1
|
Wafi A, Khan MM. Green synthesized ZnO and ZnO-based composites for wound healing applications. Bioprocess Biosyst Eng 2025; 48:521-542. [PMID: 39739126 DOI: 10.1007/s00449-024-03123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
In recent years, zinc oxide nanoparticles (ZnO NPs) have gained much attention in biomedical applications because of their distinctive physicochemical features such as low toxicity and biocompatible properties. Traditional methods to produce ZnO NPs sometimes include harmful substances and considerable energy consumption, causing environmental issues and potential health risks. Nowadays, the concern of ZnO production has moved toward environmentally friendly and sustainable synthesis methods, using natural extracts or plant-based precursors. This review discusses the green synthesis of ZnO NPs utilizing various plant extracts for wound healing applications. Moreover, ZnO NPs have antibacterial characteristics, which can prevent infection, a substantial obstacle in wound healing. Their ability to maintain inflammation, proliferation, oxidative stress, and promote angiogenesis proves their critical role in wound closure. In addition, ZnO NPs can also be easily and ideally incorporated with wound dressings and scaffolds such as hydrogel, chitosan, cellulose, alginate, and other materials, due to their exceptional mechanical properties. The latest publication of green synthesis of ZnO NPs and their applications for wound healing has been discussed. Therefore, this review provides a current update of knowledge on the sustainable and biocompatible ZnO NPs for specific applications, i.e., wound healing applications. In addition, the green synthesis of ZnO NPs using plant extracts also provides a particular approach in terms of material preparation, which is different from previous review articles.
Collapse
Affiliation(s)
- Abdul Wafi
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
- Department of Pharmacy, Faculty of Medicine and Health Science, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
2
|
Abu Elella MH, Kamel AM, López-Maldonado EA, Uzondu SW, Abdallah HM. A review of recent progress in alginate-based nanocomposite materials for tissue engineering applications. Int J Biol Macromol 2025; 297:139840. [PMID: 39814276 DOI: 10.1016/j.ijbiomac.2025.139840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Integrating nanotechnology with tissue engineering has revolutionized biomedical sciences, enabling the development of advanced therapeutic strategies. Tissue engineering applications widely utilize alginate due to its biocompatibility, mild gelation conditions, and ease of modification. Combining different nanomaterials with alginate matrices enhances the resulting nanocomposites' physicochemical properties, such as mechanical, electrical, and biological properties, as well as their surface area-to-volume ratio, offering significant potential for tissue engineering applications. This review thoroughly overviews various nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanomaterials, MXenes, and hydroxyapatite, that modify alginate-based nanocomposites. It covers multiple preparation techniques, including layer-by-layer assembly, blending, 3D printing, and in situ synthesis. These techniques apply to tissue engineering applications, including bone tissue engineering, cardiac tissue engineering, neural tissue engineering, wound healing, and skin regeneration. Additionally, it highlights current advancements, challenges, and future perspectives.
Collapse
Affiliation(s)
- Mahmoud H Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Amira M Kamel
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424, Tijuana, Baja California, Mexico
| | | | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
3
|
Al-Tameemi AI, Masarudin MJ, Rahim RA, Mizzi R, Timms VJ, Isa NM, Neilan BA. Eco-friendly zinc oxide nanoparticle biosynthesis powered by probiotic bacteria. Appl Microbiol Biotechnol 2025; 109:32. [PMID: 39878901 PMCID: PMC11779794 DOI: 10.1007/s00253-024-13355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 01/31/2025]
Abstract
The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater. Microorganisms from wastewater tolerate harmful elements and enzymatically convert toxic heavy metals into eco-friendly materials. These probiotic bacteria are instrumental in the synthesis of ZnO NPs and exhibit remarkable antimicrobial properties with diverse industrial applications. As the challenge of drug-resistant pathogens escalates, innovative strategies for combating microbial infections are essential. This review explores the intersection of nanotechnology, microbiology, and antibacterial resistance, highlighting the importance of selecting suitable probiotic bacteria for synthesizing ZnO NPs with potent antibacterial activity. Additionally, the review addresses the biofunctionalization of NPs and their applications in environmental remediation and therapeutic innovations, including wound healing, antibacterial, and anticancer treatments. Eco-friendly NP synthesis relies on the identification of these suitable microbial "nano-factories." Targeting probiotic bacteria from wastewater can uncover new microbial NP synthesis capabilities, advancing environmentally friendly NP production methods. KEY POINTS: • Innovative strategies are needed to combat drug-resistant pathogens like MRSA. • Wastewater-derived probiotic bacteria are an eco-friendly method for ZnO synthesis. • ZnO NPs show significant antimicrobial activity against various pathogens.
Collapse
Affiliation(s)
- Ahmed Issa Al-Tameemi
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- College of Dentistry, Al-Iraqia University, 10053 Al Adhamiya, Baghdad, Iraq
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rachel Mizzi
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Verlaine J Timms
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
4
|
Akdaşçi E, Duman H, Eker F, Bechelany M, Karav S. Chitosan and Its Nanoparticles: A Multifaceted Approach to Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:126. [PMID: 39852740 PMCID: PMC11768082 DOI: 10.3390/nano15020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Chitosan, a multifaceted amino polysaccharide biopolymer derived from chitin, has extensive antibacterial efficacy against diverse pathogenic microorganisms, including both Gram-negative and Gram-positive bacteria, in addition to fungi. Over the course of the last several decades, chitosan nanoparticles (NPs), which are polymeric and bio-based, have garnered a great deal of interest as efficient antibacterial agents. This is mostly due to the fact that they are used in a wide variety of applications, including medical treatments, food, chemicals, and agricultural products. Within the context of the antibacterial mechanism of chitosan and chitosan NPs, we present a review that provides an overview of the synthesis methods, including novel procedures, and compiles the applications that have been developed in the field of biomedicine. These applications include wound healing, drug delivery, dental treatment, water purification, agriculture, and food preservation. In addition to this, we focus on the mechanisms of action and the factors that determine the antibacterial activity of chitosan and its derivatives. In conjunction with this line of inquiry, researchers are strongly urged to concentrate their efforts on developing novel and ground-breaking applications of chitosan NPs.
Collapse
Affiliation(s)
- Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Mikhael Bechelany
- European Institute for Membranes (IEM), UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CEDEX 5, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| |
Collapse
|
5
|
Hikmat S, Tarawneh O, Hamadneh L, Hamed R, Alhusban AA, Hailat M, Abu Mahfouz H, Shraim S, Al-Shammari A, Aljariri A, Abu Rayya R, Hamdan L. Strontium nitrate-dopped zinc oxide-loaded alginate gels with gentamicin for improved wound healing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:2. [PMID: 39777561 PMCID: PMC11706890 DOI: 10.1007/s10856-024-06836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/09/2024] [Indexed: 01/11/2025]
Abstract
Wound dressing development is an area of active research. Traditional dressings lack antibacterial activity, biocompatibility, and tissue regeneration. Alginate is a heavily investigated polymer employed as wound dressings and can be combined with a wide range of additives. Herein, we report the preparation of alginate gel using the crosslinking technique as potential wound dressing, with insight investigation of the influence of employing single, two, or three cross-linkers: Strontium (Sr), zinc oxide (ZnO), and gentamicin sulfate. Rheology was used to confirm the gel's preparation, where the samples' viscosity curves show decreased viscosity with increased shear rate, indicating pseudoplastic flow. The linear viscoelastic region shows constant G' and G" within the sample structure. In this study, we used three gels with different mixtures of ingredients: Gels A, B, and C contain sodium alginate (1% w/v) and 0.5 mL of Sr nitrate (4% w/v). However, Gels B and C contain 0.25 mL of ZnO (0.5% w/v). Gel C also includes 0.1 mL of gentamicin (1% w/v). The study examined the effectiveness of Gel A, B, and C on wound healing, calculating the reduction of wound area after seven, 14, and 20 days of a single topical treatment. Gel A, B, and C significantly reduced wound area, while Gel B and C showed a significant reduction. The zone of inhibition was used to detect the gels' efficacy against microorganisms. The study found zinc deposition in the liver and bone, with Gel B and C showing higher levels. The study also found significant overexpression of MIP α and MIP β in tissues and downregulation of CCL2, IL8, and TGF β, explaining wound healing with minimal scar formation.
Collapse
Affiliation(s)
- Suhair Hikmat
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Ola Tarawneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
| | - Lama Hamadneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Mohammad Hailat
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Hadeel Abu Mahfouz
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Sawsan Shraim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Alghadeer Al-Shammari
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Aya Aljariri
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rafa Abu Rayya
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Lana Hamdan
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
6
|
Faghani G, Azarniya A. Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon 2024; 10:e39611. [PMID: 39524817 PMCID: PMC11550055 DOI: 10.1016/j.heliyon.2024.e39611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The growing need for developing reliable and efficient wound dressings has led to recent progress in designing novel materials and formulations for different kinds of wounds caused by traumas, burns, surgeries, and diabetes. In cases of extreme urgency, accelerating wound recovery is of high importance to prevent persistent infection and biofilm formation. The application of nanotechnology in this domain resulted in the creation of distinct nanoplatforms for highly advanced wound-healing therapeutic approaches. Recently developed nanomaterials have been used as antibacterial agents or drug carriers to control wound infection. In the present review, the authors aim to review the recently published research on the effects of incorporating emerging nanomaterials into novel wound dressings and investigate their distinct roles in the wound healing process. It was determined that the metallic nanoparticles (NPs) exhibit antimicrobial and regenerative properties, metal oxide NPs regulate inflammation and promote tissue regeneration, MXene NPs enhance cell adhesion and proliferation, while metal-organic frameworks (MOFs) offer controlled drug delivery capabilities. Further research is required to fully understand the mechanisms and optimize the applications of these NPs in wound healing.
Collapse
Affiliation(s)
- Gholamreza Faghani
- Department of Mechanical Engineering, Khatam-Ol-Anbia (PBU) University, Tehran, Iran
| | - Amir Azarniya
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Lan X, Du T, Zhuo J, Wang T, Shu R, Li Y, Zhang W, Ji Y, Wang Y, Yue X, Wang J. Advances of biomacromolecule-based antibacterial hydrogels and their performance evaluation for wound healing: A review. Int J Biol Macromol 2024; 279:135577. [PMID: 39270907 DOI: 10.1016/j.ijbiomac.2024.135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.
Collapse
Affiliation(s)
- Xi Lan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Tianyu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China.
| |
Collapse
|
8
|
Rafique A, Amjad F, Janjua MRSA, Naqvi SAR, Hassan SU, Abdullah H, Nazir MS, Ali Z, Alshihri AA, Momenah MA, Mansour AA, Bajaber MA, Alalwiat AA. Chia seed-mediated fabrication of ZnO/Ag/Ag 2O nanocomposites: structural, antioxidant, anticancer, and wound healing studies. Front Chem 2024; 12:1405385. [PMID: 39055045 PMCID: PMC11269097 DOI: 10.3389/fchem.2024.1405385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Plant extract-mediated fabrication of metal nanocomposites is used in cell proliferation inhibition and topical wound treatment, demonstrating significant effectiveness. Salvia hispanica L. (chia) seed extract (CE) is used as the reaction medium for the green fabrication of ecofriendly ZnO(CE) nanoparticles (NPs) and Ag/Ag2O(CE) and ZnO/Ag/Ag2O(CE) nanocomposites. The resultant nanoparticles and nanocomposite materials were characterized using UV-visible, Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) techniques. In the context of antioxidant studies, ZnO/Ag/Ag2O(CE) exhibited 57% reducing power and 86% 2,2, diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. All three materials showed strong antibacterial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E.coli), and Bacillus subtilis (B. subtilis) bacterial strains. Additionally, ZnO(CE), Ag/Ag2O(CE), and ZnO/Ag/Ag2O(CE) also revealed 64.47%, 42.56%, and 75.27% in vitro Michigan Cancer Foundation-7 (MCF7) cancer cell line inhibition, respectively, at a concentration of 100 μg/mL. Selectively, the most effective composite material, ZnO/Ag/Ag2O(CE), was used to evaluate in vivo wound healing potential in rat models. The study revealed 96% wound closure in 10 days, which was quite rapid healing compared to wound healing using clinically available ointment. Therefore, in conclusion, the ZnO/Ag/Ag2O(CE) nanocomposite material could be considered for further testing and formulation as a good anticancer and wound healing agent.
Collapse
Affiliation(s)
- Aisha Rafique
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fatima Amjad
- Department of Chemistry, COMSATS University Islamabad, Lahore, Pakistan
| | | | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore, Pakistan
| | - Hanzla Abdullah
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Zulfiqar Ali
- Department of Chemistry, COMSATS University Islamabad, Lahore, Pakistan
| | - Abdulaziz A. Alshihri
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Adel Abo Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Majed A. Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahlam A. Alalwiat
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
9
|
Sedighi O, Bednarke B, Sherriff H, Doiron AL. Nanoparticle-Based Strategies for Managing Biofilm Infections in Wounds: A Comprehensive Review. ACS OMEGA 2024; 9:27853-27871. [PMID: 38973924 PMCID: PMC11223148 DOI: 10.1021/acsomega.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Chronic wounds containing opportunistic bacterial pathogens are a growing problem, as they are the primary cause of morbidity and mortality in developing and developed nations. Bacteria can adhere to almost every surface, forming architecturally complex communities called biofilms that are tolerant to an individual's immune response and traditional treatments. Wound dressings are a primary source and potential treatment avenue for biofilm infections, and research has recently focused on using nanoparticles with antimicrobial activity for infection control. This Review categorizes nanoparticle-based approaches into four main types, each leveraging unique mechanisms against biofilms. Metallic nanoparticles, such as silver and copper, show promising data due to their ability to disrupt bacterial cell membranes and induce oxidative stress, although their effectiveness can vary based on particle size and composition. Phototherapy-based nanoparticles, utilizing either photodynamic or photothermal therapy, offer targeted microbial destruction by generating reactive oxygen species or localized heat, respectively. However, their efficacy depends on the presence of light and oxygen, potentially limiting their use in deeper or more shielded biofilms. Nanoparticles designed to disrupt extracellular polymeric substances directly target the biofilm structure, enhancing the penetration and efficacy of antimicrobial agents. Lastly, nanoparticles that induce biofilm dispersion represent a novel strategy, aiming to weaken the biofilm's defense and restore susceptibility to antimicrobials. While each method has its advantages, the selection of an appropriate nanoparticle-based treatment depends on the specific requirements of the wound environment and the type of biofilm involved. The integration of these nanoparticles into wound dressings not only promises enhanced treatment outcomes but also offers a reduction in the overall use of antibiotics, aligning with the urgent need for innovative solutions in the fight against antibiotic-tolerant infections. The overarching objective of employing these diverse nanoparticle strategies is to replace antibiotics or substantially reduce their required dosages, providing promising avenues for biofilm infection management.
Collapse
Affiliation(s)
- Omid Sedighi
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Brooke Bednarke
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Hannah Sherriff
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L. Doiron
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
10
|
Hakami AA, Alorfi HS, Farghaly TA, Hussein MA. A new polyazomethine-based pyrazole moiety and its reinforced nanocomposites @ ZnO for antimicrobial applications. Des Monomers Polym 2024; 27:1-20. [PMID: 38756722 PMCID: PMC11097710 DOI: 10.1080/15685551.2024.2352897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/04/2024] [Indexed: 05/18/2024] Open
Abstract
A new class of biologically active polyazomethine/pyrazole and their related nanocomposites, polyazomethine/pyrazole/zinc oxide nanoparticles, have been successfully synthesized through the polycondensation technique in the form of polyazomethine pyrazole (PAZm/Py4-6) and polyazomethine/pyrazole/zinc oxide nanoparticles (PAZm/Py/ZnOa-c). The polymeric nanocomposites were prepared with a 5% loading of zinc oxide nanofiller using the same preparation technique, in addition to the help of ultrasonic radiation. The characteristics of the new polymers, such as solubility, viscometry, and molecular weight, were examined. All the polymers were completely soluble in the following solvents: concentrated sulfuric acid, formic acid, dimethylformamide, dimethyl sulfoxide, and tetrahydrofuran. Furthermore, the weight loss of the polyazomethine pyrazole (4, 5, and 6) at 800 °C was 67%, 95%, and 86%, respectively, which indicates the thermal stability of these polymers. At 800 °C, the polyazomethine/pyrazole/zinc oxide nanoparticles (a, b, and c) lost 74%, 68%, and 75% of their weight, respectively. This shows that adding zinc oxide nanoparticles made these compounds more stable at high temperatures. The X-Ray diffraction pattern of the polyazomethine pyrazole (PAZm/Py4-6) shows a number of sharp peaks with varying intensities. The polymers that were studied had straight crystal structures. Furthermore, the measurements of polyazomethine/pyrazole/zinc oxide nanoparticles (PAZm/Py/ZnOa-c) indicate a good merging of zinc oxide nanoparticles into the matrix of polymers. The antimicrobial activity of polymers and polymer nanocomposites was tested against some selected bacteria and fungi. The synthesized polymer (c) shows the highest activity against the two types of gram-negative bacteria selected. Most tested compounds were found to be effective against gram-positive bacteria except polyazomethine pyrazole (PAZm/Py5) and polyazomethine pyrazole (PAZm/Py6), which do not exhibit any activity. The synthesized polymers and their related nanocomposites were tested for their ability to kill the chosen fungi. All of them were effective against Aspergillus flavus, but only polyazomethine pyrazole (PAZm/Py4) and polyazomethine/pyrazole/zinc oxide (PAZm/Py/ZnOc) were effective against Candida albicans.
Collapse
Affiliation(s)
- Aqilah A. Hakami
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hajar S. Alorfi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Gamboa DMP, Abatal M, Lima E, Franseschi FA, Ucán CA, Tariq R, Elías MAR, Vargas J. Sorption Behavior of Azo Dye Congo Red onto Activated Biochar from Haematoxylum campechianum Waste: Gradient Boosting Machine Learning-Assisted Bayesian Optimization for Improved Adsorption Process. Int J Mol Sci 2024; 25:4771. [PMID: 38731990 PMCID: PMC11083778 DOI: 10.3390/ijms25094771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This work aimed to describe the adsorption behavior of Congo red (CR) onto activated biochar material prepared from Haematoxylum campechianum waste (ABHC). The carbon precursor was soaked with phosphoric acid, followed by pyrolysis to convert the precursor into activated biochar. The surface morphology of the adsorbent (before and after dye adsorption) was characterized by scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) and, lastly, pHpzc was also determined. Batch studies were carried out in the following intervals of pH = 4-10, temperature = 300.15-330.15 K, the dose of adsorbent = 1-10 g/L, and isotherms evaluated the adsorption process to determine the maximum adsorption capacity (Qmax, mg/g). Kinetic studies were performed starting from two different initial concentrations (25 and 50 mg/L) and at a maximum contact time of 48 h. The reusability potential of activated biochar was evaluated by adsorption-desorption cycles. The maximum adsorption capacity obtained with the Langmuir adsorption isotherm model was 114.8 mg/g at 300.15 K, pH = 5.4, and a dose of activated biochar of 1.0 g/L. This study also highlights the application of advanced machine learning techniques to optimize a chemical removal process. Leveraging a comprehensive dataset, a Gradient Boosting regression model was developed and fine-tuned using Bayesian optimization within a Python programming environment. The optimization algorithm efficiently navigated the input space to maximize the removal percentage, resulting in a predicted efficiency of approximately 90.47% under optimal conditions. These findings offer promising insights for enhancing efficiency in similar removal processes, showcasing the potential of machine learning in process optimization and environmental remediation.
Collapse
Affiliation(s)
| | - Mohamed Abatal
- Facultad de Ingeniería, Universidad Autónoma del Carmen, Ciudad del Carmen 24115, Campeche, Mexico;
| | - Eder Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, P.O. Box 15003, Porto Alegre 91501-970, RS, Brazil;
| | - Francisco Anguebes Franseschi
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 No. 4 Av. Concordia, Ciudad del Carmen 24180, Campeche, Mexico; (F.A.F.); (C.A.U.); (M.A.R.E.)
| | - Claudia Aguilar Ucán
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 No. 4 Av. Concordia, Ciudad del Carmen 24180, Campeche, Mexico; (F.A.F.); (C.A.U.); (M.A.R.E.)
| | - Rasikh Tariq
- Tecnologico de Monterrey, Institute for the Future of Education, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico;
| | - Miguel Angel Ramírez Elías
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 No. 4 Av. Concordia, Ciudad del Carmen 24180, Campeche, Mexico; (F.A.F.); (C.A.U.); (M.A.R.E.)
| | - Joel Vargas
- Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, Morelia 58190, Michoacán, Mexico;
| |
Collapse
|
12
|
Camparotto NG, de Figueiredo Neves T, de Souza Vendemiatti J, Dos Santos BT, Vieira MGA, Prediger P. Adsorption of contaminants by nanomaterials synthesized by green and conventional routes: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12683-12721. [PMID: 38253828 DOI: 10.1007/s11356-024-31922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Nanomaterials, due to their large surface area and selectivity, have stood out as an alternative for the adsorption of contaminants from water and effluents. Synthesized from green or traditional protocols, the main advantages and disadvantages of green nanomaterials are the elimination of the use of toxic chemicals and difficulty of reproducing the preparation of nanomaterials, respectively, while traditional nanomaterials have the main advantage of being able to prepare nanomaterials with well-defined morphological properties and the disadvantage of using potentially toxic chemicals. Thus, based on the particularities of green and conventional nanomaterials, this review aims to fill a gap in the literature on the comparison of the synthesis, morphology, and application of these nanomaterials in the adsorption of contaminants in water. Focusing on the adsorption of heavy metals, pesticides, pharmaceuticals, dyes, polyaromatic hydrocarbons, and phenol derivatives in water, for the first time, a review article explored and compared how chemical and morphological changes in nanoadsorbents synthesized by green and conventional protocols affect performance in the adsorption of contaminants in water. Despite advances in the area, there is still a lack of review articles on the topic.
Collapse
Affiliation(s)
| | | | | | - Bruna Toledo Dos Santos
- School of Technology, University of Campinas - Unicamp, Limeira , São Paulo, CEP: 13484-332, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil
| | - Patrícia Prediger
- School of Technology, University of Campinas - Unicamp, Limeira , São Paulo, CEP: 13484-332, Brazil.
| |
Collapse
|
13
|
Huq MA, Apu MAI, Ashrafudoulla M, Rahman MM, Parvez MAK, Balusamy SR, Akter S, Rahman MS. Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics 2023; 15:2634. [PMID: 38004613 PMCID: PMC10675506 DOI: 10.3390/pharmaceutics15112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnONPs) have gained tremendous attention because of their safe and non-toxic nature and distinctive biomedical applications. A diverse range of microbes (bacteria, fungi and yeast) and various parts (leaf, root, fruit, flower, peel, stem, etc.) of plants have been exploited for the facile, rapid, cost-effective and non-toxic synthesis of ZnONPs. Plant extracts, microbial biomass or culture supernatant contain various biomolecules including enzymes, amino acids, proteins, vitamins, alkaloids, flavonoids, etc., which serve as reducing, capping and stabilizing agents during the biosynthesis of ZnONPs. The biosynthesized ZnONPs are generally characterized using UV-VIS spectroscopy, TEM, SEM, EDX, XRD, FTIR, etc. Antibiotic resistance is a serious problem for global public health. Due to mutation, shifting environmental circumstances and excessive drug use, the number of multidrug-resistant pathogenic microbes is continuously rising. To solve this issue, novel, safe and effective antimicrobial agents are needed urgently. Biosynthesized ZnONPs could be novel and effective antimicrobial agents because of their safe and non-toxic nature and powerful antimicrobial characteristics. It is proven that biosynthesized ZnONPs have strong antimicrobial activity against various pathogenic microorganisms including multidrug-resistant bacteria. The possible antimicrobial mechanisms of ZnONPs are the generation of reactive oxygen species, physical interactions, disruption of the cell walls and cell membranes, damage to DNA, enzyme inactivation, protein denaturation, ribosomal destabilization and mitochondrial dysfunction. In this review, the biosynthesis of ZnONPs using microbes and plants and their characterization have been reviewed comprehensively. Also, the antimicrobial applications and mechanisms of biosynthesized ZnONPs against various pathogenic microorganisms have been highlighted.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Md. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | | | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 05006, Republic of Korea;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
14
|
Sharifi E, Yousefiasl S, Laderian N, Rabiee N, Makvandi P, Pourmotabed S, Ashrafizadeh M, Familsattarian F, Fang W. Cell-loaded genipin cross-linked collagen/gelatin skin substitute adorned with zinc-doped bioactive glass-ceramic for cutaneous wound regeneration. Int J Biol Macromol 2023; 251:125898. [PMID: 37479201 DOI: 10.1016/j.ijbiomac.2023.125898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
An optimal tissue-engineered dermal substitute should possess biocompatibility and cell adhesion conduction to facilitate fibroblast and keratinocyte infiltration and proliferation, as well as angiogenesis potential to escalate wound healing. Zinc was doped to bioactive glass-ceramic (Zn-BGC) to promote biocompatibility and angiogenesis properties. Zn-BGC was then incorporated into a collagen (Col) and gelatin (Gel) porous scaffold. The bioactive porous bionanocomposite exhibited biocompatibility along with improved cell attachment and proliferation. Scaffolds including Col-Gel/Zn-BGC with or without mouse embryonic fibroblasts were applied on full-thickness skin wounds on the BALB/c mice to assess their wound healing potential in vivo. The results indicated that the biodegradation rate of the Col-Gel/Zn-BGC nanocomposites was comparable to the rate of skin tissue regeneration in vivo. Macroscopic wound healing results showed that Col-Gel/Zn-BGC loaded with mouse embryonic fibroblast possesses the smallest wound size, indicating the fastest healing process. Histopathological evaluations displayed that the optimal wound regeneration was observed in Col-Gel/Zn-BGC nanocomposites loaded with mouse embryonic fibroblasts indicated by epithelialization and angiogenesis; besides the number of fibroblasts and hair follicles was increased. The bioactive nanocomposite scaffold of Col-Gel containing Zn-BGC nanoparticles loaded with mouse embryonic fibroblasts can be employed as a desirable skin substitute to ameliorate cutaneous wound regeneration.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, 8815713471 Shahrekord, Iran; Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | - Nilofar Laderian
- School of Medicine, Shahrekord University of Medical Science, 8815713471 Shahrekord, Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Samiramis Pourmotabed
- Department of Emergency Medicine, School of Medicine, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Milad Ashrafizadeh
- Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fatemeh Familsattarian
- Department of Materials Engineering, Bu-Ali Sina University, P.O.B: 65178-38695, Hamedan, Iran
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Asif N, Amir M, Fatma T. Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles. Bioprocess Biosyst Eng 2023; 46:1377-1398. [PMID: 37294320 PMCID: PMC10251335 DOI: 10.1007/s00449-023-02886-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) have become the widely used metal oxide nanoparticles and drawn the interest of global researchers due to their biocompatibility, low toxicity, sustainability and cost-effective properties. Due to their unique optical and chemical properties, it emerges as a potential candidate in the fields of optical, electrical, food packaging and biomedical applications. Biological methods using green or natural routes are more environmentally friendly, simple and less use of hazardous techniques than chemical and/or physical methods in the long run. In addition, ZnONPs are less harmful and biodegradable while having the ability to greatly boost pharmacophore bioactivity. They play an important role in cell apoptosis because they enhance the generation of reactive oxygen species (ROS) and release zinc ions (Zn2+), causing cell death. Furthermore, these ZnONPs work well in conjunction with components that aid in wound healing and biosensing to track minute amounts of biomarkers connected to a variety of illnesses. Overall, the present review discusses the synthesis and most recent developments of ZnONPs from green sources including leaves, stems, bark, roots, fruits, flowers, bacteria, fungi, algae and protein, as well as put lights on their biomedical applications such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, antiviral, wound healing, and drug delivery, and modes of action associated. Finally, the future perspectives of biosynthesized ZnONPs in research and biomedical applications are discussed.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
16
|
Haidri I, Shahid M, Hussain S, Shahzad T, Mahmood F, Hassan MU, Al-Khayri JM, Aldaej MI, Sattar MN, Rezk AAS, Almaghasla MI, Shehata WF. Efficacy of Biogenic Zinc Oxide Nanoparticles in Treating Wastewater for Sustainable Wheat Cultivation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3058. [PMID: 37687305 PMCID: PMC10489834 DOI: 10.3390/plants12173058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Water scarcity due to overuse and growing water pollution has led to the need for upgrading of conventional methods of wastewater treatment. The biological synthesis of zinc oxide nanoparticles (ZnO-NPs) and their photocatalytic capacity to degrade contaminants offer a promising and environment-friendly approach to municipal wastewater treatment. This technique is advantageous due to its cost-effectiveness, sustainability, and reduction in toxic residual substances. In this study, microbial-synthesized ZnO-NPs were used for the treatment of municipal wastewater. The objective of this study was to evaluate the potential of treated wastewater for wheat crop cultivation. Zinc oxide nanoparticles were synthesized from a pre-isolated bacterial strain, namely Shewanela sp., and characterized using UV-VIS, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analyses. The results showed that after the treatment of wastewater, the concentration of total dissolve solids (TDS), the chemical oxygen demand (COD), and sulfate and phosphate levels decreased by 76.5%, 57.1%, 81.1%, and 67.4%, respectively. However, the application of treated wastewater increased chlorophyll, carotenoids, and antioxidants by 45%, 40.8%, and 10.5 to 30.6%, respectively. Further, the application of treated wastewater also significantly decreased oxidative stress induced by hydrogen peroxide (H2O2) and malondialdehyde (MDA) by 8.1% and 30.1%, respectively. In conclusion, biosynthesized ZnO-NPs could be an important choice to treat municipal wastewater and to improve wheat productivity.
Collapse
Affiliation(s)
- Irfan Haidri
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan; (I.H.); (S.H.); (T.S.)
| | - Muhammad Shahid
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad 38040, Pakistan;
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan; (I.H.); (S.H.); (T.S.)
| | - Tanvir Shahzad
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan; (I.H.); (S.H.); (T.S.)
| | - Faisal Mahmood
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan; (I.H.); (S.H.); (T.S.)
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Jameel Mohammed Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.I.A.); (A.A.-S.R.); (W.F.S.)
| | - Mohammed Ibrahim Aldaej
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.I.A.); (A.A.-S.R.); (W.F.S.)
| | - Muhammad Naeem Sattar
- Central Laboratories, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.I.A.); (A.A.-S.R.); (W.F.S.)
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.I.A.); (A.A.-S.R.); (W.F.S.)
- Plant Production Department, College of Environmental Agricultural Sciences, Arish University, North Sinai P.O. Box 45511, Egypt
| |
Collapse
|
17
|
Ramzan I, Bashir M, Saeed A, Khan BS, Shaik MR, Khan M, Shaik B, Khan M. Evaluation of Photocatalytic, Antioxidant, and Antibacterial Efficacy of Almond Oil Capped Zinc Oxide Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5011. [PMID: 37512285 PMCID: PMC10381886 DOI: 10.3390/ma16145011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
In this study, ZnO nanoparticles (NPs) were synthesized in the presence of almond oil at various molar ratios of zinc acetate and sodium hydroxide, including 0.5:1, 0.75:1, 1:1, 1.25:1, and 1.5:1, to obtain pH values of 11, 10, 9, 8, and 7, respectively. The XRD results revealed that ZnO NPs exhibit a hexagonal structure, with high crystallinity. SEM results showed that dense and large sized ZnO NPs were formed at pH 11, and relatively small (~30-40 nm) NPs were obtained at pH 9. The size distribution can be explained in terms of the presence of OH- ions at different pH levels. However, the larger size of the NPs at pH 7 compared to those at pH 8-11 were due to the coalescence of NPs suitable for antioxidant/antibacterial activities. ZnO NPs demonstrated a high degradation efficiency (~93%) in 90 min, with a high rate constant for Methyl Orange (MO), which is better than the previously reported rate. The larger sized almond oil capped ZnO NPs also showed excellent radical scavenging activity (94%) and are proven to be good carriers to resist Escherichia coli (E. coli) bacteria.
Collapse
Affiliation(s)
- Iqra Ramzan
- Department of Physics, Government College Women University, Sialkot 51310, Pakistan
| | - Mahwish Bashir
- Department of Physics, Government College Women University, Sialkot 51310, Pakistan
| | - Adnan Saeed
- Department of Physics, Government College Women University, Sialkot 51310, Pakistan
| | - Babar Shahzad Khan
- Department of Physics, Government College Women University, Sialkot 51310, Pakistan
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Umar E, Ikram M, Haider J, Nabgan W, Imran M, Nazir G. A State-of-Art Review of the Metal Oxide-Based Nanomaterials Effect on Photocatalytic Degradation of Malachite Green Dyes and a Bibliometric Analysis. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300001. [PMID: 37287595 PMCID: PMC10242535 DOI: 10.1002/gch2.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Indexed: 06/09/2023]
Abstract
A wide range of hard contaminants in wastewater is generated from different industries as byproducts of the organic compound. In this review, various metal oxide-based nanomaterials are employed for the photocatalytic removal of malachite green (MG) dye from wastewater. Some cost-effective and appropriate testing conditions are used for degrading these hard dyes to get higher removal efficiency. The effects of specific parameters are considered such as how the catalyst is made, how much dye is in the solution at first, how much nanocatalyst is needed to break down the dye, the initial pH of the dye solution, the type of light source used, the year of publications, and how long the dye has to be exposed to light to be removed. This study suggests that Scopus-based core collected data employ bibliometric methods to provide an objective analysis of global MG dye from 2011 to 2022 (12 years). The Scopus database collects all the information (articles, authors, keywords, and publications). For bibliometric analysis, 658 publications are retrieved corresponding to MG dye photodegradation, and the number of publications increases annually. A bibliometric study reveals a state-of-art review of metal oxide-based nanomaterials' effects on photocatalytic degradation of MG dyes (12 years).
Collapse
Affiliation(s)
- Ehtisham Umar
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
| | - Walid Nabgan
- Departament d'Enginyeria QuímicaUniversitat Rovira i VirgiliAv Països Catalans 26Tarragona43007Spain
| | - Muhammad Imran
- Department of ChemistryGovernment College University FaisalabadPakpattan RoadSahiwalPunjab57000Pakistan
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoul05006Republic of Korea
| |
Collapse
|
19
|
Bai X, Jarubula R. Development of novel green synthesized Zinc oxide nanoparticles with antibacterial activity and effect on diabetic wound healing process of excisional skin wounds in nursing care during sports training. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Malakar C, Kashyap B, Kalita MC, Deka S. Wound healing efficacy of rhamnolipid-coated zinc oxide nanoparticle along with its in vivo antibacterial efficacy against Staphylococcus aureus. Exp Dermatol 2023; 32:154-164. [PMID: 36270963 DOI: 10.1111/exd.14692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
Rhamnolipids are microbial metabolites with antibacterial efficacies, which can be further boosted through the application of nanobiotechnology. In this study, the efficacy of rhamnolipid-coated zinc oxide nanoparticles (ZnRL) has been studied for their wound healing efficacy as well as in vivo antibacterial efficacy. Thus, this study evaluates the efficacy of ZnRL to heal an excised infected wound, which was compared with the healing efficacy of rhamnolipid and clindamycin. The study revealed that rhamnolipid-coated zinc oxide nanoparticles possess promising wound healing efficacy with prominent antibacterial activity in the rat model. Prominent wound healing in a Staphylococcus aureus infected excised wound was observed on the 5th day of the treatment when the wound site was treated with 100 μl of 0.5 mg/ml of ZnRL. This concentration of ZnRL was found to exhibit efficient antibacterial activity against the pathogen, thereby decreasing the amount of pathogen in the wound site. ZnRL exhibited efficient wound contraction, thereby decreasing the size of the wound prominently in 5 days. Histological study revealed efficient tissue remodelling in ZnRL-treated skin which resulted in rapid formation of the epidermis and recruitment of various dermal cells within the 5th day of treatment. The study also revealed the non-cytotoxic effect of the nanoparticles in fibroblast cell line L929 and the non-haemolytic effect against blood cells, indicating its potential in pharmaceuticals.
Collapse
Affiliation(s)
- Chandana Malakar
- Environmental Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India.,Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Bhaswati Kashyap
- Chemical Biology Laboratory I, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | | | - Suresh Deka
- Environmental Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India.,Faculty of Science, Assam Down Town University, Guwahati, Assam, India
| |
Collapse
|
21
|
Nandhini SN, Sisubalan N, Vijayan A, Karthikeyan C, Gnanaraj M, Gideon DAM, Jebastin T, Varaprasad K, Sadiku R. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon 2023; 9:e13128. [PMID: 36747553 PMCID: PMC9898667 DOI: 10.1016/j.heliyon.2023.e13128] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Nanotechnology has become an exciting area of research in diverse fields, such as: healthcare, food, agriculture, cosmetics, paints, lubricants, fuel additives and other fields. This review is a novel effort to update the practioneers about the most current developments in the widespread use of green synthesized nanoparticles in medicine. Biosynthesis is widely preferred among different modes of nanoparticle synthesis since they do not require toxic chemical usage and they are environment-friendly. In the green bioprocess, plant, algal, fungal and cyanobacterial extract solutions have been utilized as nucleation/capping agents to develop effective nanomaterials for advanced medical applications. Several metal salts, such as silver, zinc, titanium and other inorganic salts, were utilized to fabricate innovative nanoparticles for healthcare applications. Irrespective of the type of wound, infection in the wound area is a widespread problem. Micro-organisms, the prime reason for wound complications, are gradually gaining resistance against the commonly used antimicrobial drugs. This necessitates the need to generate nanoparticles with efficient antimicrobial potential to keep the pathogenic microbes under control. These nanoparticles can be topically applied as an ointment and also be used by incorporating them into hydrogels, sponges or electrospun nanofibers. The main aim of this review is to highlight the recent advances in the Ag, ZnO and TiO2 nanoparticles with possible wound healing applications, coupled with the bactericidal ability of a green synthesis process.
Collapse
Affiliation(s)
- Shankar Nisha Nandhini
- PG and Research Department of Botany, St. Joseph's College (Autonomous), Tiruchirappalli, 620 002, Tamil Nadu, India
| | - Natarajan Sisubalan
- Department of Botany, Bishop Heber College (Autonomous), Affi. to Bharathidasan University, Trichy, 620017, Tamil Nadu, India,Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea,Corresponding author. Department of Botany, Bishop Heber College (Autonomous), Affi. to Bharathidasan University, Trichy, 620017, Tamil Nadu, India.;
| | - Arumugam Vijayan
- Department of Microbiology, SRM Institute of Science and Technology, Tiruchirappalli Campus, Tiruchirappalli, 621105, TN, India
| | | | - Muniraj Gnanaraj
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, 620 017, India
| | - Daniel Andrew M. Gideon
- Department of Biochemistry, St. Joseph's University, Langford Road, Bengaluru, 560027, Karnataka, India
| | - Thomas Jebastin
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, 620 017, India
| | - Kokkarachedu Varaprasad
- Facultad de Ingeniería, Arquitectura y Deseno, Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile,Corresponding author. Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile.;
| | - Rotimi Sadiku
- Institute of Nano Engineering Research (INER), Department of Chemical, Metallurgical and Materials Engineering (Polymer Division), Tshwane University of Technology, Pretoria West Campus, Staatsarillerie Rd, Pretoria, 1083, South Africa
| |
Collapse
|
22
|
Synthesis and Characterization of Zinc Oxide Nanoparticles Stabilized with Biopolymers for Application in Wound-Healing Mixed Gels. Gels 2023; 9:gels9010057. [PMID: 36661823 PMCID: PMC9857812 DOI: 10.3390/gels9010057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
A method for the synthesis of ZnO nanoparticles (ZnO NPs) gels was developed. ZnO NPs were obtained through a sol-gel method with zinc acetate usage as a precursor. Optimization of the method of synthesis of ZnO NPs gel has been carried out. It was observed that the most stable ZnO NPs gels are formed at room temperature, pH = 8 and molar concentration of zinc C(Zn2+) = 0.05-0.2 M. It was shown that the addition of polysaccharide significantly affects the rheological properties and microstructure of ZnO NPs gels. We found that the optimal polysaccharide for the synthesis of ZnO NPs gels is hydroxyethyl cellulose. It is shown that the microstructure of a gel of ZnO NPs stabilized with hydroxyethyl cellulose is represented by irregularly shaped particles that are assembled into aggregates, with sizes ranging from 150 to 1400 nm. A significant hysteresis region is observed in a gel of ZnO NPs stabilized with hydroxyethyl cellulose. The process of interaction of ZnO NPs with polysaccharides was investigated. It was shown that the interaction of ZnO NPs with polysaccharides occurs through a charged hydroxyl group. In the experiment, a sample of a gel of ZnO NPs modified with hydroxyethyl cellulose was tested. It was shown that the gel of ZnO NPs modified with hydroxyethyl cellulose has a pronounced regenerative effect on burn wounds, which is significantly higher than that of the control group and the group treated with a gel of ZnO microparticles (MPs) and hydroxyethyl cellulose. It is also shown that the rate of healing of burn wounds in animals treated with gel of ZnO nanoparticles with hydroxyethyl cellulose (group 3) is 16.23% higher than in animals treated with gel of ZnO microparticles with hydroxyethyl cellulose (group 2), and 24.33% higher than in the control group treated with hydroxyethyl cellulose. The average rate of healing of burn wounds for the entire experimental period in experimental animals of group 3 is 1.26 and 1.54 times higher than in animals of group 2 and control group, respectively. An experimental study of a gel of ZnO NPs modified with hydroxyethyl cellulose has shown the effectiveness of its use in modeling the healing of skin wounds through primary tension.
Collapse
|
23
|
Hamk M, Akçay FA, Avcı A. Green synthesis of zinc oxide nanoparticles using Bacillus subtilis ZBP4 and their antibacterial potential against foodborne pathogens. Prep Biochem Biotechnol 2023; 53:255-264. [PMID: 35616319 DOI: 10.1080/10826068.2022.2076243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, extracellular biosynthesis of zinc oxide nanoparticles (ZnO NPs) by using the supernatant of Bacillus subtilis ZBP4 after cultivation in nutrient broth at 33 °C for 24 h was investigated. Zinc sulfate heptahydrate was used as the precursor, and the reactions were performed at 33 °C for 72 h. The effects of pH 5-9 and precursor concentration (2-10 mM) were determined and the optima were found to be pH 7.5 and 8 mM ZnSO4·7H2O, respectively. The nanoparticles were characterized by UV-VIS spectroscopy, FESEM, TEM, EDS, XRD, FTIR and zeta potential measurement. ZnO NPs appeared to be irregular spherical structures with a size range of 22-59 nm, as confirmed by FESEM and TEM. Energy-dispersive spectroscopy analysis validated the formation of ZnO NPs. X-ray diffraction analysis revealed the crystalline structure of the ZnO NPs, and they were determined to have a zeta potential of -19.0 ± 4.3 mV and a bandgap of 3.36 eV. Antibacterial activity experiments showed that ZnO NPs are effective against a broad spectrum of Gram-positive and Gram-negative food pathogens. This study provides evidence for a safe and effective method for synthesizing ZnO NPs and demonstrates their effectiveness against pathogenic bacteria.
Collapse
Affiliation(s)
- Mohammed Hamk
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan, Sakarya, Turkey.,Food Science and Quality Control Department, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Zamaqi, Halabja, Iraq
| | - Fikriye Alev Akçay
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan, Sakarya, Turkey
| | - Ayşe Avcı
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan, Sakarya, Turkey
| |
Collapse
|
24
|
Sportelli MC, Gaudiuso C, Volpe A, Izzi M, Picca RA, Ancona A, Cioffi N. Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview. REACTIONS 2022; 3:423-441. [DOI: 10.3390/reactions3030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Zinc oxide is a safe material for humans, with high biocompatibility and negligible cytotoxicity. Interestingly, it shows exceptional antimicrobial activity against bacteria, viruses, fungi, etc., especially when reduced to the nanometer size. As it is easily understandable, thanks to its properties, it is at the forefront of safe antimicrobials in this pandemic era. Besides, in the view of the 2022 European Green Deal announced by the European Commission, even science and nanotechnology are moving towards “greener” approaches to the synthesis of nanoparticles. Among them, biogenic ZnO nanoparticles have been extensively studied for their biological applications and environmental remediation. Plants, algae, fungi, yeast, etc., (which are composed of naturally occurring biomolecules) play, in biogenic processes, an active role in the formation of nanoparticles with distinct shapes and sizes. The present review targets the biogenic synthesis of ZnO nanoparticles, with a specific focus on their bioactive properties and antimicrobial application.
Collapse
Affiliation(s)
- Maria Chiara Sportelli
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
| | - Caterina Gaudiuso
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Annalisa Volpe
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Margherita Izzi
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| | - Antonio Ancona
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
25
|
Dissolvable zinc oxide nanoparticle-loaded wound dressing with preferential exudate absorption and hemostatic features. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Optimization of Technological Parameters of the Process of Forming Therapeutic Biopolymer Nanofilled Films. NANOMATERIALS 2022; 12:nano12142413. [PMID: 35889643 PMCID: PMC9318775 DOI: 10.3390/nano12142413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/17/2022]
Abstract
The prospects of using biopolymer nano-containing films for wound healing were substantiated. The main components of biopolymer composites are gelatin, polyvinyl alcohol, glycerin, lactic acid, distilled water, and zinc oxide (ZnO) nanoparticles (NPs). Biopolymer composites were produced according to various technological parameters using a mould with a chrome coating. The therapeutic properties of biopolymer films were evaluated by measuring the diameter of the protective effect. Physico-mechanical properties were studied: elasticity, vapour permeability, degradation time, and swelling. To study the influence of technological parameters of the formation process of therapeutic biopolymer nanofilled films on their therapeutic and physico-mechanical properties, the planning of the experiment was used. According to the results of the experiments, mathematical models of the second-order were built. The optimal values of technological parameters of the process are determined, which provide biopolymer nanofilled films with maximum healing ability (diameter of protective action) and sufficiently high physical and mechanical properties: elasticity, vapour permeability, degradation time and swelling. The research results showed that the healing properties of biopolymer films mainly depend on the content of ZnO NPs. Degradation of these biopolymer films provides dosed drug delivery to the affected area. The products of destruction are carbon dioxide, water, and a small amount of ZnO in the bound state, which indicates the environmental safety of the developed biopolymer film.
Collapse
|
27
|
Microbial Mediated Synthesis of Zinc Oxide Nanoparticles, Characterization and Multifaceted Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractNanoparticles have gained considerable importance compared to bulk counterparts due to their unique properties. Due to their high surface to volume ratio and high reactivity, metallic and metal-oxide nanostructures have shown great potential applications. Among them, zinc oxide nanoparticles (ZnONPs) have gained tremendous attention attributed to their unique properties such as low toxicity, biocompatibility, simplicity, easy fabrication, and environmental friendly. Remarkably, ZnONPs exhibit optical, physical, antimicrobial, anticancer, anti-inflammatory and wound healing properties. These nanoparticles have been applied in various fields such as in biomedicine, biosensors, electronics, food, cosmetic industries, textile, agriculture and environment. The synthesis of ZnONPs can be performed by chemical, physical and biological methods. Although the chemical and physical methods suffer from some disadvantages such as the involvement of high temperature and pressure conditions, high cost and not environmentally friendly, the green synthesis of ZnONPs offers a promising substitute to these conventional methods. On that account, the microbial mediated synthesis of ZnONPs is clean, eco-friendly, nontoxic and biocompatible method. This paper reviews the microbial synthesis of ZnONPs, parameters used for the optimization process and their physicochemical properties. The potential applications of ZnONPs in biomedical, agricultural and environmental fields as well as their toxic aspects on human beings and animals have been reviewed.
Collapse
|
28
|
Ijaola AO, Akamo DO, Damiri F, Akisin CJ, Bamidele EA, Ajiboye EG, Berrada M, Onyenokwe VO, Yang SY, Asmatulu E. Polymeric biomaterials for wound healing applications: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1998-2050. [PMID: 35695023 DOI: 10.1080/09205063.2022.2088528] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic wounds have been a global health threat over the past few decades, requiring urgent medical and research attention. The factors delaying the wound-healing process include obesity, stress, microbial infection, aging, edema, inadequate nutrition, poor oxygenation, diabetes, and implant complications. Biomaterials are being developed and fabricated to accelerate the healing of chronic wounds, including hydrogels, nanofibrous, composite, foam, spongy, bilayered, and trilayered scaffolds. Some recent advances in biomaterials development for healing both chronic and acute wounds are extensively compiled here. In addition, various properties of biomaterials for wound-healing applications and how they affect their performance are reviewed. Based on the recent literature, trilayered constructs appear to be a convincing candidate for the healing of chronic wounds and complete skin regeneration because they mimic the full thickness of skin: epidermis, dermis, and the hypodermis. This type of scaffold provides a dense superficial layer, a bioactive middle layer, and a porous lower layer to aid the wound-healing process. The hydrophilicity of scaffolds aids cell attachment, cell proliferation, and protein adhesion. Other scaffold characteristics such as porosity, biodegradability, mechanical properties, and gas permeability help with cell accommodation, proliferation, migration, differentiation, and the release of bioactive factors.
Collapse
Affiliation(s)
| | - Damilola O Akamo
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassam II of Casablanca, Casablanca, Morocco
| | | | | | | | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassam II of Casablanca, Casablanca, Morocco
| | | | - Shang-You Yang
- Department of Orthopaedic Surgery, University of Kansas School of Medicine-Wichita, Wichita, KS, USA.,Biological Sciences, Wichita State University, Wichita, KS, USA
| | - Eylem Asmatulu
- Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA
| |
Collapse
|
29
|
Sun J, Zheng X. Fabrication of Zinc loaded silicon carbide Nanocomposite for in vitro cell viability and in vivo wound dressing care. J Microencapsul 2022; 39:341-351. [PMID: 35670223 DOI: 10.1080/02652048.2022.2084168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM In this investigation, Zinc-silicon carbide (Zn-SiC) materials were fabricated by a simple approach by using Zn nanoparticles (Zn-NPs) loaded on silicon carbide (SiC) with enhanced antibacterial and healing activity. METHODS Zn-NPs loaded on SiC fabricated by the DIY laser melting technique. The TEM and Zeta-sizer confirmed the morphology and size of the nanoparticles. The characterization was done using Fourier transforms infrared spectroscopy (FTIR), and X-ray diffraction (XRD), Thermogravimetric analysis (TGA). Further, the fabricated nanoparticles were evaluated for their mechanical properties and biocompatibility under storage conditions. In-vivo wound healing was measured by observing a percentage reduction in the wound. RESULTS Zn-SiC NPs have 54.6 ± 5.25 nm mean particle size, -15.9 ± 2.35 mV zeta potential with 0.187 ± 0.05 polydispersity index (PD1). The nanoparticles showed good biocompatibility and in-vivo wound healing properties. CONCLUSIONS These results strongly support the possibility of using these Zn particles loaded on SiC NPs as a promising wound healing agent after cesarean section.
Collapse
Affiliation(s)
- Junhong Sun
- Department of Obstetrics, Wenling First People's Hospital, Wenling-317500, China
| | - Xian Zheng
- Department of Obstetrics, Wenling First People's Hospital, Wenling-317500, China
| |
Collapse
|
30
|
Rahman HS, Othman HH, Abdullah R, Edin HYAS, Al-Haj NA. Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Vet Med Sci 2022; 8:1769-1779. [PMID: 35588498 PMCID: PMC9297768 DOI: 10.1002/vms3.814] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nanotechnology is a far‐reaching technology with tremendous applications in various aspects, including general medicine, veterinary medicine, agriculture, aquaculture, and food production. Nanomaterials have exceptional physicochemical characteristics, including increased intestinal absorption, biodistribution, bioavailability, and improved antimicrobial and catalytic properties. Although nanotechnology is gaining ground in animal management, husbandry, and production, its wide use is still hampered by occasional toxicity and side effects. Zinc oxide nanoparticles (ZnO‐NPs) have long been utilized in animal production, aquaculture, and pet animal medicine. However, the use ZnO‐NPs in animals has been associated with reports of toxicity and side effects. ZnO‐NPs may have shown numerous beneficial effects in animals; its use must be regulated with care to avoid unwanted consequences. Thus, this review emphasizes the usage of ZnO‐NPs in animal production and laboratory animals and the potential side effects associated with the use of nanoparticles as a feed supplement and therapeutic compound.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Hemn Hassan Othman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimaniyah, Republic of Iraq
| | - Rasedee Abdullah
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Nagi A Al-Haj
- Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| |
Collapse
|
31
|
A Review on Current Designation of Metallic Nanocomposite Hydrogel in Biomedical Applications. NANOMATERIALS 2022; 12:nano12101629. [PMID: 35630851 PMCID: PMC9146518 DOI: 10.3390/nano12101629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023]
Abstract
In the past few decades, nanotechnology has been receiving significant attention globally and is being continuously developed in various innovations for diverse applications, such as tissue engineering, biotechnology, biomedicine, textile, and food technology. Nanotechnological materials reportedly lack cell-interactive properties and are easily degraded into unfavourable products due to the presence of synthetic polymers in their structures. This is a major drawback of nanomaterials and is a cause of concern in the biomedicine field. Meanwhile, particulate systems, such as metallic nanoparticles (NPs), have captured the interest of the medical field due to their potential to inhibit the growth of microorganisms (bacteria, fungi, and viruses). Lately, researchers have shown a great interest in hydrogels in the biomedicine field due to their ability to retain and release drugs as well as to offer a moist environment. Hence, the development and innovation of hydrogel-incorporated metallic NPs from natural sources has become one of the alternative pathways for elevating the efficiency of therapeutic systems to make them highly effective and with fewer undesirable side effects. The objective of this review article is to provide insights into the latest fabricated metallic nanocomposite hydrogels and their current applications in the biomedicine field using nanotechnology and to discuss the limitations of this technology for future exploration. This article gives an overview of recent metallic nanocomposite hydrogels fabricated from bioresources, and it reviews their antimicrobial activities in facilitating the demands for their application in biomedicine. The work underlines the fabrication of various metallic nanocomposite hydrogels through the utilization of natural sources in the production of biomedical innovations, including wound healing treatment, drug delivery, scaffolds, etc. The potential of these nanocomposites in relation to their mechanical strength, antimicrobial activities, cytotoxicity, and optical properties has brought this technology into a new dimension in the biomedicine field. Finally, the limitations of metallic nanocomposite hydrogels in terms of their methods of synthesis, properties, and outlook for biomedical applications are further discussed.
Collapse
|
32
|
Metwally AA, Abdel-Hady ANAA, Haridy MAM, Ebnalwaled K, Saied AA, Soliman AS. Wound healing properties of green (using Lawsonia inermis leaf extract) and chemically synthesized ZnO nanoparticles in albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23975-23987. [PMID: 34820756 DOI: 10.1007/s11356-021-17670-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/17/2021] [Indexed: 05/27/2023]
Abstract
Wound healing is one of the utmost medical issues in human and veterinary medicine, which explains the urgent need for developing new agents that possess wound healing activities. The present study aimed to assess the effectiveness of green and chemical zinc oxide nanoparticles (ZnO-NPs) for wound healing. ZnO-NPs (green using Lawsonia inermis leaf extract and chemical) were synthesized and characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The gels containing the nanomaterials were prepared and inspected. Forty-five albino rats were divided into three groups, the control group was treated with normal saline 0.9%, and the other two groups were treated with gels containing green or chemical ZnO-NPs, respectively. On the 3rd, 7th, 14th, and 21st days post-treatment (PT), the wounds were clinicopathologically examined. Both nanomaterials have good crystallinity and high purity, but green ZnO-NPs have a longer nanowire length and diameter than chemical ZnO-NPs. The formed gels were highly viscous with a pH of 6.5 to 7. The treated groups with ZnO-NP gels showed clinical improvement, as decreased wound surface area (WSA) percent (WSA%), increased wound contraction percent (WC%), and reduced healing time (p < 0.05) when compared with the control group. The histological scoring showed that the epithelialization score was significantly higher at the 21st day post-treatment in the treated groups than in the control group (p < 0.05), but the vasculature, necrosis, connective tissue formation, and collagen synthesis scores were mostly similar. The green and chemical ZnO-NP gels showed promising wound healing properties; however, the L. inermis-mediated ZnO-NPs were more effective.
Collapse
Affiliation(s)
- Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt
| | - Abdel-Nasser A A Abdel-Hady
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohie A M Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Khaled Ebnalwaled
- Electronics & Nano Devices Lab, Physics Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
- Egypt Nanotechnology Center (EGNC), Cairo University Sheikh Zayed Campus, Giza, 12588, Egypt
| | - AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt.
- Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt.
| | - Ahmed S Soliman
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, 11865, Egypt
| |
Collapse
|
33
|
Le VAT, Trinh TX, Chien PN, Giang NN, Zhang XR, Nam SY, Heo CY. Evaluation of the Performance of a ZnO-Nanoparticle-Coated Hydrocolloid Patch in Wound Healing. Polymers (Basel) 2022; 14:919. [PMID: 35267741 PMCID: PMC8912749 DOI: 10.3390/polym14050919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrocolloid dressings are an important method for accelerating wound healing. A combination of a hydrocolloid and nanoparticles (NPs), such as gold (Au), improves the wound healing rate, but Au-NPs are expensive and unable to block ultraviolet (UV) light. Herein, we combined zinc oxide nanoparticles (ZnO-NPs) with hydrocolloids for a less expensive and more effective UV-blocking treatment of wounds. Using Sprague-Dawley rat models, we showed that, during 10-day treatment, a hydrocolloid patch covered with ZnO-NPs (ZnO-NPs-HC) macroscopically and microscopically stimulated the wound healing rate and improved wound healing in the inflammation phase as shown by reducing of pro-inflammatory cytokines (CD68, IL-8, TNF-α, MCP-1, IL-6, IL-1β, and M1) up to 50%. The results from the in vitro models (RAW264.7 cells) also supported these in vivo results: ZnO-NPs-HCs improved wound healing in the inflammation phase by expressing a similar level of pro-inflammatory mediators (TNF-α and IL-6) as the negative control group. ZnO-NPs-HCs also encouraged the proliferation phase of the healing process, which was displayed by increasing expression of fibroblast biomarkers (α-SMA, TGF-β3, vimentin, collagen, and M2) up to 60%. This study provides a comprehensive analysis of wound healing by measuring the biomarkers in each phase and suggests a cheaper method for wound dressing.
Collapse
Affiliation(s)
- Van Anh Thi Le
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Tung X. Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Xin-Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Chan-Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
34
|
Primo JO, Trentini JD, Peron DC, Jaerger S, Anaissi FJ. Porous zincite prepared by the calcination of colloidal starch applied in the removal of dyes and its use as a hybrid pigment. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.1923591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- J. O. Primo
- Departamento de Química, LabMat/CIMPE, Universidade Estadual do Centro-Oeste, UNICENTRO, R. Simeão, Guarapuava, CEP, PR, Brazil
| | - J. D. Trentini
- Departamento de Química, LabMat/CIMPE, Universidade Estadual do Centro-Oeste, UNICENTRO, R. Simeão, Guarapuava, CEP, PR, Brazil
| | - D. C. Peron
- Departamento de Química, LabMat/CIMPE, Universidade Estadual do Centro-Oeste, UNICENTRO, R. Simeão, Guarapuava, CEP, PR, Brazil
| | - S. Jaerger
- Departamento de Química, LabMat/CIMPE, Universidade Estadual do Centro-Oeste, UNICENTRO, R. Simeão, Guarapuava, CEP, PR, Brazil
| | - F. J. Anaissi
- Departamento de Química, LabMat/CIMPE, Universidade Estadual do Centro-Oeste, UNICENTRO, R. Simeão, Guarapuava, CEP, PR, Brazil
| |
Collapse
|
35
|
Sidhu AK, Verma N, Kaushal P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.801620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The biomedical properties of nanoparticles have been the area of focus for contemporary science; however, there are issues concerning their long-term toxicities. Recent trends in nanoparticle fabrication and surface manipulation, the use of distinctive biogenic capping agents, have allowed the preparation of nontoxic, surface-functionalized, and monodispersed nanoparticles for medical applications. These capping agents act as stabilizers or binding molecules that prevent agglomeration and steric hindrance, alter the biological activity and surface chemistry, and stabilize the interaction of nanoparticles within the preparation medium. Explicit features of nanoparticles are majorly ascribed to the capping present on their surface. The present review article is an attempt to compile distinctive biological capping agents deployed in the synthesis of metal nanoparticles along with the medical applications of these capped nanoparticles. First, this innovative review highlights the various biogenic capping agents, including biomolecules and biological extracts of plants and microorganisms. Next, the therapeutic applications of capped nanoparticles and the effect of biomolecules on the efficiency of the nanoparticles have been expounded. Finally, challenges and future directions on the use of biological capping agents have been concluded. The goal of the present review article is to provide a comprehensive report to researchers who are looking for alternative biological capping agents for the green synthesis of important metallic nanoparticles.
Collapse
|
36
|
Pectin–Zeolite-Based Wound Dressings with Controlled Albumin Release. Polymers (Basel) 2022; 14:polym14030460. [PMID: 35160450 PMCID: PMC8839484 DOI: 10.3390/polym14030460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoalbuminemia can lead to poor and delayed wound healing, while it is also associated with acute myocardial infarction, heart failure, malignancies, and COVID-19. In elective surgery, patients with low albumin have high risks of postoperative wound complications. Here, we propose a novel cost-effective wound dressing material based on low-methoxy pectin and NaA-zeolite particles with controlled albumin release properties. We focused on both albumin adsorption and release phenomena for wounds with excess exudate. Firstly, we investigated albumin dynamics and calculated electrostatic surfaces at experimental pH values in water by using molecular dynamics methods. Then, we studied in detail pectin–zeolite hydrogels with both adsorption and diffusion into membrane methods using different pH values and albumin concentrations. To understand if uploaded albumin molecules preserved their secondary conformation in different formulations, we monitored the effect of pH and albumin concentration on the conformational changes in albumin after it was released from the hydrogels by using CD-UV spectroscopy analyses. Our results indicate that at pH 6.4, BSA-containing films preserved the protein’s folded structure while the protein was being released to the external buffer solutions. In vitro wound healing assay indicated that albumin-loaded hydrogels showed no toxic effects on the fibroblast cells.
Collapse
|
37
|
Antiproliferative activity of zinc oxide-silver nanocomposite interlinked with Vaccinium arctostaphylos L. fruit extract against cancer cells and bacteria. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Bagheri M, Validi M, Gholipour A, Makvandi P, Sharifi E. Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioeng Transl Med 2022; 7:e10254. [PMID: 35111951 PMCID: PMC8780905 DOI: 10.1002/btm2.10254] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/11/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial wound infection is one of the most common nosocomial infections. The unnecessary employment of antibiotics led to raising the growth of antibiotic-resistant bacteria. Accordingly, alternative armaments capable of accelerating wound healing along with bactericidal effects are urgently needed. Considering this, we fabricated chitosan (CS)/polyethylene oxide (PEO) nanofibers armed with antibacterial silver and zinc oxide nanoparticles. The nanocomposites exhibited a high antioxidant effect and antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Besides, based on the results of the cell viability assays, the optimum concentration of ZnONPs and AgNPs in the nanofibrous mats is 0.2% w/v and 0.08% w/v respectively and had no cytotoxicity on fibroblast cells. The scaffold also showed good blood compatibility according to the effects of coagulation time. As well as significant fibroblast migration and proliferation on the wound margin, according to wound-healing assay. All in all, the developed biocompatible, antioxidant, and antibacterial Ag-ZnO NPs incorporated CS/PEO nanofibrous mats showed their potential as an effective wound dressing.
Collapse
Affiliation(s)
- Mitra Bagheri
- Department of Microbiology and ImmunologySchool of Medicine, Shahrekord University of Medical SciencesShahrekordIran
| | - Majid Validi
- Department of Medical Laboratory SciencesSchool of Allied Medical Sciences, Shahrekord University of Medical SciencesShahrekordIran
| | - Abolfazl Gholipour
- Department of Microbiology and ImmunologySchool of Medicine, Shahrekord University of Medical SciencesShahrekordIran
- Cellular and Molecular Research CenterShahrekord University of Medical SciencesShahrekordIran
| | - Pooyan Makvandi
- Istituto Italiano di TecnologiaCentre for Micro‐BioRoboticsPisaItaly
| | - Esmaeel Sharifi
- Department of Tissue Engineering and BiomaterialsSchool of Advanced Medical Sciences and Technologies, Hamadan University of Medical SciencesHamadanIran
| |
Collapse
|
39
|
Dutta G, Sugumaran A. Bioengineered zinc oxide nanoparticles: Chemical, green, biological fabrication methods and its potential biomedical applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Badawi AK, Abd Elkodous M, Ali GAM. Recent advances in dye and metal ion removal using efficient adsorbents and novel nano-based materials: an overview. RSC Adv 2021; 11:36528-36553. [PMID: 35494372 PMCID: PMC9043615 DOI: 10.1039/d1ra06892j] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Excessive levels of dyes and heavy metals in water sources have long been a source of concern, posing significant environmental and public health threats. However, adsorption is a feasible technique for removing dye contaminants and heavy metals from water due to its high efficiency, cost-effectiveness, and easy operation. Numerous researchers in batch studies extensively evaluated various adsorbents such as natural materials, and agriculture-derived and industrial wastes; however, large-scale application is still missing. Nanotechnology is a novel approach that has arisen as one of the most versatile and cost-effective ways for dye and heavy metal removal. Its promotion on large-scale applications to investigate technological, fiscal, and environmental aspects for wastewater decontamination is particularly important. This review critically reviews wastewater treatment techniques, emphasizing the adsorption process and highlighting the most effective parameters: solution pH, adsorbent dosage, adsorbent particle size, initial concentration, contact time, and temperature. In addition, a comprehensive, up-to-date list of potentially effective low-cost adsorbents and nano-sorbents for the removal of dyes and heavy metals has been compiled. Finally, the challenges towards the practical application of the adsorption process based on various adsorbents have been drawn from the literature reviewed, and our suggested future perspectives are proposed.
Collapse
Affiliation(s)
- Ahmad K Badawi
- Civil Engineering Department, El-Madina Higher Institute for Engineering and Technology Giza 12588 Egypt +20 1114743578
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Gomaa A M Ali
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
41
|
Wiesmann N, Mendler S, Buhr CR, Ritz U, Kämmerer PW, Brieger J. Zinc Oxide Nanoparticles Exhibit Favorable Properties to Promote Tissue Integration of Biomaterials. Biomedicines 2021; 9:biomedicines9101462. [PMID: 34680579 PMCID: PMC8533365 DOI: 10.3390/biomedicines9101462] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
Due to the demographic change, medicine faces a growing demand for tissue engineering solutions and implants. Often, satisfying tissue regeneration is difficult to achieve especially when co-morbidities hamper the healing process. As a novel strategy, we propose the incorporation of zinc oxide nanoparticles (ZnO NPs) into biomaterials to improve tissue regeneration. Due to their wide range of biocompatibility and their antibacterial properties, ZnO NPs are already discussed for different medical applications. As there are versatile possibilities of modifying their form, size, and function, they are becoming increasingly attractive for tissue engineering. In our study, in addition to antibacterial effects of ZnO NPs, we show for the first time that ZnO NPs can foster the metabolic activity of fibroblasts as well as endothelial cells, both cell types being crucial for successful implant integration. With the gelatin sponge method performed on the chicken embryo’s chorioallantoic membrane (CAM), we furthermore confirmed the high biocompatibility of ZnO NPs. In summary, we found ZnO NPs to have very favorable properties for the modification of biomaterials. Here, incorporation of ZnO NPs could help to guide the tissue reaction and promote complication-free healing.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-17-4034
| | - Simone Mendler
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| | - Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| |
Collapse
|
42
|
Synthesis and Characterization of Antibacterial Carbopol/ZnO Hybrid Nanoparticles Gel. CRYSTALS 2021. [DOI: 10.3390/cryst11091092] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study recommends Carbopol/zinc oxide (ZnO) hybrid nanoparticles gel as an efficient antibacterial agent against different bacterial species. To this end, ZnO nanoparticles were synthesized using chemical precipitation derived from a zinc acetate solution with ammonium hydroxide as its precipitating agent under the effect of ultrasonic radiation. The synthesized ZnO nanoparticles were stabilized simultaneously in a freshly prepared Carbopol gel at a pH of 7. The chemical composition, phase identification, particle size and shape, surface charge, pore size distribution, and the BET surface area of the ZnO nanoparticles, as well as the Carbopol/ZnO hybrid Nanoparticles gel, were by XRD, SEM, TEM, AFM, DLS, Zeta potential and BET instruments. The results revealed that the synthesized ZnO nanoparticles were well-dispersed in the Carbopol gel network, and have a wurtzite-crystalline phase of spherical shape. Moreover, the Carbopol/ZnO hybrid nanoparticles gel exhibited a particle size distribution between ~9 and ~93 nm, and a surface area of 54.26 m2/g. The synthesized Carbopol/ZnO hybrid nanoparticles gel underwent an antibacterial sensitivity test against gram-negative K. pneumonia (ATCC 13883), Bacillus subtilis (ATCC 6633), and gram-positive Staphylococcus aureus (ATCC 6538) bacterial strains, and were compared with ampicillin as a reference antibiotic agent. The obtained results demonstrated that the synthesized Carbopol/ZnO hybrid nanoparticles gel exhibited a compatible bioactivity against the different strains of bacteria.
Collapse
|
43
|
Bandeira M, Chee BS, Frassini R, Nugent M, Giovanela M, Roesch-Ely M, Crespo JDS, Devine DM. Antimicrobial PAA/PAH Electrospun Fiber Containing Green Synthesized Zinc Oxide Nanoparticles for Wound Healing. MATERIALS 2021; 14:ma14112889. [PMID: 34072271 PMCID: PMC8198200 DOI: 10.3390/ma14112889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Wound infections are the main complication when treating skin wounds. This work reports a novel antimicrobial material using green synthesized zinc oxide nanoparticles (ZnONPs) incorporated in polymeric fibers for wound healing purposes. ZnONPs are a promising antimicrobial nanomaterial with high activity against a range of microorganisms, including drug-resistant bacteria. The electrospun fibers were obtained using polyacrylic acid (PAA) and polyallylamine hydrochloride (PAH) and were loaded with ZnONPs green synthesized from Ilex paraguariensis leaves with a spherical shape and ~18 nm diameter size. The fibers were produced using the electrospinning technique and SEM images showed a uniform morphology with a diameter of ~230 nm. EDS analysis proved a consistent dispersion of Zn in the fiber mat, however, particle agglomerates with varying sizes were observed. FTIR spectra confirmed the interaction of PAA carboxylic groups with the amine of PAH molecules. Although ZnONPs presented higher antimicrobial activity against S. aureus than E. coli, resazurin viability assay revealed that the PAA/PAH/ZnONPs composite successfully inhibited both bacteria strains growth. Photomicrographs support these results where bacteria clusters were observed only in the control samples. The PAA/PAH/ZnONPs composite developed presents antimicrobial activity and mimics the extracellular matrix morphology of skin tissue, showing potential for wound healing treatments.
Collapse
Affiliation(s)
- Marina Bandeira
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (M.G.); (J.d.S.C.)
- Correspondence: (M.B.); (D.M.D.)
| | - Bor Shin Chee
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
| | - Rafaele Frassini
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (R.F.); (M.R.-E.)
| | - Michael Nugent
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
| | - Marcelo Giovanela
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (M.G.); (J.d.S.C.)
| | - Mariana Roesch-Ely
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (R.F.); (M.R.-E.)
| | - Janaina da Silva Crespo
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (M.G.); (J.d.S.C.)
| | - Declan M. Devine
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
- Correspondence: (M.B.); (D.M.D.)
| |
Collapse
|
44
|
Kaur P, Choudhury D. Functionality of receptor targeted zinc-insulin quantum clusters in skin tissue augmentation and bioimaging. J Drug Target 2020; 29:541-550. [PMID: 33307859 DOI: 10.1080/1061186x.2020.1864740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Quantum clusters with target specificity are suitable for tissue-specific imaging. In the present work, amorphous zinc insulin quantum clusters (IZnQCs) had been synthesised to promote and monitor wound recovery. Easy synthesis, biocompatibility, stability, enhanced quantum yield, and solubility made the cluster suitable for preclinical/clinical exploration. Zn2+ is known for its binding to insulin hexamer. Here we report the reformation of the structure in a quantum cluster form in the presence of Zn2+. The formation of IZnQCs was confirmed by the change in zeta potential from -25.6 mV to -17.9 mV and also the formation of protein metal interaction was confirmed in FTIR bands at 450, 480, and 613 cm-1 for Zn-O, Zn-N, and Zn-S, respectively. HRTEM-EDS and SAED data analysis showed an amorphous nature of the cluster. The binding of IZnQCs to the cells has been confirmed using confocal microscopy. IZnQCs showed a synergistic effect in wound recovery than insulin or Zn2+ alone. Further due to high fluorescence this recovery process can be monitored under an appropriate setup. Wound healing promotional activity, target specificity, and fluorescence properties make the IZnQCs ideal to use for bioimaging along with promoting and monitoring of wound recovery agent.
Collapse
Affiliation(s)
- Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.,Thapar Institute of Engineering and Technology - Virginia Tech Centre for Excellence in Material Sciences, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|