1
|
Wang L, Xiong X, Liu J, Liu R, Liao J, Li F, Lu S, Wang W, Zhuo L, Li H. Gray matter structural and functional brain abnormalities in Parkinson's disease: a meta-analysis of VBM and ALFF data. J Neurol 2025; 272:276. [PMID: 40106017 DOI: 10.1007/s00415-025-12934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Previous studies based on resting-state functional imaging and voxel-based morphometry (VBM) have revealed structural and functional alterations in several brain regions in patients with Parkinson's disease (PD), but their results have been inconsistent. Furthermore, no studies have investigated specific and common functional and structural alterations in PD. METHODS The whole-brain voxel-wise meta-analyses on the VBM and amplitude of low-frequency fluctuation (ALFF) studies were conducted using the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software, respectively, with multimodal overlapping to comprehensively identify the gray matter volume (GMV) and spontaneous functional activity changes in patients with PD. RESULTS A total of 30 independent studies for ALFF (1413 PD and 1424 HCs) and 27 independent studies for VBM (1236 PD and 1185 HCs) were included. Compared with HCs, patients with PD displayed significantly decreased spontaneous functional activity in the left striatum. For the VBM meta-analysis, patients with PD showed significantly decreased GMV in the right temporal pole: superior temporal gyrus (extending to the right hippocampus, parahippocampal gyrus, and amygdala), the left superior temporal gyrus (extending to the left insula, and temporal pole: superior temporal gyrus), and the left striatum. Furthermore, after overlapping functional and structural differences, patients with PD displayed a conjoint decrease of spontaneous functional activity and GMV in the left striatum. CONCLUSION The multimodal meta-analysis revealed that PD showed similar pattern of aberrant brain functional activity and structure in the striatum. In addition, some brain regions within the within the temporal lobe and limbic system displayed only structural deficits. These findings provide useful insights for understanding the underlying pathophysiology of PD.
Collapse
Affiliation(s)
- Lu Wang
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
- Medical Imaging College, North Sichuan Medical College, Nanchong, 637000, China
| | - Xin Xiong
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Junqi Liu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Ruishan Liu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Juan Liao
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
- Medical Imaging College, North Sichuan Medical College, Nanchong, 637000, China
| | - Fan Li
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Shangxiong Lu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Weiwei Wang
- Department of Psychiatry, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Lihua Zhuo
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China.
| | - Hongwei Li
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China.
| |
Collapse
|
2
|
Carey G, Kuijf ML, Michielse S, Wolters AF, Dujardin K, Leentjens AF. Reduced volume of the mediodorsal and anteroventral thalamus is associated with anxiety in Parkinson's disease: A cross-sectional 7-tesla MRI study. JOURNAL OF PARKINSON'S DISEASE 2025; 15:338-348. [PMID: 39973507 DOI: 10.1177/1877718x241308141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundParkinson's disease (PD)-related anxiety occurs frequently and may be associated with imbalance between anxiety-related circuits. While the thalamus is a shared region of these circuits, its role in PD-related anxiety has not been explored so far.ObjectiveTo identify changes in volume of the thalamus and its subnuclei in patients with PD-related anxiety.MethodsCognitively intact PD patients (n = 105) were divided into two groups based on their score on the Parkinson anxiety scale (PAS): 31 PD patients had anxiety (Anx-PD) and 74 did not have anxiety (non-Anx-PD). Forty-five healthy control subjects were included. Participants underwent 7-Tesla MRI scanning. Using automatic segmentation, the volumes of the thalamus and its subnuclei were measured, compared between the groups and regressed on the PAS.ResultsThe volumes of the thalamus and its subnuclei did not significantly differ between the groups. However, in anxious PD patients, more severe anxiety was strongly associated with a smaller volume of the right medial thalamic subregion, specifically the right mediodorsal magnocellular nucleus and the right mediodorsal parvocellular nucleus (R = 0.63, ßPAS = -0.546, p-valuemodel = 0.007 and R = 0.60, ßPAS = -0.547, p-valuemodel = 0.016, respectively), and of the left anteroventral thalamus (R = 0.73, FDR p-valuemodel = 0.002, ßPAS = -0.407, p-valuePAS = 0.01).ConclusionsA reduced volume of the mediodorsal and anteroventral thalamus, overlapping structures between the anxiety related circuits, are associated with more severe PD-related anxiety and may explain its high prevalence in the disease.
Collapse
Affiliation(s)
- Guillaume Carey
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, The Netherlands
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Department of Neurology and Movement Disorders, Lille University Medical Centre, Lille, France
| | - Mark L Kuijf
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stijn Michielse
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Amée F Wolters
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Neurology, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Kathy Dujardin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Department of Neurology and Movement Disorders, Lille University Medical Centre, Lille, France
| | - Albert Fg Leentjens
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
3
|
Tan S, Wen J, Qin J, Duanmu X, Wu C, Yuan W, Zheng Q, Guo T, Zhou C, Wu H, Chen J, Wu J, Hong H, Zhu B, Fang Y, Yan Y, Zhang B, Zhang M, Guan X, Xu X. Wider and faster degeneration of white matter in Parkinson's disease with possible REM sleep behaviour disorder. Sleep Med 2025; 126:97-106. [PMID: 39662278 DOI: 10.1016/j.sleep.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND In Parkinson's disease (PD), rapid eye movement (REM) sleep behaviour disorder (RBD) signifies a poorer prognosis, yet its impact on white matter (WM) degeneration remains unclear. The study examined the effect of RBD on WM alterations in PD progression. METHODS The study included 45 PD patients with possible RBD (PD-pRBD), 38 PD patients without possible RBD (PD-npRBD), and 79 healthy controls (HC). All patients underwent clinical assessments and diffusion MRI scans at least once a year for up to 4 visits. 79 HC underwent the same protocol at baseline. WM metrics, including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD), were calculated using tract-based spatial statistics. Linear mixed-effects models were conducted to examine the changes in clinical features and WM fibers. RESULTS At baseline, PD-npRBD showed increased RD in several regions, predominantly in bilateral uncinate fasciculus (UF) and inferior longitudinal fasciculus (ILF), compared to HC (PFDR<0.05). During follow-up, PD-npRBD had further FA decrease in left UF and ILF (PFDR<0.05). PD-pRBD showed reduced FA in several regions relative to HC at baseline (PFDR<0.05), and faster FA decline in left UF and ILF than PD-npRBD during follow-up, with more extensive FA decrease in other regions such as anterior thalamic radiation and inferior fronto-occipital fasciculus (PFDR<0.05). Moreover, increased RD in the left corticospinal tract correlated with motor symptoms (p = 0.045) in PD-pRBD. CONCLUSIONS PD patients with pRBD demonstrated more extensive WM degeneration and accelerated degeneration in the left ILF and UF during the disease course. However, due to the lack of PSG verification, these results should be interpreted cautiously while directly relating to RBD. These findings provide new insights into the neural structural basis associated with the potential impact of RBD on PD progression.
Collapse
Affiliation(s)
- Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijin Yuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianshi Zheng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingting Zhu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yuelin Fang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Firbank MJ, Pasquini J, Best L, Foster V, Sigurdsson HP, Anderson KN, Petrides G, Brooks DJ, Pavese N. Cerebellum and basal ganglia connectivity in isolated REM sleep behaviour disorder and Parkinson's disease: an exploratory study. Brain Imaging Behav 2024; 18:1428-1437. [PMID: 39320619 DOI: 10.1007/s11682-024-00939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
REM sleep behaviour disorder (RBD) is a parasomnia characterised by dream-enacting behaviour with loss of muscle atonia during REM sleep and is a prodromal feature of α-synucleinopathies like Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Although cortical-to-subcortical connectivity is well-studied in RBD, cerebellar and subcortical nuclei reciprocal connectivity is less established. Nonetheless, it could be relevant since RBD pathology involves brainstem structures with an ascending gradient. In this study, we utilised resting-state functional MRI to investigate 13 people with isolated RBD (iRBD), 17 with Parkinson's disease and 16 healthy controls. We investigated the connectivity between the basal ganglia, thalamus and regions of the cerebellum. The cerebellum was segmented using a functional atlas, defined by a resting-state network-based parcellation, rather than an anatomical one. Controlling for age, we found a significant group difference (F4,82 = 5.47, pFDR = 0.017) in cerebellar-thalamic connectivity, with iRBD significantly lower compared to both control and Parkinson's disease. Specifically, cerebellar areas involved in this connectivity reduction were related to the default mode, language and fronto-parietal resting-state networks. Our findings show functional connectivity abnormalities in subcortical structures that are specific to iRBD and may be relevant from a pathophysiological standpoint. Further studies are needed to investigate how connectivity changes progress over time and whether specific changes predict disease course or phenoconversion.
Collapse
Affiliation(s)
- Michael J Firbank
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Jacopo Pasquini
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Best
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Victoria Foster
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Hilmar P Sigurdsson
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Kirstie N Anderson
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - George Petrides
- Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - David J Brooks
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus, Denmark
| | - Nicola Pavese
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Pardo J, Montal V, Campabadal A, Oltra J, Uribe C, Roura I, Bargalló N, Martí MJ, Compta Y, Iranzo A, Fortea J, Junqué C, Segura B. Cortical Macro- and Microstructural Changes in Parkinson's Disease with Probable Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2024; 39:814-824. [PMID: 38456361 DOI: 10.1002/mds.29761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Evidence regarding cortical atrophy patterns in Parkinson's disease (PD) with probable rapid eye movement sleep behavior disorder (RBD) (PD-pRBD) remains scarce. Cortical mean diffusivity (cMD), as a novel imaging biomarker highly sensitive to detecting cortical microstructural changes in different neurodegenerative diseases, has not been investigated in PD-pRBD yet. OBJECTIVES The aim was to investigate cMD as a sensitive measure to identify subtle cortical microstructural changes in PD-pRBD and its relationship with cortical thickness (CTh). METHODS Twenty-two PD-pRBD, 31 PD without probable RBD (PD-nonpRBD), and 28 healthy controls (HC) were assessed using 3D T1-weighted and diffusion-weighted magnetic resonance imaging on a 3-T scanner and neuropsychological testing. Measures of cortical brain changes were obtained through cMD and CTh. Two-class group comparisons of a general linear model were performed (P < 0.05). Cohen's d effect size for both approaches was computed. RESULTS PD-pRBD patients showed higher cMD than PD-nonpRBD patients in the left superior temporal, superior frontal, and precentral gyri, precuneus cortex, as well as in the right middle frontal and postcentral gyri and paracentral lobule (d > 0.8), whereas CTh did not detect significant differences. PD-pRBD patients also showed increased bilateral posterior cMD in comparison with HCs (d > 0.8). These results partially overlapped with CTh results (0.5 < d < 0.8). PD-nonpRBD patients showed no differences in cMD when compared with HCs but showed cortical thinning in the left fusiform gyrus and lateral occipital cortex bilaterally (d > 0.5). CONCLUSIONS cMD may be more sensitive than CTh displaying significant cortico-structural differences between PD subgroups, indicating this imaging biomarker's utility in studying early cortical changes in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Grants
- PID2020-114640GB-I00/AEI/10.13039/501100011033 Ministerio de Economía y Competitividad
- H2020-SC1-BHC-2018-2020/GA 965422 European Union's Horizon 2020, "MES-CoBraD"
- FI18/00275 Instituto de Salud Carlos III
- IIBSP-DOW-2020-151 Departament de Salut, Generalitat de Catalunya, Fundación Tatiana Pérez de Guzmán el Bueno
- PRE2018-086675 Ministerio de Ciencia, Innovación y Universidades
- PI20/01473 Fondo de Investigaciones Sanitario, Carlos III Health Institute
- SGR 2021SGR00801 Generalitat de Catalunya
- 1R01AG056850-01A1 CIBERNED Program 1, National Institutes of Health (NIH) grants
- 3RF1AG056850-01S1 CIBERNED Program 1, National Institutes of Health (NIH) grants
- AG056850 CIBERNED Program 1, National Institutes of Health (NIH) grants
- R01AG061566 CIBERNED Program 1, National Institutes of Health (NIH) grants
- R21AG056974 CIBERNED Program 1, National Institutes of Health (NIH) grants
- 888692 H2020 Marie Skłodowska-Curie Actions
- LCF/BQ/DR22/11950012 'la Caixa' Foundation
- PRE2021-099689 Ministerio de Ciencia e Innovación
- CEX2021-001159-M María de Maeztu Unit of Excellence (Institute of Neurosciences, University of Barcelona), Ministry of Science and Innovation
Collapse
Affiliation(s)
- Jèssica Pardo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
| | - Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Neurology Service, Consorci Corporació Sanitària Parc Taulí de Sabadell, Barcelona, Spain
| | - Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carme Uribe
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Ignacio Roura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Bargalló
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Imaging Diagnostic Center (CDI), Hospital Clínic Universitari de Barcelona, Barcelona, Spain
| | - Maria J Martí
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Parkinson's Disease and Movement Disorders Unit, Hospital Clínic Universitari de Barcelona, UBNeuro Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Yaroslau Compta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Parkinson's Disease and Movement Disorders Unit, Hospital Clínic Universitari de Barcelona, UBNeuro Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Alex Iranzo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Sleep Disorders Center, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Carme Junqué
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Bàrbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
| |
Collapse
|
6
|
Liu L, Shi Z, Gan J, Liu S, Wen C, Yang Y, Yang F, Ji Y. Characterization of de novo Dementia with Lewy Body with different duration of rapid eye movement sleep behavior disorder. Sleep Med 2024; 114:101-108. [PMID: 38176204 DOI: 10.1016/j.sleep.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Cognitive disorder, parkinsonism, autonomic dysfunction (AuD) and rapid eye movement sleep behavior disorder (RBD) can occur prior to or simultaneously with Dementia with Lewy Body (DLB) onset. RBD is generally linked with progressive neurodegenerative traits. However, associations between RBD with DLB, RBD without DLB, and RBD duration effects on DLB symptoms remain unclear. OBJECTIVES To examine DLB symptom frequency and subtypes in RBD, and explore the effects of different RBD onset times on symptoms in de novo DLB patients. METHODS In this multicenter investigation, we consecutively recruited 271 de novo DLB patients. All had standardized clinical and comprehensive neuropsychological evaluations. Subgroup analyses, performed based on the duration of RBD confirmed by polysomnography before the DLB diagnosis, we compared the proportion of patients with cognitive impairment, parkinsonism, and AuD features between groups. RESULTS Parkinsonism and AuD incidences were significantly elevated in DLB patients with RBD when compared with patients without RBD. Subgroup analyses indicated no significant differences in parkinsonism between DLB patients who developed RBD ≥10 years prior to the DLB diagnosis and DLB patients without RBD. The incidence of non-tremor-predominant parkinsonism and AuD was significantly higher in DLB patients whose RBD duration before the DLB diagnosis was <10 years when compared with DLB patients without RBD. CONCLUSIONS We identified significant symptom and phenotypic variability between DLB patients with and without RBD. Also, different RBD duration effects before the DLB diagnosis had a significant impact on symptomatic phenotypes, suggesting the existence of a slowly progressive DLB neurodegenerative subtype.
Collapse
Affiliation(s)
- Lixin Liu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China; The Psycho Department of Beijing Geriatric Hospital, Beijing, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Chen Wen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yaqi Yang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Fan Yang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yong Ji
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China.
| |
Collapse
|
7
|
Ghaderi S, Karami A, Ghalyanchi-Langeroudi A, Abdi N, Sharif Jalali SS, Rezaei M, Kordestani-Moghadam P, Banisharif S, Jalali M, Mohammadi S, Mohammadi M. MRI findings in movement disorders and associated sleep disturbances. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:77-94. [PMID: 37457325 PMCID: PMC10349287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND One of the most useful tools for identifying sleep disturbances is neuroimaging, especially magnetic resonance imaging (MRI). This review research was to look at the role of MRI findings in movement disorders and sleep disturbances. METHODS This review collects all MRI data on movement disorders and sleep disruptions. Between 2000 and 2022, PubMed and Google Scholar were utilized to find original English publications and reviews. According to the inclusion and exclusion criteria, around 100 publications were included. We only looked at research that explored MRI modality together with movement problems, sleep disorders, and brain area involvement. Most of the information focuses on movement irregularities and sleep interruptions. RESULTS Movement disorders such as Parkinson's disease (PD), Huntington's disease (HD), neuromuscular diseases, rapid eye movement (REM) sleep behavior movement disorder (RBD), cerebellar movement disorders, and brainstem movement disorders are assessed using MRI-based neuroimaging techniques. Some of the brain areas were associated with disorders in movement abnormalities and related sleep disturbances. This review found that many people with mobility disorders also have sleep problems. Some brain areas' malfunctions may cause motor and sleep issues. CONCLUSION Neuroimaging helps us understand the sleep difficulties associated with movement disorders by examining the structural and functional implications of movement disorders and sleep disturbances.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehran, Iran
| | - Asra Karami
- Department of Medical Physics, School of Medicine, Iran University of Medical SciencesTehran, Iran
| | - Azadeh Ghalyanchi-Langeroudi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical SciencesTehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR)Tehran, Iran
| | - Negar Abdi
- Department of Radiology, Faculty of Paramedical Sciences, Kurdistan University of Medical SciencesSanandaj, lran
| | - Seyedeh Shadi Sharif Jalali
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical SciencesKermanshah, Iran
| | - Masoud Rezaei
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical SciencesMashhad, Iran
| | - Parastou Kordestani-Moghadam
- Razi Herbal Medicines Research Center, School of Nursing and Midwifery, Lorestan University of Medical SciencesKhorramabad, Iran
| | - Shabnam Banisharif
- Department of Medical Physics, School of Medicine, Isfahan University of Medical ScienceIsfahan, Iran
| | - Maryam Jalali
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| | - Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical SciencesTehran, Iran
| | - Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
8
|
Deng JH, Zhang HW, Liu XL, Deng HZ, Lin F. Morphological changes in Parkinson's disease based on magnetic resonance imaging: A mini-review of subcortical structures segmentation and shape analysis. World J Psychiatry 2022; 12:1356-1366. [PMID: 36579355 PMCID: PMC9791612 DOI: 10.5498/wjp.v12.i12.1356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra, resulting in clinical symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. The pathophysiological changes in PD are inextricably linked to the subcortical structures. Shape analysis is a method for quantifying the volume or surface morphology of structures using magnetic resonance imaging. In this review, we discuss the recent advances in morphological analysis techniques for studying the subcortical structures in PD in vivo. This approach includes available pipelines for volume and shape analysis, focusing on the morphological features of volume and surface area.
Collapse
Affiliation(s)
- Jin-Huan Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| | - Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| | - Hua-Zhen Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
| |
Collapse
|
9
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|
10
|
Chen A, Li Y, Wang Z, Huang J, Ruan X, Cheng X, Huang X, Liang D, Chen D, Wei X. Disrupted Brain Structural Network Connection in de novo Parkinson's Disease With Rapid Eye Movement Sleep Behavior Disorder. Front Hum Neurosci 2022; 16:902614. [PMID: 35927996 PMCID: PMC9344802 DOI: 10.3389/fnhum.2022.902614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To explore alterations in white matter network topology in de novo Parkinson's disease (PD) patients with rapid eye movement sleep behavior disorder (RBD). Materials and Methods This study included 171 de novo PD patients and 73 healthy controls (HC) recruited from the Parkinson's Progression Markers Initiative (PPMI) database. The patients were divided into two groups, PD with probable RBD (PD-pRBD, n = 74) and PD without probable RBD (PD-npRBD, N = 97), according to the RBD screening questionnaire (RBDSQ). Individual structural network of brain was constructed based on deterministic fiber tracking and analyses were performed using graph theory. Differences in global and nodal topological properties were analyzed among the three groups. After that, post hoc analyses were performed to explore further differences. Finally, correlations between significant different properties and RBDSQ scores were analyzed in PD-pRBD group. Results All three groups presented small-world organization. PD-pRBD patients exhibited diminished global efficiency and increased shortest path length compared with PD-npRBD patients and HCs. In nodal property analyses, compared with HCs, the brain regions of the PD-pRBD group with changed nodal efficiency (Ne) were widely distributed mainly in neocortical and paralimbic regions. While compared with PD-npRBD group, only increased Ne in right insula, left middle frontal gyrus, and decreased Ne in left temporal pole were discovered. In addition, significant correlations between Ne in related brain regions and RDBSQ scores were detected in PD-pRBD patients. Conclusions PD-pRBD patients showed disrupted topological organization of white matter in the whole brain. The altered Ne of right insula, left temporal pole and left middle frontal gyrus may play a key role in the pathogenesis of PD-RBD.
Collapse
Affiliation(s)
- Amei Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuting Li
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhaoxiu Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Junxiang Huang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaofang Cheng
- Department of Radiology, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofei Huang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dan Liang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dandan Chen
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Xinhua Wei
| |
Collapse
|
11
|
Oltra J, Uribe C, Segura B, Campabadal A, Inguanzo A, Monté-Rubio GC, Pardo J, Marti MJ, Compta Y, Valldeoriola F, Junque C, Iranzo A. Brain atrophy pattern in de novo Parkinson's disease with probable RBD associated with cognitive impairment. NPJ Parkinsons Dis 2022; 8:60. [PMID: 35610256 PMCID: PMC9130201 DOI: 10.1038/s41531-022-00326-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Rapid eye movement sleep behavior disorder (RBD) is associated with high likelihood of prodromal Parkinson’s disease (PD) and is common in de novo PD. It is associated with greater cognitive impairment and brain atrophy. However, the relation between structural brain characteristics and cognition remains poorly understood. We aimed to investigate subcortical and cortical atrophy in de novo PD with probable RBD (PD-pRBD) and to relate it with cognitive impairment. We analyzed volumetry, cortical thickness, and cognitive measures from 79 PD-pRBD patients, 126 PD without probable RBD patients (PD-non pRBD), and 69 controls from the Parkinson’s Progression Markers Initiative (PPMI). Regression models of cognition were tested using magnetic resonance imaging measures as predictors. We found lower left thalamus volume in PD-pRBD compared with PD-non pRBD. Compared with controls, PD-pRBD group showed atrophy in the bilateral putamen, left hippocampus, left amygdala, and thinning in the right superior temporal gyrus. Specific deep gray matter nuclei volumes were associated with impairment in global cognition, phonemic fluency, processing speed, and visuospatial function in PD-pRBD. In conclusion, cognitive impairment and gray matter atrophy are already present in de novo PD-pRBD. Thalamus, hippocampus, and putamen volumes were mainly associated with these cognitive deficits.
Collapse
Affiliation(s)
- Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Carme Uribe
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada
| | - Barbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain. .,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.
| | - Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Anna Inguanzo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Gemma C Monté-Rubio
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Jèssica Pardo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Maria J Marti
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Francesc Valldeoriola
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Carme Junque
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Alex Iranzo
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Multidisciplinary Sleep Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Diffusion Tensor Imaging Reveals Deep Brain Structure Changes in Early Parkinson's Disease Patients with Various Sleep Disorders. Brain Sci 2022; 12:brainsci12040463. [PMID: 35447994 PMCID: PMC9025175 DOI: 10.3390/brainsci12040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive age-related movement disorder caused by dopaminergic neuron loss in the substantia nigra. Diffusion-based magnetic resonance imaging (MRI) studies—namely, diffusion tensor imaging (DTI)—have been performed in the context of PD, either with or without the involvement of sleep disorders (SDs), to deepen our understanding of cerebral microstructural alterations. Analyzing the clinical characteristics and neuroimaging features of SDs in early PD patients is beneficial for early diagnosis and timely invention. In our present study, we enrolled 36 early PD patients (31 patients with SDs and 5 patients without) and 22 healthy controls. Different types of SDs were assessed using the Rapid Eye Movement Sleep Behavior Disorder Questionnaire—Hong Kong, Epworth Sleepiness Scale, International Restless Legs Scale and PD Sleep Scale-2. Brain MRI examinations were carried out in all the participants, and a region-of-interest (ROI) analysis was used to determine the DTI-based fractional anisotropy (FA) values in the substantia nigra (SN), thalamus (Thal) and hypothalamus (HT). The results illustrate that SDs showed a higher prevalence in the early PD patients than in the healthy controls (86.11% vs. 27.27%). Early PD patients with nighttime problems (NPs) had longer courses of PD than those without (5.097 ± 2.925 vs. 2.200 ± 1.095; p < 0.05), and these patients with excessive daytime sleepiness (EDS) or restless legs syndrome (RLS) had more advanced Hoehn and Yahr stages (HY stage) than those without (1.522 ± 0.511 and 1.526 ± 0.513, respectively; both p < 0.05). Compared with the early PD patients without probable rapid eye movement sleep behavior disorder (pRBD), those with pRBD had longer courses, more advanced HY stages and worse motor and non-motor symptoms of PD (course(years), 3.385 ± 1.895 vs. 5.435 ± 3.160; HY stages, 1.462 ± 0.477 vs. 1.848 ± 0.553; UPDRS, 13.538 ± 7.333 vs. 21.783 ± 10.766; UPDRS, 6.538 ± 1.898 vs. 7.957 ± 2.345; all p < 0.05). In addition, the different number of SD types in early PD patients was significantly inversely associated with the severity of damage in the SN and HT. All of the early PD patients with various SDs had injuries in the SN, in whom the damage was more pronounced in patients with NP than those without. Moreover, early PD patients with NP, RLS or pRBD had worse degrees of HT damage than those without. The current study demonstrated the pathophysiological features and neuroimaging changes in early PD patients with various types of sleep disorders, which will help in early diagnosis and therapy.
Collapse
|
13
|
Zhang H, Liu L, Cheng S, Jia Y, Wen Y, Yang X, Meng P, Li C, Pan C, Chen Y, Zhang Z, Zhang J, Zhang F. Assessing the joint effects of brain aging and gut microbiota on the risks of psychiatric disorders. Brain Imaging Behav 2022; 16:1504-1515. [PMID: 35076893 DOI: 10.1007/s11682-022-00630-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 12/20/2022]
Abstract
We aim to explore the potential interaction effects of brain aging and gut microbiota on the risks of sleep, anxiety and depression disorders. The genome-wide association study (GWAS) datasets of brain aging (N = 21,407) and gut microbiota (N = 3,890) were obtained from published studies. Individual level genotype and phenotype data of psychiatric traits (including sleep, anxiety and depression) were all from the UK Biobank (N = 107,947-374,505). We first calculated the polygenic risk scores (PRS) of 62 brain aging modes and 114 gut microbiota taxa as the instrumental variables, and then constructed linear and logistic regression analyses to systematically explore the potential interaction effects of brain aging and gut microbiota on psychiatric disorders. We observed the interaction effects of brain aging and gut microbiota on sleep, anxiety and depression disorders, such as Putamen/caudate T2* vs. Rhodospirillales (β = -0.012, P = 8.4 × 10-4) was negatively associated with chronotype, Fornix MD vs. Holdemanella (β = -0.007, P = 1.76 × 10-2) was negatively related to general anxiety disorder (GAD) scores, and White matter lesions vs. Acidaminococcaceae (β = 0.019, P = 1.29 × 10-3) was positively correlated with self-reported depression. Interestingly, Putamen volume vs. Intestinibacter was associated with all three psychiatric disorders, including chronotype (negative correlation), GAD scores (positive correlation) and self-reported depression (positive correlation). Our study results suggest the significant impacts of brain aging and gut microbiota on the development of sleep, anxiety and depression disorders, providing new clues for clarifying the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, Xi'an, People's Republic of China.
| |
Collapse
|
14
|
Matzaras R, Shi K, Artemiadis A, Zis P, Hadjigeorgiou G, Rominger A, Bassetti CLA, Bargiotas P. Brain Neuroimaging of Rapid Eye Movement Sleep Behavior Disorder in Parkinson's Disease: A Systematic Review. JOURNAL OF PARKINSON'S DISEASE 2022; 12:69-83. [PMID: 34806615 DOI: 10.3233/jpd-212571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND REM-sleep behaviour disorder (RBD) is a parasomnia and a common comorbidity in Parkinson's disease (PD). There is evidence that the presence of RBD is associated with more severe PD. The differences in the clinical manifestations and the natural history are likely to imply underlying differences in the pathophysiology among PD patients with and without RBD. The increasing number of neuroimaging studies support this notion. OBJECTIVE Our primary objective was to review the current evidence regarding the brain neuroimaging findings in PD patients with RBD (PDRBD). METHODS A systematic review of articles, published in PubMed between January 1, 2000 and September 23, 2020 was performed. We evaluate previous studies that assessed PD patients with RBD using various brain structural and functional magnetic resonance imaging (MRI) techniques and brain nuclear medicine imaging. RESULTS Twenty-nine studies, involving a total of 3,347 PD subjects among which 912 subjects with PDRBD, met the selection criteria and were included. The presence of RBD in PD patients is associated with structural and functional alterations in several brain regions, mainly in brainstem, limbic structures, frontotemporal cortex, and basal ganglia, raising the hypothesis of a PDRBD neuroimaging phenotype. CONCLUSION The current review provides up-to-date knowledge in this field and summarizes the neurobiological/neuroimaging substrate of RBD in PD.
Collapse
Affiliation(s)
- Rafail Matzaras
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, Switzerland
| | - Artemios Artemiadis
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Panagiotis Zis
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | | | - Axel Rominger
- Department of Nuclear Medicine, University of Bern, Switzerland
| | - Claudio L A Bassetti
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | | |
Collapse
|
15
|
Disrupted functional connectivity in PD with probable RBD and its cognitive correlates. Sci Rep 2021; 11:24351. [PMID: 34934134 PMCID: PMC8692356 DOI: 10.1038/s41598-021-03751-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
Recent studies associated rapid eye movement sleep behavior disorder (RBD) in Parkinson’s disease (PD) with severe cognitive impairment and brain atrophy. However, whole-brain functional connectivity has never been explored in this group of PD patients. In this study, whole-brain network-based statistics and graph-theoretical approaches were used to characterize resting-state interregional functional connectivity in PD with probable RBD (PD-pRBD) and its relationship with cognition. Our sample consisted of 30 healthy controls, 32 PD without probable RBD (PD-non pRBD), and 27 PD-pRBD. The PD-pRBD group showed reduced functional connectivity compared with controls mainly involving cingulate areas with temporal, frontal, insular, and thalamic regions (p < 0.001). Also, the PD-pRBD group showed reduced functional connectivity between right ventral posterior cingulate and left medial precuneus compared with PD-non pRBD (p < 0.05). We found increased normalized characteristic path length in PD-pRBD compared with PD-non pRBD. In the PD-pRBD group, mean connectivity strength from reduced connections correlated with visuoperceptual task and normalized characteristic path length correlated with processing speed and verbal memory tasks. This work demonstrates the existence of disrupted functional connectivity in PD-pRBD, together with abnormal network integrity, that supports its consideration as a severe PD subtype.
Collapse
|
16
|
Sivaranjini S, Sujatha CM. Morphological analysis of subcortical structures for assessment of cognitive dysfunction in Parkinson's disease using multi-atlas based segmentation. Cogn Neurodyn 2021; 15:835-845. [PMID: 34603545 PMCID: PMC8448821 DOI: 10.1007/s11571-021-09671-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/27/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Cognitive impairment in Parkinson's Disease (PD) is the most prevalent non-motor symptom that requires analysis of anatomical associations to cognitive decline in PD. The objective of this study is to analyse the morphological variations of the subcortical structures to assess cognitive dysfunction in PD. In this study, T1 MR images of 58 Healthy Control (HC) and 135 PD subjects categorised as 91 Cognitively normal PD (NC-PD), 25 PD with Mild Cognitive Impairment (PD-MCI) and 19 PD with Dementia (PD-D) subjects, based on cognitive scores are utilised. The 132 anatomical regions are segmented using spatially localized multi-atlas model and volumetric analysis is carried out. The morphological alterations through textural features are captured to differentiate among the HC and PD subjects under different cognitive domains. The volumetric differences in the segmented subcortical structures of accumbens, amygdala, caudate, putamen and thalamus are able to predict cognitive impairment in PD. The volumetric distribution of the subcortical structures in PD-MCI subjects exhibit an overlap with the HC group due to lack of spatial specificity in their atrophy levels. The 3D GLCM features extracted from the significant subcortical structures could discriminate HC, NC-PD, PD-MCI and PD-D subjects with better classification accuracies. The disease related atrophy levels of the subcortical structures captured through morphological analysis provide sensitive evaluation of cognitive impairment in PD.
Collapse
Affiliation(s)
- S. Sivaranjini
- Department of Electronics and Communication Engineering, College of Engineering (CEG), Anna University, Chennai, India
| | - C. M. Sujatha
- Department of Electronics and Communication Engineering, College of Engineering (CEG), Anna University, Chennai, India
| |
Collapse
|
17
|
Sigirli D, Ozdemir ST, Erer S, Sahin I, Ercan I, Ozpar R, Orun MO, Hakyemez B. Statistical shape analysis of putamen in early-onset Parkinson's disease. Clin Neurol Neurosurg 2021; 209:106936. [PMID: 34530266 DOI: 10.1016/j.clineuro.2021.106936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the shape differences in the putamen of early-onset Parkinson's patients compared with healthy controls and to assess and to assess sub-regional brain abnormalities. METHODS This study was conducted using the 3-T MRI scans of 23 early-onset Parkinson's patients and age and gender matched control subjects. Landmark coordinate data obtained and Procrustes analysis was used to compare mean shapes. The relationships between the centroid sizes of the left and right putamen, and the durations of disease examined using growth curve models. RESULTS While there was a significant difference between the right putamen shape of control and patient groups, there was not found a significant difference in terms of left putamen. Sub-regional analyses showed that for the right putamen, the most prominent deformations were localized in the middle-posterior putamen and minimal deformations were seen in the anterior putamen. CONCLUSION Although they were not as pronounced as those in the right putamen, the deformations in the left putamen mimic the deformations in the right putamen which are found mainly in the middle-posterior putamen and at a lesser extend in the anterior putamen.
Collapse
Affiliation(s)
- Deniz Sigirli
- Department of Biostatistics, Faculty of Medicine, Bursa Uludag University, Gorukle Campus, 16059 Bursa, Turkey.
| | - Senem Turan Ozdemir
- Department of Anatomy, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | - Sevda Erer
- Department of Neurology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | - Ibrahim Sahin
- Department of Biostatistics, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey.
| | - Ilker Ercan
- Department of Biostatistics, Faculty of Medicine, Bursa Uludag University, Gorukle Campus, 16059 Bursa, Turkey.
| | - Rifat Ozpar
- Department of Radiology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | - Muhammet Okay Orun
- Department of Neurology, Van Training and Research Hospital, Van, Turkey.
| | - Bahattin Hakyemez
- Department of Radiology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| |
Collapse
|
18
|
Oltra J, Segura B, Uribe C, Monté-Rubio GC, Campabadal A, Inguanzo A, Pardo J, Marti MJ, Compta Y, Valldeoriola F, Iranzo A, Junque C. Sex differences in brain atrophy and cognitive impairment in Parkinson's disease patients with and without probable rapid eye movement sleep behavior disorder. J Neurol 2021; 269:1591-1599. [PMID: 34345972 PMCID: PMC8857118 DOI: 10.1007/s00415-021-10728-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
Background The presence of rapid eye movement sleep behavior disorder (RBD) contributes to increase cognitive impairment and brain atrophy in Parkinson’s disease (PD), but the impact of sex is unclear. We aimed to investigate sex differences in cognition and brain atrophy in PD patients with and without probable RBD (pRBD). Methods Magnetic resonance imaging and cognition data were obtained for 274 participants from the Parkinson's Progression Marker Initiative database: 79 PD with pRBD (PD-pRBD; male/female, 54/25), 126 PD without pRBD (PD-non pRBD; male/female, 73/53), and 69 healthy controls (male/female, 40/29). FreeSurfer was used to obtain volumetric and cortical thickness data. Results Males showed greater global cortical and subcortical gray matter atrophy than females in the PD-pRBD group. Significant group-by-sex interactions were found in the pallidum. Structures showing a within-group sex effect in the deep gray matter differed, with significant volume reductions for males in one structure in in PD-non pRBD (brainstem), and three in PD-pRBD (caudate, pallidum and brainstem). Significant group-by-sex interactions were found in Montreal Cognitive Assessment (MoCA) and Symbol Digits Modalities Test (SDMT). Males performed worse than females in MoCA, phonemic fluency and SDMT in the PD-pRBD group. Conclusion Male sex is related to increased cognitive impairment and subcortical atrophy in de novo PD-pRBD. Accordingly, we suggest that sex differences are relevant and should be considered in future clinical and translational research. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10728-x.
Collapse
Affiliation(s)
- Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Barbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain. .,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.
| | - Carme Uribe
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Canada
| | - Gemma C Monté-Rubio
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Anna Inguanzo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Jèssica Pardo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Maria J Marti
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Francesc Valldeoriola
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Alex Iranzo
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Sleep Disorders Center, Neurology Service, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Carme Junque
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| |
Collapse
|
19
|
Shrestha N, Abe RAM, Masroor A, Khorochkov A, Prieto J, Singh KB, Nnadozie MC, Abdal M, Mohammed L. The Correlation Between Parkinson's Disease and Rapid Eye Movement Sleep Behavior Disorder: A Systematic Review. Cureus 2021; 13:e17026. [PMID: 34522507 PMCID: PMC8425494 DOI: 10.7759/cureus.17026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused due to the destruction of dopaminergic neurons and the deposition of α-synuclein proteins, known as Lewy bodies. Generally, the diagnosis of PD is centered around motor symptoms. However, the early recognition of non-motor symptoms such as autonomic dysfunction, sleep disturbances, and cognitive and psychiatric disturbances are gaining increased attention for the early diagnosis of PD. Rapid eye movement (REM) sleep behavior disorder or REM sleep behavior disorder (RBD) is described as parasomnia, which is a condition of loss of normal muscle atonia causing the person to act out vivid dreams and it has been seen to be associated with the misprocessing of intercellular α-synuclein leading to neurodegenerative diseases such as PD. This review's objective is to highlight the significance of RBD as a prodromal premotor marker for the early detection of PD. We used PubMed as our primary database to search for articles on May 2, 2021, and a total of 1849 articles were found in our initial search using keywords and medical subject heading (MeSH) keywords. Thereafter, we removed the duplicates, applied the inclusion/exclusion criteria, and did a quality appraisal to include 10 articles in this study. We concluded that the recognition and diagnosis of RBD are of paramount importance to detect early PD, and further longitudinal studies and clinical trials are of utmost importance to understand their correlation; also, treatment trials are needed to prevent the phenoconversion of RBD into PD.
Collapse
Affiliation(s)
- Niki Shrestha
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rose Anne M Abe
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anum Masroor
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Psychiatry, Psychiatric Care Associates, Englewood, USA
- Medicine, Khyber Medical College, Peshawar, PAK
| | - Arseni Khorochkov
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jose Prieto
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Karan B Singh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maduka C Nnadozie
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Muhammad Abdal
- Emergency Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
20
|
Abnormal Gray Matter Volume and Functional Connectivity in Parkinson's Disease with Rapid Eye Movement Sleep Behavior Disorder. PARKINSON'S DISEASE 2021; 2021:8851027. [PMID: 33688426 PMCID: PMC7920722 DOI: 10.1155/2021/8851027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Objective Rapid eye movement (REM) sleep behavior disorder (RBD) is a common symptom in Parkinson's disease (PD), and patients with PD-RBD tend to have an increased risk of cognitive decline and have the tendency to be akinetic/rigidity predominant. At the same time, the mechanisms of RBD in patients with PD remain unclear. Therefore, this study aimed to detect the structural and functional differences in patients with PD-RBD and PD without RBD (PD-nRBD). Methods Twenty-four polysomnography-confirmed patients with PD-RBD, 26 patients with PD-nRBD, and 26 healthy controls were enrolled. Structural and functional patterns were analyzed based on voxel-based morphometry and seed-based functional connectivity (FC). Correlations between altered gray matter volume (GMV)/FC values and cognitive scores and motor impairment scores in PD subgroups were assessed. Results Compared with patients with PD-nRBD, patients with PD-RBD showed relatively high GMV in the cerebellar vermis IV/V and low GMV in the right superior occipital gyrus (SOG). For the FC, patients with PD-RBD displayed lower FC between the right SOG and the posterior regions (left fusiform gyrus, left calcarine sulcus, and left superior parietal gyrus) compared with the patients with PD-nRBD. The GMV values in the right SOG were negatively correlated with the Unified PD Rating Scale-III scores in patients with PD-RBD but positively correlated with delayed memory scores. The GMV values in the cerebellar vermis IV/V were positively correlated with the tonic chin EMG density scores. There were positive correlations between the FC values in the right SOG-left superior parietal gyrus and MoCA and visuospatial skills/executive function scores and in the right SOG-left calcarine sulcus and delayed memory scores. Conclusion Higher GMV in the cerebellum may be linked with the abnormal motor behaviors during REM sleep in patients with PD-RBD, and lower GMV and FC in the posterior regions may indicate that PD-RBD correspond to more serious neurodegeneration, especially the visuospatial–executive function impairment and delayed memory impairment. These findings provided new insights to learn more about the complicated characteristics in patients with PD-RBD.
Collapse
|
21
|
Navas-Sánchez FJ, Fernández-Pena A, Martín de Blas D, Alemán-Gómez Y, Marcos-Vidal L, Guzmán-de-Villoria JA, Fernández-García P, Romero J, Catalina I, Lillo L, Muñoz-Blanco JL, Ordoñez-Ugalde A, Quintáns B, Pardo J, Sobrido MJ, Carmona S, Grandas F, Desco M. Thalamic atrophy in patients with pure hereditary spastic paraplegia type 4. J Neurol 2021; 268:2429-2440. [PMID: 33507371 DOI: 10.1007/s00415-020-10387-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/18/2023]
Abstract
SPG4 is an autosomal dominant pure form of hereditary spastic paraplegia (HSP) caused by mutations in the SPAST gene. HSP is considered an upper motor neuron disorder characterized by progressive spasticity and weakness of the lower limbs caused by degeneration of the corticospinal tract. In other neurodegenerative motor disorders, the thalamus and basal ganglia are affected, with a considerable impact on disease progression. However, only a few works have studied these brain structures in HSP, mainly in complex forms of this disease. Our research aims to detect potential alterations in the volume and shape of the thalamus and various basal ganglia structures by comparing 12 patients with pure HSP and 18 healthy controls. We used two neuroimaging procedures: automated segmentation of the subcortical structures (thalamus, hippocampus, caudate nucleus, globus pallidus, and putamen) in native space and shape analysis of the structures. We found a significant reduction in thalamic volume bilaterally, as well as an inward deformation, mainly in the sensory-motor thalamic regions in patients with pure HSP and a mutation in SPG4. We also observed a significant negative correlation between the shape of the thalamus and clinical scores (the Spastic Paraplegia Rating Scale score and disease duration). Moreover, we found a 'Group × Age' interaction that was closely related to the severity of the disease. No differences in volume or in shape were found in the remaining subcortical structures studied. Our results suggest that changes in structure of the thalamus could be an imaging biomarker of disease progression in pHSP.
Collapse
Affiliation(s)
- Francisco J Navas-Sánchez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | | | | | - Yasser Alemán-Gómez
- Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Prilly, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Centre D'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Luís Marcos-Vidal
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Medical Image Analysis Laboratory (MIAL), Centre D'Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Juan A Guzmán-de-Villoria
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Julia Romero
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio de Radiodiagnóstico, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Irene Catalina
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laura Lillo
- Hospital Ruber Internacional, Servicio de Neurología, Madrid, Spain.,Hospital Universitario Fundación Alcorcón, Servicio de Neurología Alcorcón, Madrid, Spain
| | - José L Muñoz-Blanco
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Andrés Ordoñez-Ugalde
- Laboratorio Biomolecular, Cuenca, Ecuador.,Unidad de Genética y Molecular, Hospital de Especialidades José Carrasco Arteaga, Cuenca, Ecuador.,Neurogenetics Group, FPGMX-IDIS, Santiago de Compostela, Spain
| | - Beatriz Quintáns
- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-U711), Madrid, Spain.,Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Julio Pardo
- Departamento de Neurología, Hospital Clínico Universitario de Santiago de Compostela, A Coruña, Santiago de Compostela, Spain
| | - María-Jesús Sobrido
- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,Hospital Clínico Universitario de A Coruña, SERGAS, Santiago de Compostela, Spain
| | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Francisco Grandas
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
22
|
Li J, Zeng Q, Zhou W, Zhai X, Lai C, Zhu J, Dong S, Lin Z, Cheng G. Altered Brain Functional Network in Parkinson Disease With Rapid Eye Movement Sleep Behavior Disorder. Front Neurol 2020; 11:563624. [PMID: 33193000 PMCID: PMC7652930 DOI: 10.3389/fneur.2020.563624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Background and Objective: Parkinson disease (PD) with rapid eye movement (REM) sleep behavior disorder (PD-RBD) tend to be a distinct phenotype with more severe clinical characteristics and pathological lesion when compared with PD without RBD (PD-nRBD). However, the pathological mechanism underlying PD-RBD remains unclear. We aim to use the resting-state functional magnetic resonance imaging (rs-fMRI) to explore the mechanism of PD-RBD from the perspective of internal connectivity networks. Materials and Methods: A total of 92 PD patients and 20 age and sex matched normal controls (NC) were included. All participants underwent rs-fMRI scan and clinical assessment. According to the RBD screening questionnaire (RBDSQ), PD patients were divided into two groups: PD with probable RBD (PD-pRBD) and PD without probable RBD (PD-npRBD). The whole brain was divided into 90 regions using automated anatomic labeling atlas. Functional network of each subject was constructed according to the correlation of rs-fMRI blood oxygenation level dependent signals in any two brain regions and network metrics were analyzed using graph theory approaches. Network properties among three groups were compared and correlation analysis was made using distinguishing network metrics and RBDSQ scores. Results: We found both PD-pRBD and PD-npRBD patients existed small-world characteristics. PD-pRBD showed a wider range of nodal property changes in neocortex and limbic system than PD-npRBD patients when compared with NC. Besides, PD-pRBD showed significant enhanced nodal efficiency in the bilateral thalamus and betweenness centrality in the left insula, but, reduced betweenness centrality in the right dorsolateral superior frontal gyrus when compared with PD-npRBD. Moreover, nodal efficiency in the bilateral thalamus were positively correlated with RBDSQ scores. Conclusions: Both NC and PD patients displayed small-world properties and indiscriminate global measure but PD-pRBD showed more extensive changes of nodal properties than PD-npRBD. The increased centrality role in the bilateral thalamus and the left insula, and disruption in the right dorsolateral superior frontal gyrus may play as a key role in underlying pathogenesis of PD-RBD.
Collapse
Affiliation(s)
- Jiao Li
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qiaoling Zeng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wen Zhou
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiangwei Zhai
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chao Lai
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Junlan Zhu
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuwen Dong
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guanxun Cheng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
23
|
Saeed U, Lang AE, Masellis M. Neuroimaging Advances in Parkinson's Disease and Atypical Parkinsonian Syndromes. Front Neurol 2020; 11:572976. [PMID: 33178113 PMCID: PMC7593544 DOI: 10.3389/fneur.2020.572976] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) and atypical Parkinsonian syndromes are progressive heterogeneous neurodegenerative diseases that share clinical characteristic of parkinsonism as a common feature, but are considered distinct clinicopathological disorders. Based on the predominant protein aggregates observed within the brain, these disorders are categorized as, (1) α-synucleinopathies, which include PD and other Lewy body spectrum disorders as well as multiple system atrophy, and (2) tauopathies, which comprise progressive supranuclear palsy and corticobasal degeneration. Although, great strides have been made in neurodegenerative disease research since the first medical description of PD in 1817 by James Parkinson, these disorders remain a major diagnostic and treatment challenge. A valid diagnosis at early disease stages is of paramount importance, as it can help accommodate differential prognostic and disease management approaches, enable the elucidation of reliable clinicopathological relationships ideally at prodromal stages, as well as facilitate the evaluation of novel therapeutics in clinical trials. However, the pursuit for early diagnosis in PD and atypical Parkinsonian syndromes is hindered by substantial clinical and pathological heterogeneity, which can influence disease presentation and progression. Therefore, reliable neuroimaging biomarkers are required in order to enhance diagnostic certainty and ensure more informed diagnostic decisions. In this article, an updated presentation of well-established and emerging neuroimaging biomarkers are reviewed from the following modalities: (1) structural magnetic resonance imaging (MRI), (2) diffusion-weighted and diffusion tensor MRI, (3) resting-state and task-based functional MRI, (4) proton magnetic resonance spectroscopy, (5) transcranial B-mode sonography for measuring substantia nigra and lentiform nucleus echogenicity, (6) single photon emission computed tomography for assessing the dopaminergic system and cerebral perfusion, and (7) positron emission tomography for quantifying nigrostriatal functions, glucose metabolism, amyloid, tau and α-synuclein molecular imaging, as well as neuroinflammation. Multiple biomarkers obtained from different neuroimaging modalities can provide distinct yet corroborative information on the underlying neurodegenerative processes. This integrative "multimodal approach" may prove superior to single modality-based methods. Indeed, owing to the international, multi-centered, collaborative research initiatives as well as refinements in neuroimaging technology that are currently underway, the upcoming decades will mark a pivotal and exciting era of further advancements in this field of neuroscience.
Collapse
Affiliation(s)
- Usman Saeed
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Center, Toronto, ON, Canada.,Cognitive and Movement Disorders Clinic, Sunnybrook Health Sciences Center, Toronto, ON, Canada
| |
Collapse
|