1
|
Boumeester M, Blom E, Boerma T, Lammertink F, Heuvel MPVD, Dudink J, Benders MJNL, Roze E. Structural brain network in relation to language in school-aged extremely preterm children: A diffusion tensor imaging study. Neuroimage Clin 2025; 46:103782. [PMID: 40267537 PMCID: PMC12051154 DOI: 10.1016/j.nicl.2025.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/21/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025]
Abstract
Between 22 and 45 % of children born preterm experience difficulties with expressive and receptive language when they reach school age. Little is currently known about the neural mechanisms behind their linguistic performance. This study investigates the brain areas and white matter connections that form the structural language network in extremely preterm-born children who have reached school age. Structural brain connectivity was quantified using diffusion-weighted imaging (DWI) and tractography in n = 58 (62 % female) extremely preterm-born children aged 8-12 years. Language outcomes were assessed using the CELF-4-NL Recalling Sentences subtest. Language scores were below average in n = 13 (22 %) children. Language outcomes related significantly to a subnetwork of 16 brain regions (p = 0.012). The network comprised brain regions from the left hemisphere including the pars orbitalis, middle and superior frontal gyrus, frontal pole, pre- and postcentral gyrus, superior temporal gyrus, insula, caudate nucleus, thalamus, and putamen. In the right hemisphere, the anterior cingulate was part of the network. These findings suggest that extremely preterm children rely mostly on their left hemisphere during language processing, which is similar to typically developing children. However, they seem to use compensatory neural pathways that include brain areas right next to the areas typically involved in language processing. These areas include the pars orbitalis (adjacent to Broca's area) and the putamen and caudate nucleus (adjacent to the limbic system). It is important to note that language difficulties were not necessarily related to brain injury around birth.
Collapse
Affiliation(s)
- M Boumeester
- Department of Pediatrics, Division of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E Blom
- Department of Development and Education of youth in Diverse Societies (DEEDS), Utrecht University, Utrecht, the Netherlands
| | - T Boerma
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - F Lammertink
- Department of Pediatrics, Division of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - J Dudink
- Department of Pediatrics, Division of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M J N L Benders
- Department of Pediatrics, Division of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E Roze
- Department of Pediatrics, Division of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Doucet GE, Kruse JA, Mertens A, Goldsmith C, Eden NM, Oleson J, McGregor KK. Subcortical brain iron and its link to verbal memory in children with developmental language disorder. BRAIN AND LANGUAGE 2025; 261:105531. [PMID: 39756358 PMCID: PMC11769726 DOI: 10.1016/j.bandl.2024.105531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Developmental Language Disorder (DLD) is a common neurodevelopmental condition characterized by significant difficulty with language learning, comprehension, and expression. The neurocognitive bases of DLD are underspecified but are thought to be related, in part, to altered basal ganglia (BG). The BG are known to have a high level of brain iron, which contributes to myelination and dopaminergic pathways among other physiological mechanisms. In this study, we investigated whether a brain iron imbalance might contribute to the altered BG function that characterizes individuals with DLD. Using a T2*-weighted signal, we compared BG brain iron levels in 7-to-13-year olds with DLD and typical language development (TD). We found a significant age-by-group interaction in the caudate with children with DLD showing a positive association between brain iron and age, which was not the case in TD children. A sex-by-age-by-group interaction was also reported in the right putamen and right nucleus accumbens. Higher brain iron in the caudate was associated with poorer story recall; there was no relation between brain iron levels and recall of word lists. This first-ever investigation of brain iron levels in individuals with DLD provides preliminary evidence of an abnormal developmental trajectory of brain iron balance and offers a potential explanation for the altered BG function and verbal impairments that characterize DLD.
Collapse
Affiliation(s)
- Gaelle E Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE; Center for Pediatric Brain Health, Boys Town National Research Hospital, Omaha, NE; Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE.
| | - Jordanna A Kruse
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE
| | - Attakias Mertens
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE
| | - Callum Goldsmith
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE
| | - Nichole M Eden
- Center for Childhood Deafness, Language, and Learning, Boys Town National Research Hospital, Omaha, NE
| | | | - Karla K McGregor
- Center for Childhood Deafness, Language, and Learning, Boys Town National Research Hospital, Omaha, NE
| |
Collapse
|
3
|
Ullman MT, Clark GM, Pullman MY, Lovelett JT, Pierpont EI, Jiang X, Turkeltaub PE. The neuroanatomy of developmental language disorder: a systematic review and meta-analysis. Nat Hum Behav 2024; 8:962-975. [PMID: 38491094 DOI: 10.1038/s41562-024-01843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Developmental language disorder (DLD) is a common neurodevelopmental disorder with adverse impacts that continue into adulthood. However, its neural bases remain unclear. Here we address this gap by systematically identifying and quantitatively synthesizing neuroanatomical studies of DLD using co-localization likelihood estimation, a recently developed neuroanatomical meta-analytic technique. Analyses of structural brain data (22 peer-reviewed papers, 577 participants) revealed highly consistent anomalies only in the basal ganglia (100% of participant groups in which this structure was examined, weighted by group sample sizes; 99.8% permutation-based likelihood the anomaly clustering was not due to chance). These anomalies were localized specifically to the anterior neostriatum (again 100% weighted proportion and 99.8% likelihood). As expected given the task dependence of activation, functional neuroimaging data (11 peer-reviewed papers, 414 participants) yielded less consistency, though anomalies again occurred primarily in the basal ganglia (79.0% and 95.1%). Multiple sensitivity analyses indicated that the patterns were robust. The meta-analyses elucidate the neuroanatomical signature of DLD, and implicate the basal ganglia in particular. The findings support the procedural circuit deficit hypothesis of DLD, have basic research and translational implications for the disorder, and advance our understanding of the neuroanatomy of language.
Collapse
Affiliation(s)
- Michael T Ullman
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Washington DC, USA.
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Mariel Y Pullman
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Washington DC, USA
- Mount Sinai Beth Israel, New York, NY, USA
| | - Jarrett T Lovelett
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Washington DC, USA
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth I Pierpont
- Department of Pediatrics, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - Xiong Jiang
- Department of Neuroscience, Georgetown University, Washington DC, USA
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University, Washington DC, USA
- Research Division, MedStar National Rehabilitation Network, Washington DC, USA
| |
Collapse
|
4
|
Kleeren L, Mailleux L, McLean B, Elliott C, Dequeker G, Van Campenhout A, de Xivry JJO, Verheyden G, Ortibus E, Klingels K, Feys H. Does somatosensory discrimination therapy alter sensorimotor upper limb function differently compared to motor therapy in children and adolescents with unilateral cerebral palsy: study protocol for a randomized controlled trial. Trials 2024; 25:147. [PMID: 38409060 PMCID: PMC10895830 DOI: 10.1186/s13063-024-07967-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Besides motor impairments, up to 90% of the children and adolescents with unilateral cerebral palsy (uCP) present with somatosensory impairments in the upper limb. As somatosensory information is of utmost importance for coordinated movements and motor learning, somatosensory impairments can further compromise the effective use of the impaired upper limb in daily life activities. Yet, intervention approaches specifically designated to target these somatosensory impairments are insufficiently investigated in children and adolescents with uCP. Therefore, the aim of this randomized controlled trial (RCT) is to compare the effectiveness of somatosensory discrimination therapy and dose-matched motor therapy to improve sensorimotor upper limb function in children and adolescents with uCP, who experience somatosensory impairments in the upper limb. We will further explore potential behavioral and neurological predictors of therapy response. METHODS A parallel group, evaluator-blinded, phase-II, single-center RCT will be conducted for which 50 children and adolescents with uCP, aged 7 to 15 years, will be recruited. Participants will be randomized to receive 3 weekly sessions of 45 minutes of either somatosensory discrimination therapy or upper limb motor therapy for a period of 8 weeks. Stratification will be performed based on age, manual ability, and severity of tactile impairment at baseline. Sensorimotor upper limb function will be evaluated at baseline, immediately after the intervention and after 6 months follow-up. The primary outcome measure will be bimanual performance as measured with the Assisting Hand Assessment. Secondary outcomes include a comprehensive test battery to objectify somatosensory function and measures of bimanual coordination, unimanual motor function, and goal attainment. Brain imaging will be performed at baseline to investigate structural brain lesion characteristics and structural connectivity of the white matter tracts. DISCUSSION This protocol describes the design of an RCT comparing the effectiveness of somatosensory discrimination therapy and dose-matched motor therapy to improve sensorimotor upper limb function in children and adolescents with uCP. The results of this study may aid in the selection of the most effective upper limb therapy, specifically for children and adolescents with tactile impairments. TRIAL REGISTRATION ClinicalTrials.gov (NCT06006065). Registered on August 8, 2023.
Collapse
Affiliation(s)
- Lize Kleeren
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, B-3001, Belgium.
- KU Leuven, Child and Youth Institute, Leuven, B-3000, Belgium.
- Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Diepenbeek, B-3590, Belgium.
| | - Lisa Mailleux
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, B-3001, Belgium
- KU Leuven, Child and Youth Institute, Leuven, B-3000, Belgium
| | - Belinda McLean
- Curtin School of Allied Health, Faculty of Health Sciences, Curtin University, Perth, Australia
- Kids Rehab WA, Telethon Kids Institute, Perth, Australia
| | - Catherine Elliott
- Curtin School of Allied Health, Faculty of Health Sciences, Curtin University, Perth, Australia
- Kids Rehab WA, Telethon Kids Institute, Perth, Australia
| | - Griet Dequeker
- University Hospitals Leuven, Cerebral Palsy Reference Centre, Leuven, B-3000, Belgium
| | - Anja Van Campenhout
- KU Leuven, Child and Youth Institute, Leuven, B-3000, Belgium
- University Hospitals Leuven, Cerebral Palsy Reference Centre, Leuven, B-3000, Belgium
- KU Leuven, Department of Development and Regeneration, Leuven, B-3000, Belgium
| | - Jean-Jacques Orban de Xivry
- KU Leuven, Leuven Brain Institute, Leuven, B-3000, Belgium
- KU Leuven, Department of Movement Sciences, Research Group of Motor Control and Neuroplasticity, Leuven, B-3000, Belgium
| | - Geert Verheyden
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, B-3001, Belgium
| | - Els Ortibus
- KU Leuven, Child and Youth Institute, Leuven, B-3000, Belgium
- University Hospitals Leuven, Cerebral Palsy Reference Centre, Leuven, B-3000, Belgium
- KU Leuven, Department of Development and Regeneration, Leuven, B-3000, Belgium
| | - Katrijn Klingels
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, B-3001, Belgium
- Hasselt University, Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Diepenbeek, B-3590, Belgium
| | - Hilde Feys
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, B-3001, Belgium
- KU Leuven, Child and Youth Institute, Leuven, B-3000, Belgium
| |
Collapse
|
5
|
Abbott N, Love T. Bridging the Divide: Brain and Behavior in Developmental Language Disorder. Brain Sci 2023; 13:1606. [PMID: 38002565 PMCID: PMC10670267 DOI: 10.3390/brainsci13111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Developmental language disorder (DLD) is a heterogenous neurodevelopmental disorder that affects a child's ability to comprehend and/or produce spoken and/or written language, yet it cannot be attributed to hearing loss or overt neurological damage. It is widely believed that some combination of genetic, biological, and environmental factors influences brain and language development in this population, but it has been difficult to bridge theoretical accounts of DLD with neuroimaging findings, due to heterogeneity in language impairment profiles across individuals and inconsistent neuroimaging findings. Therefore, the purpose of this overview is two-fold: (1) to summarize the neuroimaging literature (while drawing on findings from other language-impaired populations, where appropriate); and (2) to briefly review the theoretical accounts of language impairment patterns in DLD, with the goal of bridging the disparate findings. As will be demonstrated with this overview, the current state of the field suggests that children with DLD have atypical brain volume, laterality, and activation/connectivity patterns in key language regions that likely contribute to language difficulties. However, the precise nature of these differences and the underlying neural mechanisms contributing to them remain an open area of investigation.
Collapse
Affiliation(s)
- Noelle Abbott
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA 92182, USA;
- San Diego State University/University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA
| | - Tracy Love
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA 92182, USA;
- San Diego State University/University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA
| |
Collapse
|
6
|
Lyons‐Ruth K, Ahtam B, Li FH, Dickerman S, Khoury JE, Sisitsky M, Ou Y, Bosquet Enlow M, Teicher MH, Grant PE. Negative versus withdrawn maternal behavior: Differential associations with infant gray and white matter during the first 2 years of life. Hum Brain Mapp 2023; 44:4572-4589. [PMID: 37417795 PMCID: PMC10365238 DOI: 10.1002/hbm.26401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Distinct neural effects of threat versus deprivation emerge by childhood, but little data are available in infancy. Withdrawn versus negative parenting may represent dimensionalized indices of early deprivation versus early threat, but no studies have assessed neural correlates of withdrawn versus negative parenting in infancy. The objective of this study was to separately assess the links of maternal withdrawal and maternal negative/inappropriate interaction with infant gray matter volume (GMV), white matter volume (WMV), amygdala, and hippocampal volume. Participants included 57 mother-infant dyads. Withdrawn and negative/inappropriate aspects of maternal behavior were coded from the Still-Face Paradigm at four months infant age. Between 4 and 24 months (M age = 12.28 months, SD = 5.99), during natural sleep, infants completed an MRI using a 3.0 T Siemens scanner. GMV, WMV, amygdala, and hippocampal volumes were extracted via automated segmentation. Diffusion weighted imaging volumetric data were also generated for major white matter tracts. Maternal withdrawal was associated with lower infant GMV. Negative/inappropriate interaction was associated with lower overall WMV. Age did not moderate these effects. Maternal withdrawal was further associated with reduced right hippocampal volume at older ages. Exploratory analyses of white matter tracts found that negative/inappropriate maternal behavior was specifically associated with reduced volume in the ventral language network. Results suggest that quality of day-to-day parenting is related to infant brain volumes during the first two years of life, with distinct aspects of interaction associated with distinct neural effects.
Collapse
Affiliation(s)
- Karlen Lyons‐Ruth
- Department of PsychiatryCambridge Hospital, Harvard Medical SchoolCambridgeMassachusettsUSA
| | - Banu Ahtam
- Fetal‐Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Frances Haofei Li
- Department of PsychiatryCambridge Hospital, Harvard Medical SchoolCambridgeMassachusettsUSA
| | - Sarah Dickerman
- Department of Psychiatry, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jennifer E. Khoury
- Department of PsychiatryCambridge Hospital, Harvard Medical SchoolCambridgeMassachusettsUSA
- Present address:
Department of PsychologyMount Saint Vincent UniversityHalifaxNova ScotiaCanada
| | - Michaela Sisitsky
- Fetal‐Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yangming Ou
- Fetal‐Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Radiology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Michelle Bosquet Enlow
- Department of PsychiatryCambridge Hospital, Harvard Medical SchoolCambridgeMassachusettsUSA
- Department of Psychiatry, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Martin H. Teicher
- Department of PsychiatryMcLean Hospital, Harvard Medical SchoolBelmontMassachusettsUSA
| | - P. Ellen Grant
- Fetal‐Neonatal Neuroimaging & Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
7
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
8
|
Radwan A, Decraene L, Dupont P, Leenaerts N, Simon-Martinez C, Klingels K, Ortibus E, Feys H, Sunaert S, Blommaert J, Mailleux L. Exploring structural connectomes in children with unilateral cerebral palsy using graph theory. Hum Brain Mapp 2023; 44:2741-2753. [PMID: 36840930 PMCID: PMC10089093 DOI: 10.1002/hbm.26241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
We explored structural brain connectomes in children with spastic unilateral cerebral palsy (uCP) and its relation to sensory-motor function using graph theory. In 46 children with uCP (mean age = 10 years 7 months ± 2 years 9 months; Manual Ability Classification System I = 15, II = 16, III = 15) we assessed upper limb somatosensory and motor function. We collected multi-shell diffusion-weighted, T1-weighted and T2-FLAIR MRI and identified the corticospinal tract (CST) wiring pattern using transcranial magnetic stimulation. Structural connectomes were constructed using Virtual Brain Grafting-modified FreeSurfer parcellations and multi-shell multi-tissue constrained spherical deconvolution-based anatomically-constrained tractography. Graph metrics (characteristic path length, global/local efficiency and clustering coefficient) of the whole brain, the ipsilesional/contralesional hemisphere, and the full/ipsilesional/contralesional sensory-motor network were compared between lesion types (periventricular white matter (PWM) = 28, cortical and deep gray matter (CDGM) = 18) and CST-wiring patterns (ipsilateral = 14, bilateral = 14, contralateral = 12, unknown = 6) using ANCOVA with age as covariate. Using elastic-net regularized regression we investigated how graph metrics, lesion volume, lesion type, CST-wiring pattern and age predicted sensory-motor function. In both the whole brain and subnetworks, we observed a hyperconnectivity pattern in children with CDGM-lesions compared with PWM-lesions, with higher clustering coefficient (p = [<.001-.047], η p 2 $$ {\eta}_p^2 $$ =[0.09-0.27]), characteristic path length (p = .003, η p 2 $$ {\eta}_p^2 $$ =0.19) and local efficiency (p = [.001-.02], η p 2 $$ {\eta}_p^2 $$ =[0.11-0.21]), and a lower global efficiency with age (p = [.01-.04], η p 2 $$ {\eta}_p^2 $$ =[0.09-0.15]). No differences were found between CST-wiring groups. Overall, good predictions of sensory-motor function were obtained with elastic-net regression (R2 = .40-.87). CST-wiring pattern was the strongest predictor for motor function. For somatosensory function, all independent variables contributed equally to the model. In conclusion, we demonstrated the potential of structural connectomics in understanding disease severity and brain development in children with uCP.
Collapse
Affiliation(s)
- Ahmed Radwan
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Lisa Decraene
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Rehabilitation Research Centre (REVAL), Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium.,KU Leuven Child & Youth Institute, Leuven, Belgium
| | - Patrick Dupont
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Neurosciences, Lab for Cognitive Neurology, KU Leuven, Leuven, Belgium
| | - Nicolas Leenaerts
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Neurosciences, Mind-Body Research, KU Leuven, Leuven, Belgium
| | - Cristina Simon-Martinez
- Institute of Information Systems, University of Applied Sciences Western Switzerland (HES-SO) Valais-Wallis, Sierre, Switzerland
| | - Katrijn Klingels
- Rehabilitation Research Centre (REVAL), Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Els Ortibus
- KU Leuven Child & Youth Institute, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Hilde Feys
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Child & Youth Institute, Leuven, Belgium
| | - Stefan Sunaert
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Jeroen Blommaert
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.,KU Leuven Child & Youth Institute, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lisa Mailleux
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,KU Leuven Child & Youth Institute, Leuven, Belgium
| |
Collapse
|
9
|
Zapparrata NM, Brooks PJ, Ober T. Developmental Language Disorder Is Associated With Slower Processing Across Domains: A Meta-Analysis of Time-Based Tasks. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:325-346. [PMID: 36603228 DOI: 10.1044/2022_jslhr-22-00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
PURPOSE Individuals with developmental language disorder (DLD) often exhibit slower processing on time-based tasks in comparison with age-matched peers. Processing speed has been linked to various linguistic skills and might serve as a global indicator of individual differences in language abilities. Despite an extensive literature on processing speed in DLD, it remains unclear whether slower processing is domain general or restricted to linguistic and/or auditory tasks. METHOD This meta-analysis used robust variance estimation to compare response/reaction times (RTs) of DLD and age-matched groups (N = 812 DLD, 870 neurotypical; M age [DLD] = 8.9 years, range: 4.3-22.7 years). Moderators included task (simple RT, choice RT, naming, congruent/baseline conditions of interference control tasks), stimulus type (linguistic/nonlinguistic), stimulus modality (auditory/nonauditory), and response modality (verbal/nonverbal). Age and publication year were covariates. RESULTS The overall effect based on 46 studies and 144 estimates indicated longer mean RTs in DLD groups (g = .47, p < .001, 95% CI [.38, .55]). Moderator analyses indicated larger effects when tasks required verbal as opposed to nonverbal responses. No other moderators approached significance. All subgroup analyses were significant, indicating longer mean RTs in DLD groups across tasks, stimulus types, stimulus modalities, and response modalities. CONCLUSIONS Individuals with DLD exhibit longer RTs across verbal and nonverbal tasks, which may contribute to observed difficulties in language, motor skills, and executive functioning. Simple processing speed measures should be included in screening for language delays but may not be suitable for differential diagnosis, given that slower processing may occur across multiple disorders. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.21809355.
Collapse
Affiliation(s)
| | - Patricia J Brooks
- Program in Educational Psychology, CUNY Graduate Center, New York, NY
- Department of Psychology, College of Staten Island, NY
| | - Teresa Ober
- Department of Psychology, University of Notre Dame, IN
| |
Collapse
|
10
|
Hernández D, Kärkkäinen S, Tulonen T, Helenius P, Salmelin R, Parviainen T. Attentional modulation of interhemispheric (a)symmetry in children with developmental language disorder. Sci Rep 2022; 12:17904. [PMID: 36284164 PMCID: PMC9596496 DOI: 10.1038/s41598-022-22820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/19/2022] [Indexed: 01/20/2023] Open
Abstract
The nature of auditory processing problems in children with developmental language disorder (DLD) is still poorly understood. Much research has been devoted to determining the extent to which DLD is associated with general auditory versus language-specific dysfunction. However, less emphasis has been given to the role of different task conditions in these dysfunctions. We explored whether children with DLD demonstrate atypical interhemispheric asymmetry during the auditory processing of speech and non-speech sounds and whether this interhemispheric balance is modulated by attention. Magnetoencephalography was used to record auditory evoked fields in 18 children (9 to 10 years old), 9 with DLD and 9 with language typical development, during active or passive listening to speech and non-speech sounds. A linear mixed model analysis revealed a bilateral effect of attention in both groups. Participants with DLD demonstrated atypical interhemispheric asymmetry, specifically in the later (185-600 ms) time window but only during the passive listening condition. During the active task, the DLD group did not differ from the typically developed children in terms of hemispheric balance of activation. Our results support the idea of an altered interhemispheric balance in passive auditory response properties in DLD. We further suggest that an active task condition, or top-down attention, can help to regain leftward lateralization, particularly in a later stage of activation. Our study highlights the highly dynamic and interhemispheric nature of auditory processing, which may contribute to the variability in reports of auditory language processing deficits in DLD.
Collapse
Affiliation(s)
- Doris Hernández
- Center for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Kärki, Mattilanniemi 6, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Salme Kärkkäinen
- Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Terhi Tulonen
- Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Päivi Helenius
- Division of Child Neurology, Helsinki University Hospital, HUS, P.O. Box 100, 00029, Helsinki, Finland
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076, Espoo, Finland
- Aalto NeuroImaging, Aalto University, P.O. Box 15100, 00076, Espoo, Finland
| | - Tiina Parviainen
- Center for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Kärki, Mattilanniemi 6, P.O. Box 35, 40014, Jyväskylä, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076, Espoo, Finland
| |
Collapse
|
11
|
Cheema K, Sweneya S, Craig J, Huynh T, Ostevik AV, Reed A, Cummine J. An investigation of white matter properties as they relate to spelling behaviour in skilled and impaired readers. Neuropsychol Rehabil 2022:1-29. [PMID: 35323090 DOI: 10.1080/09602011.2022.2053168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RESULTS While the inferior longitudinal fasciculus was more strongly related to spelling behaviour in skilled adults, the uncinate fasciculus was more strongly related to spelling behaviour in impaired adults. We found strong left lateralization of the arcuate fasciculus and inferior longitudinal fasciculus in both groups. However, lateralization of the inferior frontal occipital fasciculus was more strongly related to spelling response time behaviour in skilled adults, whereas lateralization of the uncinate fasciculus was more strongly related to spelling accuracy behaviour in the impaired adults. CONCLUSION This study provides some useful information for understanding the underlying white matter pathways that support spelling in skilled and impaired adults and underscore the advantage of adopting multiple spelling tasks and outcomes (i.e., response time and accuracy) to better characterize brain-behaviour relationships in skilled and impaired adults.
Collapse
Affiliation(s)
- Kulpreet Cheema
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Sarah Sweneya
- Faculty of Education, University of Alberta, Edmonton, AB, Canada
| | - Julia Craig
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Truc Huynh
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Amberley V Ostevik
- Department of Communications Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alesha Reed
- Department of Communications Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Jacqueline Cummine
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Communications Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Jeong J, Banerjee S, Lee M, O'Hara N, Behen M, Juhász C, Dong M. Deep reasoning neural network analysis to predict language deficits from psychometry-driven DWI connectome of young children with persistent language concerns. Hum Brain Mapp 2021; 42:3326-3338. [PMID: 33949048 PMCID: PMC8193535 DOI: 10.1002/hbm.25437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
This study investigated whether current state-of-the-art deep reasoning network analysis on psychometry-driven diffusion tractography connectome can accurately predict expressive and receptive language scores in a cohort of young children with persistent language concerns (n = 31, age: 4.25 ± 2.38 years). A dilated convolutional neural network combined with a relational network (dilated CNN + RN) was trained to reason the nonlinear relationship between "dilated CNN features of language network" and "clinically acquired language score". Three-fold cross-validation was then used to compare the Pearson correlation and mean absolute error (MAE) between dilated CNN + RN-predicted and actual language scores. The dilated CNN + RN outperformed other methods providing the most significant correlation between predicted and actual scores (i.e., Pearson's R/p-value: 1.00/<.001 and .99/<.001 for expressive and receptive language scores, respectively) and yielding MAE: 0.28 and 0.28 for the same scores. The strength of the relationship suggests elevated probability in the prediction of both expressive and receptive language scores (i.e., 1.00 and 1.00, respectively). Specifically, sparse connectivity not only within the right precentral gyrus but also involving the right caudate had the strongest relationship between deficit in both the expressive and receptive language domains. Subsequent subgroup analyses inferred that the effectiveness of the dilated CNN + RN-based prediction of language score(s) was independent of time interval (between MRI and language assessment) and age of MRI, suggesting that the dilated CNN + RN using psychometry-driven diffusion tractography connectome may be useful for prediction of the presence of language disorder, and possibly provide a better understanding of the neurological mechanisms of language deficits in young children.
Collapse
Affiliation(s)
- Jeong‐Won Jeong
- Departments of PediatricsWayne State UniversityDetroitMichiganUSA
- NeurologyWayne State UniversityDetroitMichiganUSA
- Translational Neuroscience ProgramWayne State UniversityDetroitMichiganUSA
- Translational Imaging LaboratoryChildren's Hospital of MichiganDetroitMichiganUSA
| | | | - Min‐Hee Lee
- Departments of PediatricsWayne State UniversityDetroitMichiganUSA
- Translational Imaging LaboratoryChildren's Hospital of MichiganDetroitMichiganUSA
| | - Nolan O'Hara
- Translational Neuroscience ProgramWayne State UniversityDetroitMichiganUSA
- Translational Imaging LaboratoryChildren's Hospital of MichiganDetroitMichiganUSA
| | - Michael Behen
- Departments of PediatricsWayne State UniversityDetroitMichiganUSA
- NeurologyWayne State UniversityDetroitMichiganUSA
- Translational Imaging LaboratoryChildren's Hospital of MichiganDetroitMichiganUSA
| | - Csaba Juhász
- Departments of PediatricsWayne State UniversityDetroitMichiganUSA
- NeurologyWayne State UniversityDetroitMichiganUSA
- Translational Neuroscience ProgramWayne State UniversityDetroitMichiganUSA
- Translational Imaging LaboratoryChildren's Hospital of MichiganDetroitMichiganUSA
| | - Ming Dong
- Computer ScienceWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
13
|
The Neurological Basis of Developmental Dyslexia and Related Disorders: A Reappraisal of the Temporal Hypothesis, Twenty Years on. Brain Sci 2021; 11:brainsci11060708. [PMID: 34071786 PMCID: PMC8229928 DOI: 10.3390/brainsci11060708] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
In a now-classic article published a couple of decades ago (Brain, 2000; 123: 2373-2399), I proposed an "extended temporal processing deficit hypothesis of dyslexia", suggesting that a deficit in temporal processing could explain not only language-related peculiarities usually noticed in dyslexic children, but also a wider range of symptoms related to impaired processing of time in general. In the present review paper, I will revisit this "historical" hypothesis both in the light of a new clinical perspective, including the central yet poorly explained notion of comorbidity, and also taking a new look at the most recent experimental work, mainly focusing on brain imaging data. First, consistent with daily clinical practice, I propose to distinguish three groups of children who fail to learn to read, of fairly equal occurrence, who share the same initial presentation (difficulty in mastering the rules of grapheme-phoneme correspondence) but with differing associated signs and/or comorbid conditions (language disorders in the first group, attentional deficits in the second one, and motor coordination problems in the last one), thus suggesting, at least in part, potentially different triggering mechanisms. It is then suggested, in the light of brain imaging information available to date, that the three main clinical presentations/associations of cognitive impairments that compromise reading skills acquisition correspond to three distinct patterns of miswiring or "disconnectivity" in specific brain networks which have in common their involvement in the process of learning and their heavy reliance on temporal features of information processing. With reference to the classic temporal processing deficit of dyslexia and to recent evidence of an inability of the dyslexic brain to achieve adequate coupling of oscillatory brain activity to the temporal features of external events, a general model is proposed according to which a common mechanism of temporal uncoupling between various disconnected-and/or mis-wired-processors may account for distinct forms of specific learning disorders, with reading impairment being a more or less constant feature. Finally, the potential therapeutic implications of such a view are considered, with special emphasis on methods seeking to enhance cross-modal connectivity between separate brain systems, including those using rhythmic and musical training in dyslexic patients.
Collapse
|
14
|
Shekari E, Goudarzi S, Shahriari E, Joghataei MT. Extreme capsule is a bottleneck for ventral pathway. IBRO Neurosci Rep 2021; 10:42-50. [PMID: 33861816 PMCID: PMC8019950 DOI: 10.1016/j.ibneur.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022] Open
Abstract
As neuroscience literature suggests, extreme capsule is considered a whiter matter tract. Nevertheless, it is not clear whether extreme capsule itself is an association fiber pathway or only a bottleneck for other association fibers to pass. Via our review, investigating anatomical position, connectivity and cognitive role of the bundles in extreme capsule, and by analyzing data from the dissection, it can be argued that extreme capsule is probably a bottleneck for the passage of uncinated fasciculus (UF) and inferior fronto-occipital fasciculus (IFOF), and these fasciculi are responsible for the respective roles in language processing.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sepideh Goudarzi
- Department of pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
- Corresponding author.
| |
Collapse
|
15
|
Jiménez de la Peña M, Jiménez de Domingo A, Tirado P, Calleja-Pérez B, Alcaraz LA, Álvarez S, Williams J, Hagman JR, Németh AH, Fernández-Jaén A. Neuroimaging Findings in Patients with EBF3 Mutations: Report of Two Cases. Mol Syndromol 2021; 12:186-193. [PMID: 34177436 DOI: 10.1159/000513583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Early B cell factor 3 (EBF3) is a transcription factor involved in brain development. Heterozygous, loss-of-function mutations in EBF3 have been reported in an autosomal dominant neurodevelopmental syndrome characterized by hypotonia, ataxia, and developmental delay (sometimes described as "HADD"s). We report 2 unrelated cases with novel de novo EBF3 mutations: c.455G>T (p.Arg152Leu) and c.962dup (p.Tyr321*) to expand the genotype/phenotype correlations of this disorder; clinical, neuropsychological, and MRI studies were used to define the phenotype. IQ was in the normal range and diffusion tensor imaging revealed asymmetric alterations of the longitudinal fasciculus in both cases. Our results demonstrate that EBF3 mutations can underlie neurodevelopmental disorders without intellectual disability. Long tract abnormalities have not been previously recognized and suggest that they may be an unrecognized and characteristic feature in this syndrome.
Collapse
Affiliation(s)
| | | | - Pilar Tirado
- Department of Pediatric Neurology, Hospital Universitario La Paz, Madrid, Spain
| | | | | | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Jonathan Williams
- Oxford Medical Genetics Laboratories, Churchill Hospital, Oxford, United Kingdom
| | - James R Hagman
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, and Medicine School, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Papadatou-Pastou M, Panagiotidou DA, Abbondanza F, Fischer U, Paracchini S, Karagiannakis G. Hand preference and Mathematical Learning Difficulties: New data from Greece, the United Kingdom, and Germany and two meta-analyses of the literature. Laterality 2021; 26:485-538. [PMID: 33823756 DOI: 10.1080/1357650x.2021.1906693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increased rates of atypical handedness are observed in neurotypical individuals who are low-performing in mathematical tasks as well as in individuals with special educational needs, such as dyslexia. This is the first investigation of handedness in individuals with Mathematical Learning Difficulties (MLD). We report three new studies (N = 134; N = 1,893; N = 153) and two sets of meta-analyses (22 studies; N = 3,667). No difference in atypical hand preference between MLD and Typically Achieving (TA) individuals was found when handedness was assessed with self-report questionnaires, but weak evidence of a difference was found when writing hand was the handedness criterion in Study 1 (p = .049). Similarly, when combining data meta-analytically, no hand preference differences were detected. We suggest that: (i) potential handedness effects require larger samples, (ii) direction of hand preference is not a sensitive enough measure of handedness in this context, or that (iii) increased rates of atypical hand preference are not associated with MLD. The latter scenario would suggest that handedness is specifically linked to language-related conditions rather than conditions related to cognitive abilities at large. Future studies need to consider hand skill and degree of hand preference in MLD.
Collapse
Affiliation(s)
- Marietta Papadatou-Pastou
- School of Education, National and Kapodistrian University of Athens, Athens, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Filippo Abbondanza
- School of Medicine, North Haugh, University of St Andrews, St Andrews, UK
| | - Ursula Fischer
- Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Silvia Paracchini
- School of Medicine, North Haugh, University of St Andrews, St Andrews, UK
| | - Giannis Karagiannakis
- Department of Psychology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Lee JC, Dick AS, Tomblin JB. Altered brain structures in the dorsal and ventral language pathways in individuals with and without developmental language disorder (DLD). Brain Imaging Behav 2020; 14:2569-2586. [PMID: 31933046 PMCID: PMC7354888 DOI: 10.1007/s11682-019-00209-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developmental Language Disorder (DLD) is a neurodevelopmental disorder characterized by difficulty learning and using language, and this difficulty cannot be attributed to other developmental conditions. The aim of the current study was to examine structural differences in dorsal and ventral language pathways between adolescents and young adults with and without DLD (age range: 14-27 years) using anatomical magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Results showed age-related structural brain differences in both dorsal and ventral pathways in individuals with DLD. These findings provide evidence for neuroanatomical correlates of persistent language deficits in adolescents/young adults with DLD, and further suggest that this brain-language relationship in DLD is better characterized by taking account the dynamic course of the disorder along development.
Collapse
Affiliation(s)
- Joanna C Lee
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA.
| | | | - J Bruce Tomblin
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
18
|
Mailleux L, Simon-Martinez C, Radwan A, Blommaert J, Gooijers J, Wenderoth N, Klingels K, Ortibus E, Sunaert S, Feys H. White matter characteristics of motor, sensory and interhemispheric tracts underlying impaired upper limb function in children with unilateral cerebral palsy. Brain Struct Funct 2020; 225:1495-1509. [PMID: 32318818 DOI: 10.1007/s00429-020-02070-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/11/2020] [Indexed: 12/19/2022]
Abstract
This study explored the role of lesion timing (periventricular white matter versus cortical and deep grey matter lesions) and type of corticospinal tract (CST) wiring pattern (contralateral, bilateral, ipsilateral) on white matter characteristics of the CST, medial lemniscus, superior thalamic radiations and sensorimotor transcallosal fibers in children with unilateral cerebral palsy (CP), and examined the association with upper limb function. Thirty-four children (mean age 10 years 7 months ± 2 years 3 months) with unilateral CP underwent a comprehensive upper limb evaluation and diffusion weighted imaging (75 directions, b value 2800). Streamline count, fractional anisotropy and mean diffusivity were extracted from the targeted tracts and asymmetry indices were additionally calculated. Transcranial magnetic stimulation was applied to assess the CST wiring pattern. Results showed a more damaged CST in children with cortical and deep grey matter lesions (N = 10) and ipsilateral CST projections (N = 11) compared to children with periventricular white matter lesions (N = 24; p < 0.02) and contralateral CST projections (N = 9; p < 0.025), respectively. Moderate to high correlations were found between diffusion metrics of the targeted tracts and upper limb function (r = 0.45-0.72; p < 0.01). Asymmetry indices of the CST and sensory tracts could best explain bimanual performance (74%, p < 0.0001) and unimanual capacity (50%, p = 0.004). Adding lesion timing and CST wiring pattern did not further improve the model of bimanual performance, while for unimanual capacity lesion timing was additionally retained (58%, p = 0.0002). These results contribute to a better understanding of the underlying neuropathology of upper limb function in children with unilateral CP and point towards a clinical potential of tractography.
Collapse
Affiliation(s)
- Lisa Mailleux
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
| | | | - Ahmed Radwan
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | | | - Nicole Wenderoth
- Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Katrijn Klingels
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,BIOMED, Rehabilitation Research Center (REVAL), UHasselt, Diepenbeek, Belgium
| | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Hilde Feys
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Lee MH, O'Hara NB, Behen ME, Jeong JW. Altered efficiency of white matter connections for language function in children with language disorder. BRAIN AND LANGUAGE 2020; 203:104743. [PMID: 32004807 PMCID: PMC9022213 DOI: 10.1016/j.bandl.2020.104743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
To characterize structural white matter substrates associated with language functions in children with language disorders (LD), a psychometry-driven diffusion tractography network was investigated with canonical correlation analysis (CCA), which can reliably predict expressive and receptive language scores from the nodal efficiency (NE) of the obtained network. The CCA found that the NE values of six regions: left inferior-frontal-opercular, left insular, left angular gyrus, left superior-temporal-gyrus, right hippocampus, and right cerebellar-lobule were highly correlated with language scores (ρexpressive/ρreceptive = 0.609/0.528), yielding significant differentiation of LD from controls using new imaging predictors uexpressive (F = 15.024, p = .0003) and ureceptive (F = 7.421, p = .009). This study demonstrates the utility of intrinsic language network analyses in distinguishing and potentially subtyping the type and severity of language deficit, especially in very young children (≤3 years) with LD. The use of structural imaging to identify children with persisting language disorder could prove useful in understanding the etiology of language disorder.
Collapse
Affiliation(s)
- Min-Hee Lee
- Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA; Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nolan B O'Hara
- Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA; Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael E Behen
- Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA; Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeong-Won Jeong
- Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA; Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA; Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|