1
|
Palladium Supported on Bioinspired Materials as Catalysts for C–C Coupling Reactions. Catalysts 2023. [DOI: 10.3390/catal13010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In recent years, the immobilization of palladium nanoparticles on solid supports to prepare active and stable catalytic systems has been deeply investigated. Compared to inorganic materials, naturally occurring organic solids are inexpensive, available and abundant. Moreover, the surface of these solids is fully covered by chelating groups which can stabilize the metal nanoparticles. In the present review, we have focused our attention on natural biomaterials-supported metal catalysts applied to the formation of C–C bonds by Mizoroki–Heck, Suzuki–Miyaura and Sonogashira reactions. A systematic approach based on the nature of the organic matrix will be followed: (i) metal catalysts supported on cellulose; (ii) metal catalysts supported on starch; (iii) metal catalysts supported on pectin; (iv) metal catalysts supported on agarose; (v) metal catalysts supported on chitosan; (vi) metal catalysts supported on proteins and enzymes. We will emphasize the effective heterogeneity and recyclability of each catalyst, specifying which studies were carried out to evaluate these aspects.
Collapse
|
2
|
Yazdi MK, Zare M, Khodadadi A, Seidi F, Sajadi SM, Zarrintaj P, Arefi A, Saeb MR, Mozafari M. Polydopamine Biomaterials for Skin Regeneration. ACS Biomater Sci Eng 2022; 8:2196-2219. [PMID: 35649119 DOI: 10.1021/acsbiomaterials.1c01436] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Designing biomaterials capable of biomimicking wound healing and skin regeneration has been receiving increasing attention recently. Some biopolymers behave similarly to the extracellular matrix (ECM), supporting biointerfacial adhesion and intrinsic cellular interactions. Polydopamine (PDA) is a natural bioadhesive and bioactive polymer that endows high chemical versatility, making it an exciting candidate for a wide range of biomedical applications. Moreover, biomaterials based on PDA and its derivatives have near-infrared (NIR) absorption, excellent biocompatibility, intrinsic antioxidative activity, antibacterial activity, and cell affinity. PDA can regulate cell behavior by controlling signal transduction pathways. It governs the focal adhesion behavior of cells at the biomaterials interface. These features make melanin-like PDA a fascinating biomaterial for wound healing and skin regeneration. This paper overviews PDA-based biomaterials' synthesis, properties, and interactions with biological entities. Furthermore, the utilization of PDA nano- and microstructures as a constituent of wound-dressing formulations is highlighted.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran 141663-4793, Iran
| | - Ali Khodadadi
- Department of Internal Medicine, School of Medicine, Gonabad University of Medical Sciences, Gonabad 96914, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University─Erbil, Erbil, Kurdistan Region 44001, Iraq
- Department of Phytochemistry, SRC, Soran University, Soran, Kurdistan Regional Government 44008, Iraq
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Oklahoma 74078, United States
| | - Ahmad Arefi
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences,Tehran 144961-4535, Iran
| |
Collapse
|
3
|
Zarrintaj P, Ghorbani S, Barani M, Singh Chauhan NP, Khodadadi Yazdi M, Saeb MR, Ramsey JD, Hamblin MR, Mozafari M, Mostafavi E. Polylysine for skin regeneration: A review of recent advances and future perspectives. Bioeng Transl Med 2022; 7:e10261. [PMID: 35111953 PMCID: PMC8780928 DOI: 10.1002/btm2.10261] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022] Open
Abstract
There have been several attempts to find promising biomaterials for skin regeneration, among which polylysine (a homopolypeptide) has shown benefits in the regeneration and treatment of skin disorders. This class of biomaterials has shown exceptional abilities due to their macromolecular structure. Polylysine-based biomaterials can be used as tissue engineering scaffolds for skin regeneration, and as drug carriers or even gene delivery vectors for the treatment of skin diseases. In addition, polylysine can play a preservative role in extending the lifetime of skin tissue by minimizing the appearance of photodamaged skin. Research on polylysine is growing today, opening new scenarios that expand the potential of these biomaterials from traditional treatments to a new era of tissue regeneration. This review aims to address the basic concepts, recent trends, and prospects of polylysine-based biomaterials for skin regeneration. Undoubtedly, this class of biomaterials needs further evaluations and explorations, and many critical questions have yet to be answered.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Sadegh Ghorbani
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | | | | | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Joshua D. Ramsey
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health ScienceUniversity of JohannesburgSouth Africa
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoTorontoONCanada.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
4
|
Zarrintaj P, Saeb MR, Stadler FJ, Yazdi MK, Nezhad MN, Mohebbi S, Seidi F, Ganjali MR, Mozafari M. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges. Adv Biol (Weinh) 2022; 6:e2000526. [PMID: 34837667 DOI: 10.1002/adbi.202000526] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/03/2021] [Indexed: 01/09/2023]
Abstract
New emerging technologies, remarkably miniaturized 3D organ models and microfluidics, enable simulation of the real in vitro microenvironment ex vivo more closely. There are many fascinating features of innovative organ-on-a-chip (OOC) technology, including the possibility of integrating semipermeable and/or stretchable membranes, creating continuous perfusion of fluids into microchannels and chambers (while maintaining laminar flow regime), embedding microdevices like microsensors, microstimulators, micro heaters, or different cell lines, along with other 3D cell culture technologies. OOC systems are designed to imitate the structure and function of human organs, ranging from breathing lungs to beating hearts. This technology is expected to be able to revolutionize cell biology studies, personalized precision medicine, drug development process, and cancer diagnosis/treatment. OOC systems can significantly reduce the cost associated with tedious drug development processes and the risk of adverse drug reactions in the body, which makes drug screening more effective. The review mainly focus on presenting an overview of the several previously developed OOC systems accompanied by subjects relevant to pharmacy-, cancer-, and placenta-on-a-chip. The challenging issues and opportunities related to these systems are discussed, along with a future perspective for this technology.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Mojtaba Nasiri Nezhad
- Department of Chemical Engineering, Urmia University of Technology, Urmia, 57166-419, Iran
| | - Shabnam Mohebbi
- Department of Chemical Engineering, Tabriz University, Tabriz, 51335-1996, Iran
| | - Farzad Seidi
- Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 14395-1179, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
5
|
Arkaban H, Khajeh Ebrahimi A, Yarahmadi A, Zarrintaj P, Barani M. Development of a multifunctional system based on CoFe 2O 4@polyacrylic acid NPs conjugated to folic acid and loaded with doxorubicin for cancer theranostics. NANOTECHNOLOGY 2021; 32:305101. [PMID: 33857938 DOI: 10.1088/1361-6528/abf878] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
In this work, a multifunctional theranostic nanocomposite based on CoFe2O4@polyacrylic acid (PAA)-Folic Acid (FA) Doxorubicin (Dox)loadNPs was designed for the multifunctional cancer treatment. Several techniques such as TEM, DLS,ζ-potential, vibrating sample magnetometer, XRD, and UV-Vis spectrophotometer were applied for investigating physicochemical properties of the nanosystem. The percentage of the loaded drug, loading efficiency,in vitrorelease (pH 5.4 and 7.4),invitroMRI measurements, and MTT assay (4T1 and 9A9 cell lines) were evaluated. Results showed that the percentage of loaded drug and loading efficiency was 53.33 ± 3.5 and 80.00 ± 5.3%, respectively, showing the system's high ability for Dox encapsulation. Release study showed that Dox loaded in the CoFe2O4@PAA-FA(Dox)loadNPs released faster at pH 5.4 than pH 7.4.In vitro, MRI measurements confirmed that CoFe2O4@PAA NPs could be used as a contrast agent in MRI measurements withr2 = 18.2 mM-1s-1. MTT assay demonstrated the biocompatibility of NPs, also showed a more efficient therapeutic effect for CoFe2O4@PAA-FA(Dox)loadNPs than free Dox and CoFe2O4@PAA(Dox)loadNPs.
Collapse
Affiliation(s)
- Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, I.R. Iran
| | | | - Ali Yarahmadi
- Faculty of Chemistry, University of Bu-Ali Sina, Hamedan, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States of America
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|