1
|
Wei J, Jiang J, Tian L, Jiang Y, Ge C, Yu H, Zeng Q. Effect of Rain-Shelter Cultivation on Yield and Fruit Quality of Container-Grown Rabbiteye Blueberry in Central-Eastern China. PLANTS (BASEL, SWITZERLAND) 2025; 14:1167. [PMID: 40284055 PMCID: PMC12030388 DOI: 10.3390/plants14081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
The fruit ripening season for the rabbiteye blueberry often coincides with periods of heavy rainfall in central-eastern China. The use of rain shelters to protect fruit from rainfall damage has increased worldwide due to global climate anomalies. However, the effects of rain-shelter cultivation on the photosynthesis and fruit characteristics of the rabbiteye blueberry have not yet been fully explored. In the present study, 4-year-old container-grown rabbiteye blueberry plants were covered with polyethylene (PE) film from the berry coloration stage until fruit were harvested for three consecutive years in Nanjing, China. The results showed that rain-shelter cultivation did not affect the air temperature and relative humidity, but significantly reduced the photosynthetically active radiation and UV radiation reaching the canopy zone. However, the rain shelter conditions did not significantly decrease the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (E) of the rabbiteye blueberry leaves. Additionally, the fruit yield and berry weight of blueberries cultivated under the rain shelter were not significantly affected. Furthermore, no significant differences were observed in total soluble solids, acidity, and total flavonoids content between fruits grown under the rain shelter and in the open field in all experimental years, but a significant decrease in total polyphenols and anthocyanins content was observed in fruits grown under the rain shelter in years with less rainfall. Our results suggest that simple rain shelter cultivation did not noticeably affect the photosynthesis and fruit yield of container-grown rabbiteye blueberry in rainy areas of central-eastern China, but its effects on the fruit quality vary depending on rainfall during the fruit ripening period.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qilong Zeng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (J.J.); (L.T.); (Y.J.); (C.G.); (H.Y.)
| |
Collapse
|
2
|
Cortés-Avendaño P, Macavilca EA, Ponce-Rosas FC, Murillo-Baca SM, Quispe-Neyra J, Alvarado-Zambrano F, Condezo-Hoyos L. Microfluidic paper-based analytical device for measurement of pH using as sensor red cabbage anthocyanins and gum arabic. Food Chem 2025; 462:140964. [PMID: 39213972 DOI: 10.1016/j.foodchem.2024.140964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The objective of this study was to develop and validate a novel microfluidic paper-based analytical device (μPADpH) for determining the pH levels in foods. Anthocyanins from red cabbage aqueous extract (RCAE) were used as its analytical sensor. Whatman No. 1 filter paper was the most suitable for the device due to its porosity and fiber organization, which allows for maximum color intensity and minimal color heterogeneity of the RCAE in the detection zone of the μPADpH. To ensure the color stability of the RCAE for commercial use of the μPADpH, gum arabic was added. The geometric design of the μPADpH, including the channel length and separation zone diameter, was systematically optimized using colored food. The validation showed that the μPADpH did not differ from the pH meter when analyzing natural foods. However, certain additives in processed foods were found to increase the pH values.
Collapse
Affiliation(s)
- Paola Cortés-Avendaño
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Lima, Peru; Universidad Nacional Agraria La Molina, Instituto de Investigación de Bioquímica y Biología Molecular, Lima, Peru
| | - Edwin A Macavilca
- Universidad Nacional Jose Faustino Sanchez Carrion, Departamento de Ingenieria en Industrias Alimentarias, Functional Food Research Laboratory, Huacho, Peru
| | - Fortunato C Ponce-Rosas
- Universidad Nacional Daniel Alcides Carrión, Facultad de Ciencias Agropecuarias. Escuela de Formación Profesional de Industrias Alimentarias, La Merced, Chanchamayo, Peru
| | - Silvia M Murillo-Baca
- Universidad Nacional Daniel Alcides Carrión, Facultad de Ciencias Agropecuarias. Escuela de Formación Profesional de Industrias Alimentarias, La Merced, Chanchamayo, Peru
| | - Juan Quispe-Neyra
- Universidad Nacional de Piura, Escuela Profesional de Ingeniería Agroindustrial e Industrias Alimentarias, Piura, Peru
| | - Fredy Alvarado-Zambrano
- Universidad Nacional Santiago Antúnez de Mayolo, Facultad de Ingenieria de Industrias Alimentarias, Huaraz, Peru
| | - Luis Condezo-Hoyos
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Lima, Peru; Universidad Nacional Agraria La Molina, Instituto de Investigación de Bioquímica y Biología Molecular, Lima, Peru.
| |
Collapse
|
3
|
Kumar R, Flint-Garcia S, Salazar Vidal MN, Channaiah L, Vardhanabhuti B, Sommer S, Wan C, Somavat P. Optimization of Polyphenol Extraction from Purple Corn Pericarp Using Glycerol/Lactic Acid-Based Deep Eutectic Solvent in Combination with Ultrasound-Assisted Extraction. Antioxidants (Basel) 2024; 14:9. [PMID: 39857343 PMCID: PMC11762350 DOI: 10.3390/antiox14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Purple corn pericarp, a processing waste stream, is an extremely rich source of phytochemicals. Optimal polyphenol extraction parameters were identified using response surface methodology (RSM) by combining a deep eutectic solvent (DES) and ultrasound-assisted extraction (UAE) method. After DES characterization, Plackett-Burman design was used to screen five explanatory variables, namely, time, Temp (temperature), water, Amp (amplitude), and S/L (solid-to-liquid ratio). The total anthocyanin concentration (TAC), total polyphenol concentration (TPC), and condensed tannin (CT) concentration were the response variables. After identifying significant factors, the Box-Behnken design was utilized to identify the optimal extraction parameters. The experimental yields under the optimized conditions of time (10 min), temperature (60 °C), water concentration (42.73%), and amplitude (40%) were 36.31 ± 1.54 g of cyanidin-3-glucoside (C3G), 103.16 ± 6.17 g of gallic acid (GA), and 237.54 ± 9.98 g of epicatechin (EE) per kg of pericarp, with a desirability index of 0.858. The relative standard error among the predicted and experimental yields was <10%, validating the robustness of the model. HPLC analysis identified seven phytochemicals, and significant antioxidant activities were observed through four distinct assays. Metabolomic profiling identified 57 unique phytochemicals. The UAE technique combined with DES can efficiently extract polyphenols from purple corn pericarp in a short time.
Collapse
Affiliation(s)
- Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
| | - Sherry Flint-Garcia
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Columbia, MO 65211, USA;
| | | | - Lakshmikantha Channaiah
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
| | - Bongkosh Vardhanabhuti
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
| | - Stephan Sommer
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (R.K.); (L.C.); (B.V.); (S.S.)
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
4
|
Vega EN, Ciudad-Mulero M, Fernández-Ruiz V, Barros L, Morales P. Natural Sources of Food Colorants as Potential Substitutes for Artificial Additives. Foods 2023; 12:4102. [PMID: 38002160 PMCID: PMC10670170 DOI: 10.3390/foods12224102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the demand of healthier food products and products made with natural ingredients has increased overwhelmingly, led by the awareness of human beings of the influence of food on their health, as well as by the evidence of side effects generated by different ingredients such as some additives. This is the case for several artificial colorants, especially azo colorants, which have been related to the development of allergic reactions, attention deficit and hyperactivity disorder. All the above has focused the attention of researchers on obtaining colorants from natural sources that do not present a risk for consumption and, on the contrary, show biological activity. The most representative compounds that present colorant capacity found in nature are anthocyanins, anthraquinones, betalains, carotenoids and chlorophylls. Therefore, the present review summarizes research published in the last 15 years (2008-2023) in different databases (PubMed, Scopus, Web of Science and ScienceDirect) encompassing various natural sources of these colorant compounds, referring to their obtention, identification, some of the efforts made for improvements in their stability and their incorporation in different food matrices. In this way, this review evidences the promising path of development of natural colorants for the replacement of their artificial counterparts.
Collapse
Affiliation(s)
- Erika N. Vega
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - María Ciudad-Mulero
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| | - Virginia Fernández-Ruiz
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patricia Morales
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (E.N.V.); (M.C.-M.); (V.F.-R.)
| |
Collapse
|
5
|
Boateng ID, Kumar R, Daubert CR, Flint-Garcia S, Mustapha A, Kuehnel L, Agliata J, Li Q, Wan C, Somavat P. Sonoprocessing improves phenolics profile, antioxidant capacity, structure, and product qualities of purple corn pericarp extract. ULTRASONICS SONOCHEMISTRY 2023; 95:106418. [PMID: 37094478 PMCID: PMC10149314 DOI: 10.1016/j.ultsonch.2023.106418] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Christopher R Daubert
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| | - Sherry Flint-Garcia
- US Department of Agriculture, Plant Genetics Research Unit, Columbia, MO 65211, United States of America.
| | - Azlin Mustapha
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Lucas Kuehnel
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Joseph Agliata
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America.
| | - Qianwei Li
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, United States of America; Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
6
|
Bitwell C, Indra SS, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. SCIENTIFIC AFRICAN 2023; 19:e01585. [DOI: 10.1016/j.sciaf.2023.e01585] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
|
7
|
Khan P, Akhtar N, Khan HMS, Tasneem R, Zaka HS, Akhtar N, Sharif A. Assessment of Brassica oleraceae L. (Brassicaceae) extract loaded ethosomal gel as a versatile vesicular carrier system for dermocosmetic application: A noninvasive split-faced study. J Cosmet Dermatol 2022; 21:7153-7162. [PMID: 36204972 DOI: 10.1111/jocd.15436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Plant extracts with rich ascorbic acid contents have greater antioxidant capability; extensively employed in skin beautifying products and protect skin from detrimental photodamaging environmental effects. Brassica oleraceae is having a substantial prospective toward cosmeceuticals owed by its profound activity against oxidation. AIM To develop an effective topical ethosomal gel loaded with Brassica oleraceae leaves extract with significant antioxidant activity. METHODOLOGY Valuation of antioxidant capability of plant leaves extract by 2,2-diphenyl-1-picrylhydrazyl (DPPH), and quantification of ascorbic acid was done through high performance liquid chromatography (HPLC). Ethosomes were prepared by cold method. Optimized suspension containing extract was incorporated in 2% Carbopol gel (test) along with extract solution (control). Noninvasive in vivo studies were performed for final product to assess its effects on skin by measuring melanin and erythema, sebum level, elasticity, moistness level, facial pores count and their area, skin wrinkling, and smoothness. RESULTS Brassica oleraceae (red cabbage) leaves extract exhibited significant antioxidant potential (85.64 ± 1.28%) with 14.22 μg/g of ascorbic acid; expressed prominent cosmetic effects in terms of skin melanin, erythema, sebum, elasticity, hydration, facial pores, wrinkles, and smoothness when incorporated in ethosomes. ANOVA test also exhibited positive significant (p ≤ 0.05) effects on skin. CONCLUSION Brassica oleraceae extract is a strong antioxidant with remarkable dermocosmetic benefits for skin.
Collapse
Affiliation(s)
- Palwasha Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Haji Muhammad Shoaib Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rabia Tasneem
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Saqib Zaka
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.,Department of Pharmacy, Faculty of Medical and Health Sciences, University of Ponch Rawalakot, Rawalakot, AJK
| | - Arfa Sharif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
8
|
Samota MK, Sharma M, Kaur K, Sarita, Yadav DK, Pandey AK, Tak Y, Rawat M, Thakur J, Rani H. Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications. Front Nutr 2022; 9:917617. [PMID: 35967791 PMCID: PMC9363841 DOI: 10.3389/fnut.2022.917617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Anthocyanins are high-value compounds, and their use as functional foods and their natural colorant have potential health benefits. Anthocyanins seem to possess antioxidant properties, which help prevent neuronal diseases and thereby exhibit anti-inflammatory, chemotherapeutic, cardioprotective, hepatoprotective, and neuroprotective activities. They also show different therapeutic effects against various chronic diseases. Anthocyanins are present in high concentrations in onion. In recent years, although both conventional and improved methods have been used for extraction of anthocyanins, nowadays, improved methods are of great importance because of their higher yield and stability of anthocyanins. In this review, we compile anthocyanins and their derivatives found in onion and the factors affecting their stability. We also analyze different extraction techniques of anthocyanins. From this point of view, it is very important to be precisely aware of the impact that each parameter has on the stability and subsequently potentiate its bioavailability or beneficial health effects. We present up-to-date information on bioavailability, dietary effects, and health implications of anthocyanins such as antioxidant, antidiabetic, anticancerous, antiobesity, cardioprotective, and hepatoprotective activities.
Collapse
Affiliation(s)
- Mahesh Kumar Samota
- Horticulture Crop Processing (HCP) Division, ICAR-Central Institute of Post-Harvest Engineering & Technology (CIPHET), Punjab, India
| | - Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar, Punjab, India
| | - Kulwinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sarita
- College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Yadav
- Division of Environmental Soil Science, ICAR-Indian Institute of Soil Science (IISS), Bhopal, MP, India
| | - Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association-North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Yamini Tak
- Agricultural Research Station (ARS), Agriculture University, Kota, Rajasthan, India
| | - Mandeep Rawat
- Department of Horticulture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Julie Thakur
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
9
|
Effect of the duty cycle of the ultrasonic processor on the efficiency of extraction of phenolic compounds from Sorbus intermedia. Sci Rep 2022; 12:8311. [PMID: 35585109 PMCID: PMC9117660 DOI: 10.1038/s41598-022-12244-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
This paper studies the effect of different ultrasonic parameters on the yield of extraction and antioxidant activity of selected phenolic compounds from Sorbus intermedia berries. The sonication was carried out in two modes: continuous and pulse. In the pulse mode, the samples were sonicated with the following processor settings: 1 s on–2 s off. The effective ultrasonic processor times were 5, 10, and 15 min, and the total extraction times were 15, 30, and 45 min. The results showed that the duty cycle significantly affected the antioxidant activity of the extracts and the yield of chlorogenic acid, rutin, and total flavonoids. Compared to the continuous mode, the pulse ultrasound increased the extraction yield of rutin by 5–27%, chlorogenic acid by 12–29%, and total flavonoids by 8–42%. The effect of the duty cycle on the extraction yield was dependent on the intensity and duration of the ultrasound treatment. The mechanism of the influence of the pulsed ultrasound field on the extraction process has been elucidated. This research clearly demonstrated the superiority of pulsed ultrasound-assisted extraction for production of antioxidants from Sorbus intermedia berries.
Collapse
|
10
|
Oktaviyanti ND, Setiawan F, Kartini K, Azminah A, Avanti C, Hayun H, Mun'im A. Development of a Simple and Rapid HPLC-UV Method for Ultrasound-assisted Deep Eutectic Solvent Extraction optimization of Ferulic Acid and Antioxidant Activity from Ixora javanica Flowers. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
M V, Wang K. Dietary natural products as a potential inhibitor towards advanced glycation end products and hyperglycemic complications: A phytotherapy approaches. Biomed Pharmacother 2021; 144:112336. [PMID: 34678719 DOI: 10.1016/j.biopha.2021.112336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022] Open
Abstract
Natural products exist in various natural foods such as plants, herbs, fruits, and vegetables. Furthermore, marine life offers potential natural products with significant biological activity. The biochemical reaction is known as advanced glycation end products (AGEs) occurs in the human body. On the other hand, foods are capable of a wide range of processing conditions resulting in the generation of exogenous AGEs adducts. Protein glycation and the formation of advanced glycation end products both contribute to the pathogenesis of hyperglycemic complications. AGEs also play a pivotal role in microvascular and macrovascular complications progression by receptors for advanced glycation end products (RAGE). RAGE activate by AGEs leads to up-regulation of transcriptional factor NF-kB and inflammatory genes. Around the globe, researchers are working in various approaches for therapeutical implications on controlling AGEs mediated disease complications. In this regard, one of the potential promising agents observed with a wide range of AGEs inhibition by food-derived natural products. Current biotechnological tools have been turned to natural products or phytochemicals to manufacture the molecules without compromising their functionality. Metabolic engineering and bioinformatics perspectives have recently enabled the generation of a few potent metabolites with anti-diabetic activity. As the primary focus, this review article will also discuss multidisciplinary approaches that emphasize current advances in anti-diabetic therapeutic action and future perspectives of natural products.
Collapse
Affiliation(s)
- Vijaykrishnaraj M
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Kuiwu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
12
|
Rifna EJ, Misra NN, Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit Rev Food Sci Nutr 2021; 63:719-752. [PMID: 34309440 DOI: 10.1080/10408398.2021.1952923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables are the most important commodities of trade value among horticultural produce. They are utilized as raw or processed, owing to the presence of health-promoting components. Significant quantities of waste are produced during fruits and vegetables processing that are majorly accounted by waste peels (∼90-92%). These wastes, however, are usually exceptionally abundant in bioactive molecules. Retrieving these valuable compounds is a core objective for the valorization of waste peel, besides making them a prevailing source of beneficial additives in food and pharmaceutical industry. The current review is focused on extraction of bioactive compounds derived from fruit and vegetable waste peels and highlights the supreme attractive conventional and non-conventional extraction techniques, such as microwave-assisted, ultrasound assisted, pulsed electric fields, pulsed ohmic heating, pressurized liquid extraction, supercritical fluid extraction, pressurized hot water, high hydrostatic pressure, dielectric barrier discharge plasma extraction, enzyme-assisted extraction and the application of "green" solvents say as well as their synergistic effects that have been applied to recover bioactive from waste peels. Superior yields achieved with non-conventional technologies were identified to be of chief interest, considering direct positive economic consequences. This review also emphasizes leveraging efficient, modern extraction technologies for valorizing abundantly available low-cost waste peel, to achieve economical substitutes, whilst safeguarding the environment and building a circular economy. It is supposed that the findings discussed though this review might be a valuable tool for fruit and vegetable processing industry to imply an economical and effectual sustainable extraction methods, converting waste peel by-product to a high added value functional product.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
13
|
Ghareaghajlou N, Hallaj-Nezhadi S, Ghasempour Z. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chem 2021; 365:130482. [PMID: 34243124 DOI: 10.1016/j.foodchem.2021.130482] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
Red cabbage anthocyanins are of great interest as natural food colorants in the food industry; as they represent the color over a broad range of pH-values compared to anthocyanins from other natural sources. It is important to select an appropriate technique with high recovery of anthocyanins from red cabbage, among which extraction with organic solvents is the most applied extraction method. Currently, novel extraction techniques are employed as an alternative to the solvent extraction method, providing advantages such as higher anthocyanin recovery in a shorter time, lower solvent utilization, and minimum quality degradation. However, the incorporation of extracted anthocyanins into foodstuffs and pharmacological products is limited due to their low bioavailability and relative instability toward environmental adverse conditions, such as pH, temperature, enzymes, light, oxygen and ascorbic acid. In addition to increased structural stability of anthocyanins through glycosylation and acylation, their stability could be improved by copigmentation and encapsulation.
Collapse
Affiliation(s)
- Nazila Ghareaghajlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Hallaj-Nezhadi
- Drug Applied Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Luo M, Zhou DD, Shang A, Gan RY, Li HB. Influences of Microwave-Assisted Extraction Parameters on Antioxidant Activity of the Extract from Akebia trifoliata Peels. Foods 2021; 10:1432. [PMID: 34205582 PMCID: PMC8234544 DOI: 10.3390/foods10061432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Akebia trifoliata is a fruit with rich nutritional properties, and its peel is produced as a by-product. In this research, we investigated the influences of microwave-assisted extraction parameters on antioxidant activity of the extract from Akebia trifoliata peels, and the ferric-reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) as well as total phenolic contents (TPC) were used to optimize extraction parameters. The influences of ethanol concentration, microwave power and solvent-to-material ratio, as well as extraction temperature and time on TPC, FRAP and TEAC values, were assessed using single-factor tests. Three parameters with obvious effects on antioxidant capacity were selected to further investigate their interactions by response surface methodology. The optimal extraction parameters of natural antioxidants from Akebia trifoliata peels were ethanol concentration, 49.61% (v/v); solvent-to-material ratio, 32.59:1 mL/g; extraction time, 39.31 min; microwave power, 500 W; and extraction temperature, 50 °C. Under optimal conditions, the FRAP, TEAC and TPC values of Akebia trifoliata peel extracts were 351.86 ± 9.47 µM Fe(II)/g dry weight (DW), 191.12 ± 3.53 µM Trolox/g DW and 32.67 ± 0.90 mg gallic acid equivalent (GAE)/g DW, respectively. Furthermore, the main bioactive compounds (chlorogenic acid, rutin and ellagic acid) in the extract were determined by high-performance liquid chromatography. The results are useful for the full utilization of the by-product from Akebia trifoliate fruit.
Collapse
Affiliation(s)
- Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (M.L.); (D.-D.Z.); (A.S.)
| |
Collapse
|
15
|
Effects of Microwave-Assisted Extraction Conditions on Antioxidant Capacity of Sweet Tea ( Lithocarpus polystachyus Rehd.). Antioxidants (Basel) 2020; 9:antiox9080678. [PMID: 32751188 PMCID: PMC7464483 DOI: 10.3390/antiox9080678] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
In this study, the effects of microwave-assisted extraction conditions on antioxidant capacity of sweet tea (Lithocarpus polystachyus Rehd.) were studied and the antioxidants in the extract were identified. The influences of ethanol concentration, solvent-to-sample ratio, microwave power, extraction temperature and extraction time on Trolox equivalent antioxidant capacity (TEAC) value, ferric reducing antioxidant power (FRAP) value and total phenolic content (TPC) were investigated by single-factor experiments. The response surface methodology (RSM) was used to study the interaction of three parameters which had significant influences on antioxidant capacity including ethanol concentration, solvent-to-sample ratio and extraction time. The optimal conditions for the extraction of antioxidants from sweet tea were found as follows—ethanol concentration of 58.43% (v/v), solvent-to-sample ratio of 35.39:1 mL/g, extraction time of 25.26 min, extraction temperature of 50 ℃ and microwave power of 600 W. The FRAP, TEAC and TPC values of the extract under the optimal conditions were 381.29 ± 4.42 μM Fe(II)/g dry weight (DW), 613.11 ± 9.32 μM Trolox/g DW and 135.94 ± 0.52 mg gallic acid equivalent (GAE)/g DW, respectively. In addition, the major antioxidant components in the extract were detected by high-performance liquid chromatography with diode array detection (HPLC-DAD), including phlorizin, phloretin and trilobatin. The crude extract could be used as food additives or developed into functional food for the prevention and management of oxidative stress-related diseases.
Collapse
|
16
|
Albuquerque BR, Oliveira MBPP, Barros L, Ferreira ICFR. Could fruits be a reliable source of food colorants? Pros and cons of these natural additives. Crit Rev Food Sci Nutr 2020; 61:805-835. [PMID: 32267162 DOI: 10.1080/10408398.2020.1746904] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Color additives are important for the food industry to improve sensory quality lost during food process and to expand the variety of products. In general, artificial colorants have lower cost and better stability than the natural ones. Nevertheless, studies have reported their association with some health disorders. Furthermore, consumers have given greater attention to food products with health beneficial effects, which has provided a new perspective for the use of natural colorants. In this context, fruits are an excellent alternative source of natural compounds, that allow the obtainment of a wide range of colorant molecules, such as anthocyanins, betalains, carotenoids, and chlorophylls. Furthermore, in addition to their coloring ability, they comprise different bioactive properties. However, the extraction and application of natural colorants from fruits is still a challenge, since these compounds show some stability problems, in addition to issues related to the sustainability of raw-materials providing. To overcome these limitations, several studies have reported optimized extraction and stabilization procedures. In this review, the major pigments found in fruits and their extraction and stabilization techniques for uses as food additives will be looked over.
Collapse
Affiliation(s)
- Bianca R Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE - Science Chemical Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|