1
|
De Souza TPP, Cantão LXS, Rodrigues MQRB, Gonçalves DB, Nagem RAP, Rocha REO, Godoi RR, Lima WJN, Galdino AS, Minardi RCDM, Lima LHFD. Glycosylation and charge distribution orchestrates the conformational ensembles of a biotechnologically promissory phytase in different pHs - a computational study. J Biomol Struct Dyn 2024; 42:5030-5041. [PMID: 37325852 DOI: 10.1080/07391102.2023.2223685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Phytases [myo-inositol(1,2,3,4,5,6) hexakisphosphate phosphohydrolases] are phytate-specific phosphatases not present in monogastric animals. Nevertheless, they are an essential supplement to feeding such animals and for human special diets. It is crucial, hence, the biotechnological use of phytases with intrinsic stability and activity at the acid pHs from gastric environments. Here we use Metadynamics (METADY) simulations to probe the conformational space of the Aspergillus nidulans phytase and the differential effects of pH and glycosylation in this same space. The results suggest that strategic combinations of pH and glycosylation affect the stability of native-like conformations and alternate these structures from a metastable to a stable profile. Furthermore, the protein segments previously reported as more thermosensitive in phytases from this family present a pivotal role in the conformational changes at different conditions, especially H2, H5-7, L8, L10, L12, and L17. Also, the glycosylations and the pH-dependent charge balance modulate the mobility and interactions at these same regions, with consequences for the surface solvation and active site exposition. Finally, although the glycosylations have stabilized the native structure and improved the substrate docking at all the studied pHs, the data suggest a higher phytate receptivity at catalytic poses for the unglycosylated structure at pH 6.5 and the glycosylated one at pH 4.5. This behavior agrees with the exact change in optimum pH reported for this enzyme, expressed on low or high glycosylating systems. We hope the results and insights presented here will be helpful in future approaches for rational engineering of technologically promising phytases and intelligent planning of their heterologous expression systems and conditions for use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thaís P P De Souza
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Letícia Xavier Silva Cantão
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Daniel Bonoto Gonçalves
- Department of Biosystems Engineering, Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Ronaldo Alves Pinto Nagem
- Institute of Biological Sciences Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Eduardo Oliveira Rocha
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory Of Molecular Modeling and Bioinformatics, Department of Exacts and Biological Sciences (DECEB), Universidade Federal de São João Del-Rei, Sete Lagoas, Minas Gerais, Brazil
| | - Renato Ramos Godoi
- Institute of Biological Sciences Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - William James Nogueira Lima
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Campus Regional de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Alexsandro Sobreira Galdino
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Raquel Cardoso de Melo Minardi
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Henrique França de Lima
- Laboratory Of Molecular Modeling and Bioinformatics, Department of Exacts and Biological Sciences (DECEB), Universidade Federal de São João Del-Rei, Sete Lagoas, Minas Gerais, Brazil
| |
Collapse
|
2
|
Selim S, Abdel-Megeid NS, Khalifa HK, Fakiha KG, Majrashi KA, Hussein E. Efficacy of Various Feed Additives on Performance, Nutrient Digestibility, Bone Quality, Blood Constituents, and Phosphorus Absorption and Utilization of Broiler Chickens Fed Low Phosphorus Diet. Animals (Basel) 2022; 12:ani12141742. [PMID: 35883289 PMCID: PMC9312087 DOI: 10.3390/ani12141742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
The present trial was designed to assess the effect of phytase, multi-strain probiotic, Saccharomyces cerevisiae, and fumaric acid on performance, nutrient digestibility, bone physical parameters and mineralization, blood constituents, bone and gut histomorphology, and duodenal phosphorus transporter genes of broiler chickens fed a decreased non-phytate phosphorus (nPP) diet for 5 weeks. A total of 480 broiler chickens were allotted to six dietary groups and eight replicates each: (1) positive control diet with recommended levels of nPP (PC; 0.48, 0.44, and 0.41% in the three feeding phases); (2) negative control diet with a decreased dietary nPP (NC; 0.28, 0.24, and 0.21% in the three feeding phases); (3) NC + 600 FTU/kg phytase (PHY); (4) NC + 0.05% multi-strain probiotic (PRO); (5) NC + 0.2% Saccharomyces cerevisiae (SC); and (6) NC + 0.2% fumaric acid. Growth performance data were recorded weekly, and blood sampling was performed at days 21 and 35 of age. Bone quality traits, gut and tibia histology, nutrient digestibility, and intestinal gene expression analyses were conducted at the end of the trial (35 days of age). Final body weight and total gain at day 35 of age of the broiler chickens fed with the PHY, PRO, and SC diets were greater (p < 0.01) than in NC, where broilers fed with the PRO and PHY diets had higher values and were similar to that of PC. There was a non-significant variation in the cumulative feed intake among the treatment groups. The PHY and PRO groups had better FCR than the PC group (p < 0.05), and FA and SC had an FCR equivalent to that of PC. The PHY and PRO broilers had greater dressing % than the NC group (p < 0.05) and even better than PC. The PHY, PRO, SC, and FA broilers had higher relative weights of spleen and bursa of Fabricius (p < 0.01) than NC. In comparison to NC, the PHY, PRO, and SC groups improved (p < 0.05) CP, CF, Ca, and P digestibility. Greater tibia breaking strength of the low nPP-supplemented groups was shown to be associated with higher tibia ash, Ca, and P concentrations (p < 0.01) and increased (p < 0.001) tibia cortical area thickness. At days 21 and 35 of age, the dietary supplements to low nPP diets reduced (p < 0.05) serum total cholesterol, triglyceride, triiodothyronine, thyroxine, glucose, and alkaline phosphatase levels, while serum Ca and P concentrations were improved (p < 0.05) compared to NC. All supplements led to enhancement (p < 0.01) in villi height and width and villi absorptive surface area when compared with NC and were even comparable to that of PC. The mRNA expression of NaP-IIb was up-regulated (p < 0.001) in the duodenum of PRO and FA broilers at day 35 of age compared with NC, and their expression levels were similar to that of PC, indicating greater P availability. It is concluded that dietary supplementation of PHY, PRO, SC, and FA to a low nPP diet was advantageous and mitigated the negative impacts of P reduction on the growth performance, health, nutrient digestibility, and bone quality of broilers.
Collapse
Affiliation(s)
- Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, University of Menoufia, Shibin El-Kom 32514, Egypt
- Correspondence:
| | - Nazema S. Abdel-Megeid
- Department of Cytology and Histology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
| | - Hanem K. Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
| | - Khloud G. Fakiha
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia;
| | - Kamlah A. Majrashi
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
| | - Eman Hussein
- Department of Poultry and Fish Production, Faculty of Agriculture, University of Menoufia, Shibin El-Kom 32514, Egypt;
| |
Collapse
|
3
|
Abstract
Repeated applications of phosphorus (P) fertilizers result in the buildup of P in soil (commonly known as legacy P), a large fraction of which is not immediately available for plant use. Long-term applications and accumulations of soil P is an inefficient use of dwindling P supplies and can result in nutrient runoff, often leading to eutrophication of water bodies. Although soil legacy P is problematic in some regards, it conversely may serve as a source of P for crop use and could potentially decrease dependence on external P fertilizer inputs. This paper reviews the (1) current knowledge on the occurrence and bioaccessibility of different chemical forms of P in soil, (2) legacy P transformations with mineral and organic fertilizer applications in relation to their potential bioaccessibility, and (3) approaches and associated challenges for accessing native soil P that could be used to harness soil legacy P for crop production. We highlight how the occurrence and potential bioaccessibility of different forms of soil inorganic and organic P vary depending on soil properties, such as soil pH and organic matter content. We also found that accumulation of inorganic legacy P forms changes more than organic P species with fertilizer applications and cessations. We also discuss progress and challenges with current approaches for accessing native soil P that could be used for accessing legacy P, including natural and genetically modified plant-based strategies, the use of P-solubilizing microorganisms, and immobilized organic P-hydrolyzing enzymes. It is foreseeable that accessing legacy P will require multidisciplinary approaches to address these limitations.
Collapse
|
4
|
Nari N, Ghasemi HA. Growth performance, nutrient digestibility, bone mineralization, and hormone profile in broilers fed with phosphorus-deficient diets supplemented with butyric acid and Saccharomyces boulardii. Poult Sci 2019; 99:926-935. [PMID: 32029169 PMCID: PMC7587796 DOI: 10.1016/j.psj.2019.10.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 01/07/2023] Open
Abstract
The present study evaluated the effects of butyric acid supplementation and Saccharomyces boulardii (alone or in combination) on growth performance, nutrient digestibility, bone mineralization, and blood hormones of male broiler chickens fed a diet including reduced levels of nonphytate phosphorus (NPP). The chickens were allocated to 6 dietary treatments: 1) positive control diet with adequate amounts of NPP (PC; 0.48, 0.43, and 0.39% in the starter, grower, and finisher period, respectively); 2) negative control diet with low amounts of NPP (NC; 0.38, 0.33, and 0.29% in the starter, grower, and finisher period, respectively); 3) NC plus 500 FTU/kg microbial phytase (PHY); 4) NC plus 0.2% butyric acid (BA); 5) NC plus 1 × 108 cfu/kg S. boulardii (SB); 6) NC plus butyric acid and S. boulardii (BA+SB). Each treatment had 5 pen replicates of 25 birds. After 6 wk, the body weight and ADG in birds fed with any of the diets were higher (P < 0.001) than those in birds fed with the NC diet, where the birds fed with the PHY and BA+SB diets had the highest values. However, only the PHY diet improved (P = 0.041) overall F:G. All diets, except the SB diet, resulted in the increased apparent ileal digestibility coefficient (AIDC) of CP, AMEn, and tibia ash content and decreased serum alkaline phosphatase level compared with the NC diet (P < 0.05). Broiler chickens fed with the PHY, SB, and BA+SB diets also had increased AIDC of phosphorus (P = 0.017) than those fed with the NC and PC diets. Feeding PC, PHY, and BA+SB diets increased (P = 0.007) the tibia phosphorus content but decreased (P = 0.033) serum parathyroid hormone concentration. Overall, the present data indicate that the simultaneous inclusion of butyric acid plus S. boulardii in the low-NPP diets was beneficial for improving growth rate and bone mineralization, but not for feed efficiency.
Collapse
|
5
|
Sánchez ÓJ, Ospina DA, Montoya S. Compost supplementation with nutrients and microorganisms in composting process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 69:136-153. [PMID: 28823698 DOI: 10.1016/j.wasman.2017.08.012] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/04/2017] [Accepted: 08/08/2017] [Indexed: 05/22/2023]
Abstract
The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost are provided in this work.
Collapse
Affiliation(s)
- Óscar J Sánchez
- Bioprocess and Agro-industry Plant, Department of Engineering, Universidad de Caldas, Manizales, Colombia.
| | - Diego A Ospina
- Bioprocess and Agro-industry Plant, Department of Engineering, Universidad de Caldas, Manizales, Colombia
| | - Sandra Montoya
- Bioprocess and Agro-industry Plant, Department of Engineering, Universidad de Caldas, Manizales, Colombia
| |
Collapse
|
6
|
Balwani I, Chakravarty K, Gaur S. Role of phytase producing microorganisms towards agricultural sustainability. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Boukhris I, Farhat-Khemakhem A, Bouchaala K, Virolle MJ, Chouayekh H. Cloning and characterization of the first actinomycete β-propeller phytase fromStreptomycessp. US42. J Basic Microbiol 2016; 56:1080-1089. [DOI: 10.1002/jobm.201500760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/11/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ines Boukhris
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; University Paris-Sud; Orsay France
| | - Ameny Farhat-Khemakhem
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
| | - Kameleddine Bouchaala
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
| | - Marie-Joëlle Virolle
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; University Paris-Sud; Orsay France
| | - Hichem Chouayekh
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
| |
Collapse
|
8
|
Draft Genome Sequence of Bacillus ginsengihumi Strain M2.11 with Phytase Activity. GENOME ANNOUNCEMENTS 2015; 3:3/4/e00851-15. [PMID: 26272561 PMCID: PMC4536672 DOI: 10.1128/genomea.00851-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This paper announces the genome sequence of Bacillus ginsengihumi strain M2.11, which has been characterized as a strain which produces the enzyme with the ability to degrade phytase. The genome of the strain M2.11 is 3.7 Mb and harbors 3,082 coding sequences.
Collapse
|
9
|
Abstract
Phytases are phosphohydrolytic enzymes that initiate stepwise removal of phosphate from phytate. Simple-stomached species such as swine, poultry, and fish require extrinsic phytase to digest phytate, the major form of phosphorus in plant-based feeds. Consequently, this enzyme is supplemented in these species’ diets to decrease their phosphorus excretion, and it has emerged as one of the most effective and lucrative feed additives. This chapter provides a comprehensive review of the evolving course of phytase science and technology. It gives realistic estimates of the versatile roles of phytase in animal feeding, environmental protection, rock phosphorus preservation, human nutrition and health, and industrial applications. It elaborates on new biotechnology and existing issues related to developing novel microbial phytases as well as phytase-transgenic plants and animals. And it targets critical and integrated analyses on the global impact, novel application, and future demand of phytase in promoting animal agriculture, human health, and societal sustainability.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853
| | | | | | | | - Michael J. Azain
- Department of Animal Science, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
10
|
Farhat-Khemakhem A, Ali MB, Boukhris I, Khemakhem B, Maguin E, Bejar S, Chouayekh H. Crucial role of Pro 257 in the thermostability of Bacillus phytases: biochemical and structural investigation. Int J Biol Macromol 2012. [PMID: 23178368 DOI: 10.1016/j.ijbiomac.2012.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously cloned and characterized the thermostable phytase (PHY US417) from Bacillus subtilis US417. It differs with PhyC from B. subtilis VTTE-68013 by the R257P substitution. PHY US417 was shown to be more thermostable than PhyC. To elucidate the mechanism of how the Pro 257 changes the thermostability of Bacillus phytases, this residue was mutated to Arg and Ala. The experimental results revealed that the thermostability of the P257A mutants and especially P257R was significantly decreased. The P257R and P257A mutants recovered, respectively, 64.4 and 81.5% of the wild-type activity after incubation at 75 °C for 30 min in the presence of 5mM CaCl(2). The P257R mutation also led to a severe reduction in the specific activity and catalytic efficiency of the enzyme. Structural investigation, by molecular modeling of PHY US417 and PhyC focused on the region of the 257 residue, revealed that this residue was present in a surface loop connecting two of the six characteristic β sheets. The P257 residue is presumed to reduce the local thermal flexibility of the loop, thus generating a higher thermostability.
Collapse
Affiliation(s)
- Ameny Farhat-Khemakhem
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Route de Sidi Mansour Km 6, BP 1177 3018 Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
11
|
Farhat-Khemakhem A, Ben Farhat M, Boukhris I, Bejar W, Bouchaala K, Kammoun R, Maguin E, Bejar S, Chouayekh H. Heterologous expression and optimization using experimental designs allowed highly efficient production of the PHY US417 phytase in Bacillus subtilis 168. AMB Express 2012; 2:10. [PMID: 22281295 PMCID: PMC3305889 DOI: 10.1186/2191-0855-2-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/26/2012] [Indexed: 11/10/2022] Open
Abstract
To attempt cost-effective production of US417 phytase in Bacillus subtilis, we developed an efficient system for its large-scale production in the generally recognized as safe microorganism B. subtilis 168. Hence, the phy US417 corresponding gene was cloned in the pMSP3535 vector, and for the first time for a plasmid carrying the pAMβ1 replication origin, multimeric forms of the resulting plasmid were used to transform naturally competent B. subtilis 168 cells. Subsequently, a sequential optimization strategy based on Plackett-Burman and Box-Behnken experimental designs was applied to enhance phytase production by the recombinant Bacillus. The maximum phytase activity of 47 U ml-1 was reached in the presence of 12.5 g l-1 of yeast extract and 15 g l-1 of ammonium sulphate with shaking at 300 rpm. This is 73 fold higher than the activity produced by the native US417 strain before optimization. Characterization of the produced recombinant phytase has revealed that the enzyme exhibited improved thermostability compared to the wild type PHY US417 phytase strengthening its potential for application as feed supplement. Together, our findings strongly suggest that the strategy herein developed combining heterologous expression using a cloning vector carrying the pAMβ1 replication origin and experimental designs optimization can be generalized for recombinant proteins production in Bacillus.
Collapse
|