psychology and Psychiatry, Monash University, Clayton, Melbourne, VIC, 3800, Australia,
| | | | | | | |
Collapse
|
22
|
Hulkower MB, Poliak DB, Rosenbaum SB, Zimmerman ME, Lipton ML. A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR Am J Neuroradiol 2013; 34:2064-74. [PMID: 23306011 DOI: 10.3174/ajnr.a3395] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY The past decade has seen an increase in the number of articles reporting the use of DTI to detect brain abnormalities in patients with traumatic brain injury. DTI is well-suited to the interrogation of white matter microstructure, the most important location of pathology in TBI. Additionally, studies in animal models have demonstrated the correlation of DTI findings and TBI pathology. One hundred articles met the inclusion criteria for this quantitative literature review. Despite significant variability in sample characteristics, technical aspects of imaging, and analysis approaches, the consensus is that DTI effectively differentiates patients with TBI and controls, regardless of the severity and timeframe following injury. Furthermore, many have established a relationship between DTI measures and TBI outcomes. However, the heterogeneity of specific outcome measures used limits interpretation of the literature. Similarly, few longitudinal studies have been performed, limiting inferences regarding the long-term predictive utility of DTI. Larger longitudinal studies, using standardized imaging, analysis approaches, and outcome measures will help realize the promise of DTI as a prognostic tool in the care of patients with TBI.
Collapse
|
23
|
Bigler ED, Maxwell WL. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging Behav 2012; 6:108-36. [PMID: 22434552 DOI: 10.1007/s11682-011-9145-0] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neuroimaging identified abnormalities associated with traumatic brain injury (TBI) are but gross indicators that reflect underlying trauma-induced neuropathology at the cellular level. This review examines how cellular pathology relates to neuroimaging findings with the objective of more closely relating how neuroimaging findings reveal underlying neuropathology. Throughout this review an attempt will be made to relate what is directly known from post-mortem microscopic and gross anatomical studies of TBI of all severity levels to the types of lesions and abnormalities observed in contemporary neuroimaging of TBI, with an emphasis on mild traumatic brain injury (mTBI). However, it is impossible to discuss the neuropathology of mTBI without discussing what occurs with more severe injury and viewing pathological changes on some continuum from the mildest to the most severe. Historical milestones in understanding the neuropathology of mTBI are reviewed along with implications for future directions in the examination of neuroimaging and neuropathological correlates of TBI.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology, Brigham Young University, Provo, UT, USA.
| | | |
Collapse
|
24
|
Wilde EA, McCauley SR, Barnes A, Wu TC, Chu Z, Hunter JV, Bigler ED. Serial measurement of memory and diffusion tensor imaging changes within the first week following uncomplicated mild traumatic brain injury. Brain Imaging Behav 2012; 6:319-28. [DOI: 10.1007/s11682-012-9174-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Hunter JV, Wilde EA, Tong KA, Holshouser BA. Emerging imaging tools for use with traumatic brain injury research. J Neurotrauma 2012; 29:654-71. [PMID: 21787167 PMCID: PMC3289847 DOI: 10.1089/neu.2011.1906] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children.
Collapse
Affiliation(s)
- Jill V Hunter
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
26
|
Porto L, Jurcoane A, Magerkurth J, Althaus J, Zanella F, Hattingen E, Kieslich M, Kieslich M. Morphometry and diffusion MR imaging years after childhood traumatic brain injury. Eur J Paediatr Neurol 2011; 15:493-501. [PMID: 21783392 DOI: 10.1016/j.ejpn.2011.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/14/2011] [Accepted: 06/19/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Our goal was to detect possible unrecognized injury in cerebral white matter (WM) in adult survivors of traumatic brain injury (TBI) during childhood, who showed no detectable axonal injury or chronic contusion on late conventional MRI. MATERIAL AND METHODS We used voxel-based morphometry (VBM) to detect subtle structural changes in brain morphology and diffusion-tensor imaging (DTI) to non-invasively probe WM integrity. By means of VBM and DTI we examined a group of 12 adult patients who suffered from childhood closed head injury without axonal injury on late conventional MRI. RESULTS Patients sustained complicated mild or moderate-to-severe TBI with a mean of 7 points based on the Glasgow Coma Scale. The mean time after trauma was 19 years (range 7-31 years). For VBM, group comparisons of segmented T1-weighted grey matter and WM images were performed, while for DTI we compared the fractional anisotropy and mean diffusivity (MD) between the groups. Patients presented with higher MD in the right cerebral white matter, bilaterally in the forceps major and in the body and splenium of the corpus callosum. These findings were supported by VBM, which showed reduced WM volume bilaterally, mainly along the callosal splenium. CONCLUSION Our results indicate that persistent focal long-term volume reduction and underlying WM structural changes may occur after TBI during childhood and that their effects extend into adulthood. Normal late conventional MR findings after childhood TBI do not rule out non-apparent axonal injury.
Collapse
Affiliation(s)
- Luciana Porto
- Neuroradiology, Klinikum Johann Wolfgang Goethe Universität, Schleusenweg 2-16, D-60528 Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang JY, Bakhadirov K, Abdi H, Devous MD, Marquez de la Plata CD, Moore C, Madden CJ, Diaz-Arrastia R. Longitudinal changes of structural connectivity in traumatic axonal injury. Neurology 2011; 77:818-26. [PMID: 21813787 DOI: 10.1212/wnl.0b013e31822c61d7] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To identify structural connectivity change occurring during the first 6 months after traumatic brain injury and to evaluate the utility of diffusion tensor tractography for predicting long-term outcome. METHODS The participants were 28 patients with mild to severe traumatic axonal injury and 20 age- and sex-matched healthy control subjects. Neuroimaging was obtained 0-9 days postinjury for acute scans and 6-14 months postinjury for chronic scans. Long-term outcome was evaluated on the day of the chronic scan. Twenty-eight fiber regions of 9 major white matter structures were reconstructed, and reliable tractography measurements were determined and used. RESULTS Although most (23 of 28) patients had severe brain injury, their long-term outcome ranged from good recovery (16 patients) to moderately (5 patients) and severely disabled (7 patients). In concordance with the diverse outcome, the white matter change in patients was heterogeneous, ranging from improved structural connectivity, through no change, to deteriorated connectivity. At the group level, all 9 fiber tracts deteriorated significantly with 7 (corpus callosum, cingulum, angular bundle, cerebral peduncular fibers, uncinate fasciculus, and inferior longitudinal and fronto-occipital fasciculi) showing structural damage acutely and 2 (fornix body and left arcuate fasciculus) chronically. Importantly, the amount of change in tractography measurements correlated with patients' long-term outcome. Acute tractography measurements were able to predict patients' learning and memory performance; chronic measurements also determined performance on processing speed and executive function. CONCLUSIONS Diffusion tensor tractography is a valuable tool for identifying structural connectivity changes occurring between the acute and chronic stages of traumatic brain injury and for predicting patients' long-term outcome.
Collapse
Affiliation(s)
- J Y Wang
- Department of Cognition and Neuroscience, University of Texas, Dallas, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wilde EA, Newsome MR, Bigler ED, Pertab J, Merkley TL, Hanten G, Scheibel RS, Li X, Chu Z, Yallampalli R, Hunter JV, Levin HS. Brain imaging correlates of verbal working memory in children following traumatic brain injury. Int J Psychophysiol 2011; 82:86-96. [PMID: 21565227 DOI: 10.1016/j.ijpsycho.2011.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/13/2011] [Accepted: 04/19/2011] [Indexed: 11/19/2022]
Abstract
Neural correlates of working memory (WM) based on the Sternberg Item Recognition Task (SIRT) were assessed in 40 children with moderate-to-severe traumatic brain injury (TBI) compared to 41 demographically-comparable children with orthopedic injury (OI). Multiple magnetic resonance imaging (MRI) methods assessed structural and functional brain correlates of WM, including volumetric and cortical thickness measures on all children; functional MRI (fMRI) and diffusion tensor imaging (DTI) were performed on a subset of children. Confirming previous findings, children with TBI had decreased cortical thickness and volume as compared to the OI group. Although the findings did not confirm the predicted relation of decreased frontal lobe cortical thickness and volume to SIRT performance, left parietal volume was negatively related to reaction time (RT). In contrast, cortical thickness was positively related to SIRT accuracy and RT in the OI group, particularly in aspects of the frontal and parietal lobes, but these relationships were less robust in the TBI group. We attribute these findings to disrupted fronto-parietal functioning in attention and WM. fMRI results from a subsample demonstrated fronto-temporal activation in the OI group, and parietal activation in the TBI group, and DTI findings reflected multiple differences in white matter tracts that engage fronto-parietal networks. Diminished white matter integrity of the frontal lobes and cingulum bundle as measured by DTI was associated with longer RT on the SIRT. Across modalities, the cingulate emerged as a common structure related to performance after TBI. These results are discussed in terms of how different imaging modalities tap different types of pathologic correlates of brain injury and their relationship with WM.
Collapse
Affiliation(s)
- Elisabeth A Wilde
- Physical Medicine and Rehabilitation Alliance of Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Christidi F, Bigler ED, McCauley SR, Schnelle KP, Merkley TL, Mors MB, Li X, Macleod M, Chu Z, Hunter JV, Levin HS, Clifton GL, Wilde EA. Diffusion tensor imaging of the perforant pathway zone and its relation to memory function in patients with severe traumatic brain injury. J Neurotrauma 2011; 28:711-25. [PMID: 21381986 DOI: 10.1089/neu.2010.1644] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Based on the importance of the perforant pathway (PP) for normal hippocampal function, the vulnerability of temporal structures, and significant memory impairment in patients with traumatic brain injury (TBI), we investigated in vivo changes in the PP zone, hippocampus, and temporal lobe white and gray matter using diffusion tensor imaging (DTI) and volumetric analysis, and any specific relations with memory performance (Verbal Selective Reminding Test, Rey-Osterrieth Complex Figure Test), in 14 patients with severe TBI. Compared to a demographically-similar control group, our patients had significantly decreased fractional anisotropy (FA) and higher apparent diffusion coefficient (ADC) for the PP zone bilaterally, and higher ADC bilaterally in the hippocampus. Volumetric analysis revealed significantly decreased volumes in both hippocampi and temporal gray matter bilaterally. Consistent long-term retrieval (CLTR) and delayed recall were significantly related to (1) right and left PP zone ADC, (2) left hippocampus ADC, and (3) left hippocampal volume. Nonverbal memory (immediate and delayed recall) was significantly associated with (1) right and left PP zone ADC, (2) left hippocampal volume, and (3) gray (immediate recall) and white (immediate recall, bilaterally; delayed recall, left) matter temporal volumes. Advanced neuroimaging analysis can detect in vivo changes in the PP zone and temporal structures in patients with severe TBI, with these changes being highly associated with memory impairment.
Collapse
Affiliation(s)
- Foteini Christidi
- Postgraduate Program of Clinical Neuropsychology, Medical School of National and Kapodistrian University, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|