1
|
Noll KR, Bradshaw M, Sheppard D, Wefel JS. Perioperative Neurocognitive Function in Glioma Surgery. Curr Oncol Rep 2024; 26:466-476. [PMID: 38573439 DOI: 10.1007/s11912-024-01522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW This review provides a concise overview of the recent literature regarding preoperative and postoperative neurocognitive functioning (NCF) in patients with glioma. Brief discussion also covers contemporary intraoperative brain mapping work, with a focus on potential influence of mapping upon NCF outcomes following awake surgery. RECENT FINDINGS Most patients with glioma exhibit preoperative NCF impairment, with severity varying by germ line and tumoral genetics, tumor grade, and lesion location, among other characteristics. Literature regarding postoperative NCF changes is mixed, though numerous studies indicate a majority of patients exhibit immediate and short-term worsening. This is often followed by recovery over several months; however, a substantial portion of patients harbor persisting declines. Decline appears related to surgically-induced structural and functional brain alterations, both local and distal to the tumor and resection cavity. Importantly, NCF decline may be mitigated to some extent by intraoperative brain mapping, including mapping of both language-mediated and nonverbal functions. Research regarding perioperative NCF in patients with glioma has flourished over recent years. While this has increased our understanding of contributors to NCF and risk of decline associated with surgical intervention, more work is needed to better preserve NCF throughout the disease course.
Collapse
Affiliation(s)
- Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA.
| | - Mariana Bradshaw
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
| | - David Sheppard
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Smolders L, De Baene W, van der Hofstad R, Florack L, Rutten GJ. Working memory performance in glioma patients is associated with functional connectivity between the right dorsolateral prefrontal cortex and default mode network. J Neurosci Res 2023; 101:1826-1839. [PMID: 37694505 DOI: 10.1002/jnr.25242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
In healthy subjects, activity in the default mode network (DMN) and the frontoparietal network (FPN) has consistently been associated with working memory (WM). In particular, the dorsolateral prefrontal cortex (DLPFC) is important for WM. The functional-anatomical basis of WM impairment in glioma patients is, however, still poorly understood. We investigated whether WM performance of glioma patients is reflected in resting-state functional connectivity (FC) between the DMN and FPN, additionally focusing on the DLPFC. Resting-state functional MRI data were acquired from 45 glioma patients prior to surgery. WM performance was derived from a pre-operative N-back task. Scans were parcellated into ROIs using both the Gordon and Yeo atlas. FC was calculated as the average Pearson correlation between functional time series. The FC between right DLPFC and DMN was inversely related to WM performance for both the Gordon and Yeo atlas (p = .010). No association was found for FC between left DLPFC and DMN, nor between the whole FPN and DMN. The results are robust and not dependent on atlas choice or tumor location, as they hold for both the Gordon and Yeo atlases, and independently of location variables. Our findings show that WM performance of glioma patients can be quantified in terms of interactions between regions and large-scale networks that can be measured with resting-state fMRI. These group-based results are a necessary step toward development of biomarkers for clinical management of glioma patients, and provide additional evidence that global disruption of the DMN relates to cognitive impairment in glioma patients.
Collapse
Affiliation(s)
- Lars Smolders
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter De Baene
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Remco van der Hofstad
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Luc Florack
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Geert-Jan Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| |
Collapse
|
3
|
Pertichetti M, Corbo D, Belotti F, Saviola F, Gasparotti R, Fontanella MM, Panciani PP. Neuropsychological Evaluation and Functional Magnetic Resonance Imaging Tasks in the Preoperative Assessment of Patients with Brain Tumors: A Systematic Review. Brain Sci 2023; 13:1380. [PMID: 37891749 PMCID: PMC10605177 DOI: 10.3390/brainsci13101380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Current surgical treatment of gliomas relies on a function-preserving, maximally safe resection approach. Functional Magnetic Resonance Imaging (fMRI) is a widely employed technology for this purpose. A preoperative neuropsychological evaluation should accompany this exam. However, only a few studies have reported both neuropsychological tests and fMRI tasks for preoperative planning-the current study aimed to systematically review the scientific literature on the topic. METHODS PRISMA guidelines were followed. We included studies that reported both neuropsychological tests and fMRI. Exclusion criteria were: no brain tumors, underage patients, no preoperative assessment, resting-state fMRI only, or healthy sample population/preclinical studies. RESULTS We identified 123 papers, but only 15 articles were included. Eight articles focused on language; three evaluated cognitive performance; single papers studied sensorimotor cortex, prefrontal functions, insular cortex, and cerebellar activation. Two qualitative studies focused on visuomotor function and language. According to some authors, there was a strong correlation between performance in presurgical neuropsychological tests and fMRI. Several papers suggested that selecting well-adjusted and individualized neuropsychological tasks may enable the development of personalized and more efficient protocols. The fMRI findings may also help identify plasticity phenomena to avoid unintentional damage during neurosurgery. CONCLUSIONS Most studies have focused on language, the most commonly evaluated cognitive function. The correlation between neuropsychological and fMRI results suggests that altered functions during the neuropsychological assessment may help identify patients who could benefit from an fMRI and, possibly, functions that should be tested. Neuropsychological evaluation and fMRI have complementary roles in the preoperative assessment.
Collapse
Affiliation(s)
- Marta Pertichetti
- Neurosurgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy (M.M.F.); (P.P.P.)
| | - Daniele Corbo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (D.C.); (F.S.); (R.G.)
| | - Francesco Belotti
- Neurosurgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy (M.M.F.); (P.P.P.)
| | - Francesca Saviola
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (D.C.); (F.S.); (R.G.)
| | - Roberto Gasparotti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (D.C.); (F.S.); (R.G.)
- Neuroradiology Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Marco Maria Fontanella
- Neurosurgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy (M.M.F.); (P.P.P.)
| | - Pier Paolo Panciani
- Neurosurgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy (M.M.F.); (P.P.P.)
| |
Collapse
|
4
|
Saviola F, Zigiotto L, Novello L, Zacà D, Annicchiarico L, Corsini F, Rozzanigo U, Papagno C, Jovicich J, Sarubbo S. The role of the default mode network in longitudinal functional brain reorganization of brain gliomas. Brain Struct Funct 2022; 227:2923-2937. [PMID: 35460446 PMCID: PMC9653323 DOI: 10.1007/s00429-022-02490-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
The study of patients after glioma resection offers a unique opportunity to investigate brain reorganization. It is currently unknown how the whole-brain connectomic profile evolves longitudinally after surgical resection of a glioma and how this may be associated with tumor characteristics and cognitive outcome. In this longitudinal study, we investigate the impact of tumor lateralization and grade on functional connectivity (FC) in highly connected networks, or hubs, and cognitive performance. Twenty-eight patients (17 high-grade, 11 low-grade gliomas) underwent longitudinal pre/post-surgery resting-state fMRI scans and neuropsychological assessments (73 total measures). FC matrices were constructed considering as functional hubs the default mode (DMN) and fronto-parietal networks. No-hubs included primary sensory functional networks and any other no-hubs nodes. Both tumor hemisphere and grade affected brain reorganization post-resection. In right-hemisphere tumor patients, regardless of grade and relative to left-hemisphere gliomas, FC increased longitudinally after the intervention, both in terms of FC within hubs (phubs = 0.0004) and FC between hubs and no-hubs (phubs-no-hubs = 0.005). Regardless of tumor side, only lower-grade gliomas showed longitudinal FC increases relative to high-grade tumors within a precise hub network, the DMN. The neurocognitive profile was longitudinally associated with spatial features of the connectome, mainly within the DMN. We provide evidence that clinical glioma features, such as lateralization and grade, affect post-surgical longitudinal functional reorganization and cognitive recovery. The data suggest a possible role of the DMN in supporting cognition, providing useful information for prognostic prediction and surgical planning.
Collapse
Affiliation(s)
- Francesca Saviola
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy.
| | - Luca Zigiotto
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Lisa Novello
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
| | - Domenico Zacà
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
| | - Luciano Annicchiarico
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Francesco Corsini
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Umberto Rozzanigo
- Department of Radiology, Division of Neuroradiology, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Costanza Papagno
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
- Department of Psychology, Milano-Bicocca University, Milano, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
| | - Silvio Sarubbo
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| |
Collapse
|
5
|
Ge X, Xu M, Cheng T, Hu N, Sun P, Lu B, Wang Z, Li J. TP53I13 promotes metastasis in glioma via macrophages, neutrophils, and fibroblasts and is a potential prognostic biomarker. Front Immunol 2022; 13:974346. [PMID: 36275718 PMCID: PMC9585303 DOI: 10.3389/fimmu.2022.974346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background TP53I13 is a protein coding tumor suppression gene encoded by the tumor protein p53. Overexpression of TP53I13 impedes tumor cell proliferation. Nevertheless, TP53I13 role and expression in the emergence and progression of glioma (low-grade glioma and glioblastoma) are yet to be identified. Thus, we aim to use comprehensive bioinformatics analyses to investigate TP53I13 and its prognostic value in gliomas. Methods Multiple databases were consulted to evaluate and assess the expression of TP53I13, such as the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GeneMANIA, and Gene Expression Profiling Interactive. TP53I13 expression was further explored using immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC). Through Gene Set Enrichment Analysis (GSEA), the biological functions of TP53I13 and metastatic processes associated with it were studied. Results The expression of TP53I13 was higher in tumor samples compared to normal samples. In samples retrieved from the TCGA and CGGA databases, high TP53I13 expression was associated with poor survival outcomes. The analysis of multivariate Cox showed that TP53I13 might be an independent prognostic marker of glioma. It was also found that increased expression of TP53I13 was significantly correlated with PRS type, status, 1p/19q codeletion status, IDH mutation status, chemotherapy, age, and tumor grade. According to CIBERSORT (Cell-type Identification by Estimating Relative Subsets of RNA Transcript), the expression of TP53I13 correlates with macrophages, neutrophils, and dendritic cells. GSEA shows a close correlation between TP53I13 and p53 signaling pathways, DNA replication, and the pentose phosphate pathway. Conclusion Our results reveal a close correlation between TP53I13 and gliomas. Further, TP53I13 expression could affect the survival outcomes in glioma patients. In addition, TP53I13 was an independent marker that was crucial in regulating the infiltration of immune cells into tumors. As a result of these findings, TP53I13 might represent a new biomarker of immune infiltration and prognosis in patients with gliomas.
Collapse
Affiliation(s)
- Xinqi Ge
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Manyu Xu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tong Cheng
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Nan Hu
- Medical School of Nantong University, Nantong, China
| | - Pingping Sun
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Bing Lu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Ziheng Wang
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- *Correspondence: Jian Li, ; Ziheng Wang,
| | - Jian Li
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- *Correspondence: Jian Li, ; Ziheng Wang,
| |
Collapse
|
6
|
What Can Resting-State fMRI Data Analysis Explain about the Functional Brain Connectivity in Glioma Patients? Tomography 2022; 8:267-280. [PMID: 35202187 PMCID: PMC8878995 DOI: 10.3390/tomography8010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Resting-state functional MRI has been increasingly implemented in imaging protocols for the study of functional connectivity in glioma patients as a sequence able to capture the activity of brain networks and to investigate their properties without requiring the patients’ cooperation. The present review aims at describing the most recent results obtained through the analysis of resting-state fMRI data in different contexts of interest for brain gliomas: the identification and localization of functional networks, the characterization of altered functional connectivity, and the evaluation of functional plasticity in relation to the resection of the glioma. An analysis of the literature showed that significant and promising results could be achieved through this technique in all the aspects under investigation. Nevertheless, there is room for improvement, especially in terms of stability and generalizability of the outcomes. Further research should be conducted on homogeneous samples of glioma patients and at fixed time points to reduce the considerable variability in the results obtained across and within studies. Future works should also aim at establishing robust metrics for the assessment of the disruption of functional connectivity and its recovery at the single-subject level.
Collapse
|
7
|
Ma SS, Zhang JT, Wang LB, Song KR, Yao ST, Fang RH, Hu YF, Jiang XY, Potenza MN, Fang XY. Efficient Brain Connectivity Reconfiguration Predicts Higher Marital Quality and Lower Depression. Soc Cogn Affect Neurosci 2021; 17:nsab094. [PMID: 34338775 PMCID: PMC8881634 DOI: 10.1093/scan/nsab094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/15/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022] Open
Abstract
Social-information processing is important for successful romantic relationships and protecting against depression, and depends on functional connectivity (FC) within and between large-scale networks. Functional architecture evident at rest is adaptively reconfigured during task and there were two possible associations between brain reconfiguration and behavioral performance during neurocognitive tasks (efficiency effect and distraction-based effect). This study examined relationships between brain reconfiguration during social-information processing and relationship-specific and more general social outcomes in marriage. Resting-state FC was compared with FC during social-information processing (watching relationship-specific and general emotional stimuli) of 29 heterosexual couples, and the FC similarity (reconfiguration efficiency) was examined in relation to marital quality and depression 13 months later. The results indicated wives' reconfiguration efficiency (globally and in visual association network) during relationship-specific stimuli processing was related to their own marital quality. Higher reconfiguration efficiency (globally and in medial frontal, frontal-parietal, default mode, motor/sensory and salience networks) in wives during general emotional stimuli processing was related to their lower depression. These findings suggest efficiency effects on social outcomes during social cognition, especially among married women. The efficiency effects on relationship-specific and more general outcome are respectively higher during relationship-specific stimuli or general emotional stimuli processing.
Collapse
Affiliation(s)
- Shan-Shan Ma
- Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
| | - Jin-Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Luo-Bin Wang
- Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
| | - Kun-Ru Song
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shu-Ting Yao
- Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
| | - Ren-Hui Fang
- Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
| | - Yi-Fan Hu
- Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Xin-Ying Jiang
- Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Xiao-Yi Fang
- Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Gondar R, Patet G, Schaller K, Meling TR. Meningiomas and Cognitive Impairment after Treatment: A Systematic and Narrative Review. Cancers (Basel) 2021; 13:cancers13081846. [PMID: 33924372 PMCID: PMC8070481 DOI: 10.3390/cancers13081846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Assessment of cognition is crucial in brain tumor care, and clinical outcome along this axis is frequently neglected. As a result, a patient’s quality of life seems more impacted than usually reported in clinical series. With this article, we review the current state of affairs and search for patient- and meningioma-related outcome predictors. We found a great variety in the number and types of neuropsychological tests used and in the dimensions of cognition studied. Furthermore, data mostly originate from a selected part of the globe and therefore may not reflect a global reality. Treatment has an early cognitive impact in the majority of meningioma patients. Further long-term conclusions are precluded by a mean follow-up time shorter than one year. Anticipating cognition outcomes prior to, during, and after treatment of meningiomas remains difficult. Future research should aim for a reliable and worldwide reproducible standard battery of tests. Abstract Clinical outcomes after surgery for intracranial meningiomas might be overvalued as cognitive dimensions and quality of life are probably underreported. This review aims to summarize the current state of cognitive screening and treatment-related outcomes after meningioma surgery. We present a systematic review (Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA-P) 2015-based) of cognitive outcomes after intracranial meningioma surgery. A total of 1572 patients (range 9–261) with a mean age of 58.4 years (range 23–87), and predominantly female (n = 1084, 68.9%) were identified. Mean follow-up time after treatment was 0.86 ± 0.3 years. Neuropsychological assessment was very heterogeneous, but five dimensions of cognition were described: memory (19/22); attention (18/22); executive functions (17/22); language (11/22); flexibility (11/22 studies). Cognitive abilities were impaired in 18 studies (81.8%), but only 1 showed deterioration in all dimensions simultaneously. Memory was the most affected. with significant post-therapy impairment in 9 studies (40.9%). Postoperatively, only 4 studies (18.2%) showed improvement in at least one dimension. Meningioma patients had significantly lower cognitive scores when compared to healthy subjects. Surgery and radiotherapy for meningiomas were associated with cognitive impairment, probably followed by a partial recovery. Cognition is poorly defined, and the assessment tools employed lack standardization. Cognitive impairment is probably underreported in meningioma patients.
Collapse
Affiliation(s)
- Renato Gondar
- Neurosurgical Division, Department of Neurosciences, Geneva University Hospitals, 1206 Geneva, Switzerland; (R.G.); (G.P.); (K.S.)
| | - Gildas Patet
- Neurosurgical Division, Department of Neurosciences, Geneva University Hospitals, 1206 Geneva, Switzerland; (R.G.); (G.P.); (K.S.)
| | - Karl Schaller
- Neurosurgical Division, Department of Neurosciences, Geneva University Hospitals, 1206 Geneva, Switzerland; (R.G.); (G.P.); (K.S.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Torstein R. Meling
- Neurosurgical Division, Department of Neurosciences, Geneva University Hospitals, 1206 Geneva, Switzerland; (R.G.); (G.P.); (K.S.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence: ; Tel.: +41-782-123-925
| |
Collapse
|