1
|
Bedenić B, Pospišil M, Nađ M, Bandić Pavlović D. Evolution of β-Lactam Antibiotic Resistance in Proteus Species: From Extended-Spectrum and Plasmid-Mediated AmpC β-Lactamases to Carbapenemases. Microorganisms 2025; 13:508. [PMID: 40142401 PMCID: PMC11946153 DOI: 10.3390/microorganisms13030508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/28/2025] Open
Abstract
The management of infectious diseases has proven to be a daunting task for clinicians worldwide, and the rapid development of antibiotic resistance among Gram-negative bacteria is making it even more challenging. The first-line therapy is empirical, and it most often comprises β-lactam antibiotics. Among Gram-negative bacteria, Proteus mirabilis, an important community and hospital pathogen associated primarily with urinary tract and wound infection, holds a special place. This review's aim was to collate and examine recent studies investigating β-lactam resistance phenotypes and mechanisms of Proteus species and the global significance of its β-lactam resistance evolution. Moreover, the genetic background of resistance traits and the role of mobile genetic elements in the dissemination of resistance genes were evaluated. P. mirabilis as the dominant pathogen develops resistance to expanded-spectrum cephalosporins (ESC) by producing extended-spectrum β-lactamases (ESBL) and plasmid-mediated AmpC β-lactamases (p-AmpC). β-lactamase-mediated resistance to carbapenems in Enterobacterales, including Proteus spp., is mostly due to expression of carbapenemases of class A (KPC); class B (metallo-β-lactamases or MBLs of IMP, VIM, or NDM series); or class D or carbapenem-hydrolyzing oxacillinases (CHDL). Previously, a dominant ESBL type in P. mirabilis was TEM-52; yet, lately, it has been replaced by CTX-M variants, particularly CTX-M-14. ESC resistance can also be mediated by p-AmpC, with CMY-16 as the dominant variant. Carbapenem resistance in Proteus spp. is a challenge due to its intrinsic resistance to colistin and tigecyclin. The first carbapenemases reported belonged to class B, most frequently VIM-1 and NDM-5. In Europe, predominantly France and Belgium, a clonal lineage positive for OXA-23 CHDL spreads rapidly undetected, due to its low-level resistance to carbapenems. The amazing capacity of Proteus spp. to accumulate a plethora of various resistance traits is leading to multidrug or extensively drug-resistant phenotypes.
Collapse
Affiliation(s)
- Branka Bedenić
- Biomedical Research Center Šalata, University of Zagreb School of Medicine, Department for Clinical Microbiology and Infection Prevention and Control, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Mladen Pospišil
- Department of Emergency Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Marina Nađ
- University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | - Daniela Bandić Pavlović
- Department of Anesthesiology and Intensive Care, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Tsilika M, Ntziora F, Giannitsioti E. Antimicrobial Treatment Options for Multidrug Resistant Gram-Negative Pathogens in Bone and Joint Infections. Pathogens 2025; 14:130. [PMID: 40005507 PMCID: PMC11858038 DOI: 10.3390/pathogens14020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Multidrug (MDR) and extensive drug (XDR) resistance in Gram-negative bacteria (GNB) emerges worldwide. Although bone and joint infections are mostly caused by Gram-positive bacteria, mainly Staphylococci, MDR GNB substantially increase also as a complication of hospitalization and previous antibiotic administration. This narrative review analyzes the epidemiological trend, current experimental data, and clinical experience with available therapeutic options for the difficult to treat (DTR) GNB implicated in bone and joint infections with or without orthopedic implants. The radical debridement and removal of the implant is adequate therapy for most cases, along with prompt and prolonged combined antimicrobial treatment by older and novel antibiotics. Current research and clinical data suggest that fluoroquinolones well penetrate bone tissue and are associated with improved outcomes in DTR GNB; if not available, carbapenems can be used in cases of MDR GNB. For XDR GNB, colistin, fosfomycin, tigecycline, and novel β-lactam/β-lactamase inhibitors can be initiated as combination schemas in intravenous administration, along with local elution from impregnated spacers. However, current data are scarce and large multicenter studies are mandatory in the field.
Collapse
Affiliation(s)
- Maria Tsilika
- 1st Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Fotinie Ntziora
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Efthymia Giannitsioti
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| |
Collapse
|
3
|
Zhuang HH, Qu Q, Long WM, Hu Q, Wu XL, Chen Y, Wan Q, Xu TT, Luo Y, Yuan HY, Lu Q, Qu J. Ceftazidime/avibactam versus polymyxin B in carbapenem-resistant Klebsiella pneumoniae infections: a propensity score-matched multicenter real-world study. Infection 2025; 53:95-106. [PMID: 38884857 PMCID: PMC11825550 DOI: 10.1007/s15010-024-02324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES In this retrospective observational multicenter study, we aimed to assess efficacy and mortality between ceftazidime/avibactam (CAZ/AVI) or polymyxin B (PMB)-based regimens for the treatment of Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections, as well as identify potential risk factors. METHODS A total of 276 CRKP-infected patients were enrolled in our study. Binary logistic and Cox regression analysis with a propensity score-matched (PSM) model were performed to identify risk factors for efficacy and mortality. RESULTS The patient cohort was divided into PMB-based regimen group (n = 98, 35.5%) and CAZ/AVI-based regimen group (n = 178, 64.5%). Compared to the PMB group, the CAZ/AVI group exhibited significantly higher rates of clinical efficacy (71.3% vs. 56.1%; p = 0.011), microbiological clearance (74.7% vs. 41.4%; p < 0.001), and a lower incidence of acute kidney injury (AKI) (13.5% vs. 33.7%; p < 0.001). Binary logistic regression revealed that the treatment duration independently influenced both clinical efficacy and microbiological clearance. Vasoactive drugs, sepsis/septic shock, APACHE II score, and treatment duration were identified as risk factors associated with 30-day all-cause mortality. The CAZ/AVI-based regimen was an independent factor for good clinical efficacy, microbiological clearance, and lower AKI incidence. CONCLUSIONS For patients with CRKP infection, the CAZ/AVI-based regimen was superior to the PMB-based regimen.
Collapse
Affiliation(s)
- Hai-Hui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Central South University, No.139 Middle Renmin Road, Changsha, 410011, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Institute of Hospital Management, Central South University, Changsha, 410078, China
| | - Wen-Ming Long
- Department of Pharmacy, Second People's Hospital of Huaihua City (The Central Hospital of Huaihua City), Jingzhou District, Huaihua, 418400, China
| | - Qin Hu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Institute of Hospital Management, Central South University, Changsha, 410078, China
| | - Xiao-Li Wu
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ying Chen
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Qing Wan
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tian-Tian Xu
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yue Luo
- Department of Pharmacy, The People's Hospital of Liuyang, Liuyang, 410300, China
| | - Hai-Yan Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Central South University, No.139 Middle Renmin Road, Changsha, 410011, China
| | - Qiong Lu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Central South University, No.139 Middle Renmin Road, Changsha, 410011, China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Central South University, No.139 Middle Renmin Road, Changsha, 410011, China.
- Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
4
|
Sunali, Jha MK, Kumar M, Kumar M, Ranjan N. Investigating Gram-negative bacilli isolates' sensitivity to ceftazidime/avibactam. J Family Med Prim Care 2025; 14:311-316. [PMID: 39989554 PMCID: PMC11844935 DOI: 10.4103/jfmpc.jfmpc_1272_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 02/25/2025] Open
Abstract
Background Multidrug resistant (MDR) Gram negative organisms are becoming increasingly common. Carbapenem resistant Enterobacterales (CRE) pose a major threat and necessitate the development of new antibiotics. MDR and carbapenem resistant infections, which are common in intensive care units and hospitals, lead to increased morbidity, mortality, prolonged hospital stays, and higher healthcare costs. New antimicrobials such as ceftazidime avibactam offer potential alternatives to conventional treatments such as tigecycline and colistin, which have significant side effects and limitations. Aim This study focuses on the antibiotic susceptibility of ceftazidime/ avibactam to Gram negative bacilli found in a large number of clinical samples collected from a tertiary care facility in Netaji Subhas Medical University and Hospital, Bihta, India. Methodology The study included 81 Gram negative bacteria isolated from patient samples. Based on the Clinical Laboratory Standards Institute guidelines mentioned in the Kirby Bauer disc diffusion method. Result and Conclusion the results showed that ceftazidime avibactam inhibited 89.9% of the Enterobacteriaceae isolates, which was higher than the 80.3% of amikacin and the 85.1% of meropenem. Ceftazidime avibactam was effective against CRE isolates in 69.9% of cases and against MDR isolates in urine in 94% of cases, which was higher than the 40% of ceftriaxone and 94% of nitrofurantoin. The results show that ceftazidime avibactam can cure MDR and CRE infections, especially urinary tract infections, better than conventional antibiotics, which is a great help in the fight against increasing antibiotic resistance.
Collapse
Affiliation(s)
- Sunali
- Department of Microbiology, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
- Department of Microbiology, Netaji Subhas Medical College and Hospital, Bihta, Patna, Bihar, India
| | - Mithilesh Kumar Jha
- Department of Microbiology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Mukesh Kumar
- Department of Microbiology, Netaji Subhas Medical College and Hospital, Bihta, Patna, Bihar, India
| | - Maneesh Kumar
- State VRDL, Department of Microbiology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Nishant Ranjan
- Department of General Surgery, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
| |
Collapse
|
5
|
Kiddee A, Yosboonruang A, Siriphap A, Pook-In G, Suwancharoen C, Duangjai A, Praphasawat R, Suganuma M, Rawangkan A. Restoring Multidrug-Resistant Escherichia coli Sensitivity to Ampicillin in Combination with (-)-Epigallocatechin Gallate. Antibiotics (Basel) 2024; 13:1211. [PMID: 39766601 PMCID: PMC11672589 DOI: 10.3390/antibiotics13121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Multidrug-resistant (MDR) bacteria, especially Escherichia coli, are a major contributor to healthcare-associated infections globally, posing significant treatment challenges. This study explores the efficacy of (-)-epigallocatechin gallate (EGCG), a natural constituent of green tea, in combination with ampicillin (AMP) to restore the effectiveness of AMP against 40 isolated MDR E. coli strains. Antimicrobial activity assays were conducted to determine the minimum inhibitory concentrations (MIC) of EGCG using the standard microdilution technique. Checkerboard assays were employed to assess the potential synergistic effects of EGCG combined with AMP. The pharmacodynamic effects of the combination were evaluated through time-kill assays. Outer membrane disruption was analyzed by measuring DNA and protein leakage and with assessments using N-phenyl-1-naphthylamine (NPN) and rhodamine 123 (Rh123) fluorescence dyes. Biofilm eradication studies involved biofilm formation assays and preformed biofilm biomass and viability assays. Scanning electron microscopy (SEM) was used to examine changes in cellular morphology. The results indicated that EGCG demonstrated activity against all isolates, with MICs ranging from 0.5 to 2 mg/mL, while AMP exhibited MIC values between 1.25 and 50 mg/mL. Importantly, the EGCG-AMP combination showed enhanced efficacy compared to either treatment alone, as indicated by a fractional inhibitory concentration index between 0.009 and 0.018. The most pronounced synergy was observed in 13 drug-resistant strains, where the MIC for EGCG dropped to 8 µg/mL (from 1 mg/mL alone) and that for AMP to 50 µg/mL (from 50 mg/mL alone), achieving a 125-fold and 1000-fold reduction, respectively. Time-kill assays revealed that the bactericidal effect of the EGCG-AMP combination occurred within 2 h. The mechanism of EGCG action includes the disruption of membrane permeability and biofilm eradication in a dose-dependent manner. SEM confirmed that the combination treatment consistently outperformed the individual treatments. This study underscores the potential of restoring AMP efficacy in combination with EGCG as a promising strategy for treating MDR E. coli infections.
Collapse
Affiliation(s)
- Anong Kiddee
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.K.); (A.Y.); (A.S.); (G.P.-I.); (C.S.)
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao 56000, Thailand; (A.D.); (R.P.)
| | - Atchariya Yosboonruang
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.K.); (A.Y.); (A.S.); (G.P.-I.); (C.S.)
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao 56000, Thailand; (A.D.); (R.P.)
| | - Achiraya Siriphap
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.K.); (A.Y.); (A.S.); (G.P.-I.); (C.S.)
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao 56000, Thailand; (A.D.); (R.P.)
| | - Grissana Pook-In
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.K.); (A.Y.); (A.S.); (G.P.-I.); (C.S.)
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao 56000, Thailand; (A.D.); (R.P.)
| | - Chittakun Suwancharoen
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.K.); (A.Y.); (A.S.); (G.P.-I.); (C.S.)
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao 56000, Thailand; (A.D.); (R.P.)
| | - Acharaporn Duangjai
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao 56000, Thailand; (A.D.); (R.P.)
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Ratsada Praphasawat
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao 56000, Thailand; (A.D.); (R.P.)
- Department of Pathology, School of Medicine, University of Phayao, Phayao 56000, Thailand
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan;
| | - Anchalee Rawangkan
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.K.); (A.Y.); (A.S.); (G.P.-I.); (C.S.)
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao 56000, Thailand; (A.D.); (R.P.)
| |
Collapse
|
6
|
Raoufi Z, Abdollahi S. Vaccination with OprB porin, and its epitopes offers protection against A. baumannii infections in mice. Int Immunopharmacol 2024; 141:112972. [PMID: 39186832 DOI: 10.1016/j.intimp.2024.112972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
A. baumannii is a deadly antimicrobial resistance pathogen that acquires drug resistance through different mechanisms. Therefore, it is necessary to investigate all its virulence factors and design effective vaccines against it. For this purpose, OprB, an outer membrane porin, was investigated in this study, and its secondary and tertiary structures, physicochemical properties, and B-T epitopes were determined. The vaccine potential of this protein and its linear, non-continuous, and chimeric epitopes were also in-vivo analyzed. Based on the results, two surface epitopes and one non-continuous epitope were identified. Surface contiguous epitopes were produced recombinantly and non-continuous epitope sequences were synthesized and then produced. The chimeric epitope was also produced via the SOE-PCR technique. Active and passive immunization of mice with the whole OprB protein, non-continuous epitope, contiguous epitopes, two epitopes in chimeric form, as well as the mixture of two purified epitopes showed that the survival level and total IgG titer of the mice compared to non-vaccinated mice or mice that were vaccinated with an internal fragment increased significantly. The bacterial load in the immunized mice's lung, liver, kidney, and spleen was much lower than in the control groups, and the TNF-α, IFN-γ, and IL-6 cytokines levels were also lower in these groups and were similar to the naive mice. On the other hand, subunit vaccines showed acceptable safety and due to their minimal cross-activity, their use is much safer.
Collapse
Affiliation(s)
- Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
7
|
Ibaideya MA, Taha AA, Qadi M. Phenotypic and molecular characterization of multidrug-resistant Enterobacterales isolated from clinical samples in Palestine: a focus on extended-spectrum β-lactamase- and carbapenemase-producing isolates. BMC Infect Dis 2024; 24:812. [PMID: 39134953 PMCID: PMC11318133 DOI: 10.1186/s12879-024-09726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Infections resulting from multidrug-resistant Enterobacterales (MDR-E) pose a growing global threat, presenting challenges in treatment and contributing significantly to morbidity and mortality rates. The main objective of this study was to characterize phenotypically and genetically extended-spectrum β-lactamase- and carbapenemase- producing Enterobacterales (ESBLE and CPE respectively) isolated from clinical samples in the West Bank, Palestine. METHODS A cross sectional study was conducted in October 2023 on clinical bacterial isolates collected from five governmental hospitals in the West Bank, Palestine. The isolates obtained from the microbiology laboratories of the participating hospitals, underwent identification and antibiotic susceptibility testing (AST) using the VITEK® 2 Compact system. ESBL production was determined by the Vitek2 Compact system. A modified carbapenem inactivation method (mCIM) was employed to identify carbapenemase-producing Enterobacterales (CPE). Resistance genes were detected by real-time PCR. RESULTS Out of the total 1380 collected isolates, we randomly selected 600 isolates for analysis. Our analysis indicated that 287 (47.83%) were extended-spectrum beta-lactamase producers (ESBLE), and 102 (17%) as carbapenem-resistant Enterobacterales (CRE) isolates. A total of 424 isolates (70.67%) were identified as multidrug-resistant Enterobacterales (MDRE). The most prevalent ESBL species were K. pneumoniae (n = 124; 43.2%), E. coli (n = 119; 41.5%) and E. cloacae (n = 31; 10.8%). Among the CRE isolates, 85 (83.33%) were carbapenemase-producing Enterobacterales (CPE). The most frequent CRE species were K. pneumoniae (n = 63; 61.7%), E. coli (n = 25; 24.5%) and E. cloacae (n = 13; 12.8%). Additionally, 47 (7.83%) isolates exhibited resistance to colistin (CT), with 38 (37.62%) being CT-resistant CRE and 9 (3.14%) being CT-resistant ESBLE while sensitive to carbapenems. We noticed that 11 isolates (6 Klebsiella pneumoniae and 5 Enterobacter cloacae complex) demonstrated sensitivity to carbapenems by phenotype but carried silent CPE genes (1 blaOXA48, and 6 blaNDM, 4 blaOXA48, blaNDM). ESBL-producing Enterobacterales strains exhibited varied resistance patterns across different antibiotic classes. E. coli isolates showed notable 48% resistance to trimethoprim/sulfamethoxazole. K. pneumoniae isolates displayed a significant resistance to trimethoprim/sulfamethoxazole, nitrofurantoin, and fosfomycin (54%, 90%, and 70% respectively). E. cloacae isolates showed complete resistance to nitrofurantoin and fosfomycin. P. mirabilis isolates exhibited high resistance against fluoroquinolones (83%), and complete resistance to trimethoprim/sulfamethoxazole, nitrofurantoin and fosfomycin. CONCLUSION This study showed the high burden of the ESBLE and CRE among the samples collected from the participating hospitals. The most common species were K. pneumoniae and E. coli. There was a high prevalence of blaCTXm. Adopting both conventional and molecular techniques is essential for better surveillance of the emergence and spread of antimicrobial-resistant Enterobacterales infections in Palestine.
Collapse
Affiliation(s)
- Mamoun At Ibaideya
- PhD Program in Clinical Laboratory Science, Department of Medical and Health Sciences, Faculty of Graduate Studies, An-Najah National University, Nablus, 44839, State of Palestine
- Department of Microbiology, Palestinian Medical Complex, Ministry of Health, Ramallah, State of Palestine
| | - Adham Abu Taha
- Department of Pathology, An-Najah National University Hospital, Nablus, 44839, State of Palestine.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, State of Palestine.
| | - Mohammad Qadi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, State of Palestine.
| |
Collapse
|
8
|
Lin CC, Wu JY, Huang PY, Sung HL, Tung YC, Lai CC, Wei YF, Fu PK. Comparing prolonged infusion to intermittent infusion strategies for beta-lactam antibiotics in patients with gram-negative bacterial infections: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2024; 22:557-567. [PMID: 38441052 DOI: 10.1080/14787210.2024.2324940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
INTRODUCTION Our objective is to determine whether prolonged infusion (PI) of beta-lactam antibiotics yields superior outcomes compared to intermittent infusion (II) in patients with Gram-Negative Bacterial (GNB) infections. METHODS We systematically searched papers from PubMed, the Cochrane Library, Embase, and Clinicaltrials.gov, targeting mortality as the primary outcome and looking at the clinical cure rate, hospital and intensive care unit (ICU) stay lengths, antibiotic treatment duration, and mechanical ventilation (MV) duration as secondary outcomes. RESULTS Our meta-analysis of 18 studies, including 5 randomized control trials and 13 observational studies, with a total of 3,035 patients-1,510 in the PI group and 1,525 in the II group, revealed significant findings. PI was associated with reduced mortality (RR, 0.67; 95% CI, 0.55-0.81; p = 0.001; I2 = 4.52%) and a shorter MV duration (SMD, -0.76; 95% CI, -1.37 to -0.16; p = 0.01; I2 = 87.81%) compared to II. However, no differences were found in clinical cure rates, antibiotic treatment duration, length of hospital stay, or length of ICU stay. CONCLUSIONS The PI approach for administering beta-lactam antibiotics in patients with suspected or confirmed GNB infections may be advantageous in reducing mortality rates and the duration of MV when compared to the II strategy.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pharmacy, Taichung Veteran General Hospital Puli Branch, Nantou, Taiwan
| | - Jheng-Yen Wu
- Department of Nutrition, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Yu Huang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hui-Lin Sung
- Department of Pharmacy, Taichung Veteran General Hospital Puli Branch, Nantou, Taiwan
| | - Yu-Chun Tung
- Department of Pharmacy, Taichung Veteran General Hospital Puli Branch, Nantou, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Feng Wei
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Pin-Kuei Fu
- Division of Clinical Research, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
9
|
Hagiga A, Dheansa B. Multi-resistant organisms in burn patients: an end or a new beginning. Burns 2024; 50:1045-1052. [PMID: 38472000 DOI: 10.1016/j.burns.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Infections are a major cause of morbidity and mortality in burn patients, and the rise of multidrug-resistant organisms (MDROs) has made it more challenging to manage and prevent infections. This review examines the available treatment options for MDROs in burn patients and anticipates the future challenges posed by their increasing prevalence. The review covers new antibiotics, such as Eravacycline and Plazomicin, as well as non-antibiotic therapies, such as bacteriophages and nanoparticles. Future research should focus on examining the long-term efficacy, cost-effectiveness, and in vivo efficacy of different treatment modalities. The potential of alternative therapies, such as probiotics and low-frequency magnetic fields, should also be explored. Accurate and rapid diagnostic and monitoring tools for detecting MDROs in burn patients should be developed. The emergence of MDROs in burn care is a challenge and a new beginning in infection innovation and novel treatments.
Collapse
Affiliation(s)
- Ahmed Hagiga
- Queen Victoria Hospital NHS Foundation Trust, East Grinstead, United Kingdom.
| | - Baljit Dheansa
- Queen Victoria Hospital NHS Foundation Trust, East Grinstead, United Kingdom
| |
Collapse
|
10
|
Tuytschaevers S, Aden L, Greene Z, Nixon C, Shaw W, Hatch D, Kumar G, Miranda RR, Hudson AO. Isolation, whole-genome sequencing, and annotation of two antibiotic-producing and antibiotic-resistant bacteria, Pantoea rodasii RIT 836 and Pseudomonas endophytica RIT 838, collected from the environment. PLoS One 2024; 19:e0293943. [PMID: 38412159 PMCID: PMC10898753 DOI: 10.1371/journal.pone.0293943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/22/2023] [Indexed: 02/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a global threat to human health since infections caused by antimicrobial-resistant bacteria are life-threatening conditions with minimal treatment options. Bacteria become resistant when they develop the ability to overcome the compounds that are meant to kill them, i.e., antibiotics. The increasing number of resistant pathogens worldwide is contrasted by the slow progress in the discovery and production of new antibiotics. About 700,000 global deaths per year are estimated as a result of drug-resistant infections, which could escalate to nearly 10 million by 2050 if we fail to address the AMR challenge. In this study, we collected and isolated bacteria from the environment to screen for antibiotic resistance. We identified several bacteria that showed resistance to multiple clinically relevant antibiotics when tested in antibiotic susceptibility disk assays. We also found that two strains, identified as Pantoea rodasii RIT 836 and Pseudomonas endophytica RIT 838 via whole genome sequencing and annotation, produce bactericidal compounds against both Gram-positive and Gram-negative bacteria in disc-diffusion inhibitory assays. We mined the two strains' whole-genome sequences to gain more information and insights into the antibiotic resistance and production by these bacteria. Subsequently, we aim to isolate, identify, and further characterize the novel antibiotic compounds detected in our assays and bioinformatics analysis.
Collapse
Affiliation(s)
- Serena Tuytschaevers
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Leila Aden
- Rochester Prep High School, Rochester, New York, United States of America
| | - Zacchaeus Greene
- Rochester Prep High School, Rochester, New York, United States of America
| | - Chanei Nixon
- Rochester Prep High School, Rochester, New York, United States of America
| | - Wade Shaw
- Rochester Prep High School, Rochester, New York, United States of America
| | - Dillan Hatch
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Girish Kumar
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Renata Rezende Miranda
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, United States of America
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| |
Collapse
|
11
|
Raduly FM, Raditoiu V, Raditoiu A, Grapin M, Constantin M, Răut I, Nicolae CA, Frone AN. Ag 0-Ginger Nanocomposites Integrated into Natural Hydrogelated Matrices Used as Antimicrobial Delivery Systems Deposited on Cellulose Fabrics. Gels 2024; 10:106. [PMID: 38391436 PMCID: PMC10887898 DOI: 10.3390/gels10020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
In the textile, medical, and food industries, many of the applications have targeted the use of textile fabrics with antimicrobial properties. Obtaining eco-friendly coatings is of wide interest, especially for applications related to wound dressing or to food packaging. In order to obtain coatings with antimicrobial properties through environmentally friendly methods, a series of experiments were carried out on the use of natural polymers loaded with silver nanoparticles. In this study, coatings with antimicrobial properties were obtained by depositing natural composites based on rice flour, carob flour, or alginate on cotton fabrics. These antimicrobial coatings were multicomponent systems, in which the host matrix was generated via hydration of natural polymers. The nanocomposite obtained from the phytosynthesis of silver particles in ginger extract was embedded in hydrogel matrices. The multicomponent gels obtained by embedding silver nanoparticles in natural polymer matrices were deposited on cotton fabric and were studied in relation to nanoparticles and the type of host matrix, and the antimicrobial activity was evaluated. Fabrics coated with such systems provide a hydrophilic surface with antimicrobial properties and can therefore be used in various areas where textiles provide antibacterial protection.
Collapse
Affiliation(s)
- Florentina Monica Raduly
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Valentin Raditoiu
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Alina Raditoiu
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Maria Grapin
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Mariana Constantin
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
- Faculty of Pharmacy, Titu Maiorescu University, Bd. Gh. Sincai, No.16, 040441 Bucharest, Romania
| | - Iuliana Răut
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Cristian Andi Nicolae
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Adriana Nicoleta Frone
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| |
Collapse
|
12
|
Voráčová M, Zore M, Yli-Kauhaluoma J, Kiuru P. Harvesting phosphorus-containing moieties for their antibacterial effects. Bioorg Med Chem 2023; 96:117512. [PMID: 37939493 DOI: 10.1016/j.bmc.2023.117512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Clinically manifested resistance of bacteria to antibiotics has emerged as a global threat to society and there is an urgent need for the development of novel classes of antibacterial agents. Recently, the use of phosphorus in antibacterial agents has been explored in quite an unprecedent manner. In this comprehensive review, we summarize the use of phosphorus-containing moieties (phosphonates, phosphonamidates, phosphonopeptides, phosphates, phosphoramidates, phosphinates, phosphine oxides, and phosphoniums) in compounds with antibacterial effect, including their use as β-lactamase inhibitors and antibacterial disinfectants. We show that phosphorus-containing moieties can serve as novel pharmacophores, bioisosteres, and prodrugs to modify pharmacodynamic and pharmacokinetic properties. We further discuss the mechanisms of action, biological activities, clinical use and highlight possible future prospects.
Collapse
Affiliation(s)
- Manuela Voráčová
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Matej Zore
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paula Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Marín L, Moya B, Peñalver MJ, Cabanillas B, Barranco R, García-Moguel I, Mielgo R, Fernández-Crespo J. Meropenem allergy testing performed at the bedside of hospitalized patients labelled with a penicillin allergy. Allergol Int 2023; 72:588-593. [PMID: 36894401 DOI: 10.1016/j.alit.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Meropenem is a widely prescribed beta-lactam for hospitalized patients. There are few data on meropenem allergy assessments in inpatients with a reported history of penicillin allergy who require a treatment with meropenem. This can lead to the use of less effective second-line antibiotics that may increase antibiotic resistances. We aimed to evaluate the clinical outcomes of a meropenem allergy assessment in admitted patients with a reported history of penicillin allergy that required meropenem for the treatment of an acute infection. METHODS A retrospective analysis was performed on 182 inpatients labelled with a penicillin-allergy who received meropenem after an allergy assessment. The allergy study was performed bedside if meropenem was required urgently. The study included skin prick tests (SPTs) followed by an intradermal skin test (IDT) to meropenem, and a meropenem drug challenge test (DCT). If a non-immediate reaction to a beta-lactam was suspected, it was initiated with patch tests. RESULTS The median age of the patients was 59.7 years (range 28-95) and 80 (44%) were women. A total of 196 sets of diagnostic workups were performed, with 189 (96.4%) of them being tolerated. Only two patients had a positive meropenem IV DCT, both presenting a non-severe cutaneous reaction that completely resolved after treatment. CONCLUSIONS This study evidenced that a bedside meropenem allergy assessment of hospitalized patients labelled with a 'penicillin allergy' who require a broad-spectrum antibiotic for empiric coverage is a safe and effective procedure, avoiding the use of second-line antimicrobial agents.
Collapse
Affiliation(s)
- Laura Marín
- Department of Allergy, Hospital Universitario, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Beatriz Moya
- Department of Allergy, Hospital Universitario, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| | - María José Peñalver
- Department of Allergy, Hospital Universitario, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Beatriz Cabanillas
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Ruth Barranco
- Department of Allergy, Hospital Universitario, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Ismael García-Moguel
- Department of Allergy, Hospital Universitario, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Ruth Mielgo
- Department of Allergy, Hospital Universitario, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jesús Fernández-Crespo
- Department of Allergy, Hospital Universitario, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
14
|
Song X, Qiao Y, Ma J, Zhang X, Liu J, Xin W, Xing S, Wang Y. Co-expression of four penaeidins in transgenic rice seeds: an alternative strategy for substitute antibiotic agricultural products. Transgenic Res 2023; 32:463-473. [PMID: 37535257 DOI: 10.1007/s11248-023-00361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
The co-expression of multiple antimicrobial peptides (AMPs) in genetically modified (GM) crops can give plants a broader antibacterial spectrum and lower the pathogen risk of drug resistance. Therefore, four penaeidins (shrimp-derived AMPs) were fused and encoded in an artificial gene (PEN1234), driven by the seed-specific promoter Pzein, with the aim of co-expression in seeds of transgenic rice. The resistant rice plants, acquired via Agrobacterium-mediated transformation and glufosinate screening, were identified by PCR and the modified disk-diffusion method, and eight GM lines with high AMP content in the seeds were obtained. Among them, the PenOs017 line had the largest penaeidin content, at approximately 251-300 μg/g in seeds and 15-47 μg/g in roots and leaves. The AMPs in the seeds kept their antibacterial properties even after the seed had been boiled in hot water and could significantly inhibit the growth of methicillin-resistant Staphylococcus aureus, and AMPs in the leaves could effectively inhibit Xanthomonas oryzae pv. Oryzae. The results indicate that PenOs017 seeds containing AMPs are an ideal raw-material candidate for antibiotic-free food and feed, and may require fewer petrochemical fungicides or bactericides for disease control during cultivation than conventional rice.
Collapse
Affiliation(s)
- Xinyuan Song
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yu Qiao
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130000, China
| | - Xue Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Wen Xin
- Beijing TransGen Biotech Co., Ltd., Beijing, 100192, China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
15
|
Rawangkan A, Yosboonruang A, Kiddee A, Siriphap A, Pook-In G, Praphasawat R, Saokaew S, Duangjai A. Restoring Ampicillin Sensitivity in Multidrug-Resistant Escherichia coli Following Treatment in Combination with Coffee Pulp Extracts. J Microbiol Biotechnol 2023; 33:1179-1188. [PMID: 37317587 PMCID: PMC10580893 DOI: 10.4014/jmb.2304.04051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Escherichia coli, particularly multidrug-resistant (MDR) strains, is a serious cause of healthcare-associated infections. Development of novel antimicrobial agents or restoration of drug efficiency is required to treat MDR bacteria, and the use of natural products to solve this problem is promising. We investigated the antimicrobial activity of dried green coffee (DGC) beans, coffee pulp (CP), and arabica leaf (AL) crude extracts against 28 isolated MDR E. coli strains and restoration of ampicillin (AMP) efficiency with a combination test. DGC, CP, and AL extracts were effective against all 28 strains, with a minimum inhibitory concentration (MIC) of 12.5-50 mg/ml and minimum bactericidal concentration of 25-100 mg/ml. The CP-AMP combination was more effective than CP or AMP alone, with a fractional inhibitory concentration index value of 0.01. In the combination, the MIC of CP was 0.2 mg/ml (compared to 25 mg/ml of CP alone) and that of AMP was 0.1 mg/ml (compared to 50 mg/ml of AMP alone), or a 125-fold and 500-fold reduction, respectively, against 13-drug resistant MDR E. coli strains. Time-kill kinetics showed that the bactericidal effect of the CP-AMP combination occurred within 3 h through disruption of membrane permeability and biofilm eradication, as verified by scanning electron microscopy. This is the first report indicating that CP-AMP combination therapy could be employed to treat MDR E. coli by repurposing AMP.
Collapse
Affiliation(s)
- Anchalee Rawangkan
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Atchariya Yosboonruang
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Anong Kiddee
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Achiraya Siriphap
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Grissana Pook-In
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Ratsada Praphasawat
- Department of Pathology, School of Medicine, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Centre of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Clinical Outcomes Research and Integration (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Acharaporn Duangjai
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
16
|
Zavaleta E, Ferrara F, Zovi A, Díaz-Madriz JP, Fallas-Mora A, Serrano-Arias B, Valentino F, Arguedas-Chacón S, Langella R, Trama U, Nava E. Antibiotic Consumption in Primary Care in Costa Rica and Italy: A Retrospective Cross-Country Analysis. Cureus 2023; 15:e41414. [PMID: 37546059 PMCID: PMC10403152 DOI: 10.7759/cureus.41414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The increasing emergence and spread of drug-resistant pathogens resulting from inappropriate antibiotic usage have become more evident in recent years, particularly with the rising incidence of methicillin-resistant Staphylococcus aureus (MRSA) infections. Since joining the Organization for Economic Cooperation and Development (OECD), Costa Rica can now compare its healthcare system with other countries, and similarities have been noted with Italy regarding health indicators. Both nations have universal healthcare systems, covering their entire populations, and hold similar positions in the Human Development Index (HDI). Consequently, the goal is to compare antibiotic prescribing and consumption patterns to collaboratively develop strategies against bacterial resistance. METHODS In order to compare antibiotic consumption between regions, a standardized contrast was utilized, specifically using the defined daily dose (DDD). An Orthogonal Contrast test was performed to test the means, followed by the application of the Student's t-test on these contrasts. This analysis aimed to assess the potential influence of regions on DDD values. Antibiotic consumption data were collected between January 2021 and December 2022 from the Local Health Authority of Naples 3 South (LHANS) in Italy and IMS Health, Q Quintiles, and VIA by way of (IQVIA) reports in Costa Rica. RESULTS LHANS shows a considerable disparity in gross expenditure compared to Italy's overall expenditure, while the private sector of Costa Rica exhibits even lower gross expenditure than Italy. Antibiotic consumption in Italy exceeds that of Costa Rica, with Costa Rica's consumption amounting to 47.70% of Italy's total consumption. Additionally, LHANS exhibited a 22.43% higher gross expenditure compared to the Campania region, emphasizing the variability in antibiotic usage within the same country The results indicated no statistically significant differences in antibiotic consumption between the regions, as none of the null hypotheses were rejected. CONCLUSIONS The study provides valuable insights into expenditure patterns and antibiotic consumption, highlighting the need for improved prescribing practices and awareness campaigns to address the issue of antibiotic resistance. The findings emphasize the importance of implementing international guidelines to combat the growing threat of antibiotic resistance and ensure the effective management of infectious diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ugo Trama
- Pharmacy, Ministry of Health, Rome, ITA
| | | |
Collapse
|
17
|
Sehim AE, Amin BH, Yosri M, Salama HM, Alkhalifah DH, Alwaili MA, Abd Elghaffar RY. GC-MS Analysis, Antibacterial, and Anticancer Activities of Hibiscus sabdariffa L. Methanolic Extract: In Vitro and In Silico Studies. Microorganisms 2023; 11:1601. [PMID: 37375103 DOI: 10.3390/microorganisms11061601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of bacteria that are resistant to several antibiotics has represented a serious hazard to human health globally. Bioactive metabolites from medicinal plants have a wide spectrum of therapeutic possibilities against resistant bacteria. Therefore, this study was performed to investigate the antibacterial efficacy of various extracts of three medicinal plants as Salvia officinalis L., Ziziphus spina-christi L., and Hibiscus sabdariffa L. against pathogenic Gram-negative Enterobacter cloacae (ATCC13047), Pseudomonas aeruginosa (RCMB008001), Escherichia coli (RCMB004001), and Gram-positive Staphylococcus aureus (ATCC 25923), bacteria using the agar-well diffusion method. Results revealed that, out of the three examined plant extracts, the methanol extract of H. sabdariffa L. was the most effective against all tested bacteria. The highest growth inhibition (39.6 ± 0.20 mm) was recorded against E. coli. Additionally, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the methanol extract of H. sabdariffa were detected in the case of all tested bacteria. Moreover, an antibiotic susceptibility test revealed that all tested bacteria showed multidrug resistance (MDR). While 50% of tested bacteria were sensitive and 50% were intermediately sensitive to piperacillin/tazobactam (TZP) based on the inhibition zone but still less than the extract. Synergistic assay demonstrated the promising role of using a combination of H. sabdariffa L. and (TZP) against tested bacteria. A surface investigation using a scanning electron microscope of the E. coli treated with TZP, extract, or a combination of the two revealed extremely considerable bacterial cell death. In addition, H. sabdariffa L. has a promising anticancer role versus Caco-2 cells with IC50 of 17.51 ± 0.07 µg/mL and minimal cytotoxicity upon testing versus Vero cells with CC50 of 165.24 ± 0.89 µg/mL. Flow cytometric analysis confirmed that H. sabdariffa extract significantly increased the apoptotic rate of Caco-2-treated cells compared to the untreated group. Furthermore, GC-MS analysis confirmed the existence of various bioactive components in the methanol hibiscus extract. Utilizing molecular docking with the MOE-Dock tool, binding interactions between n-Hexadecanoic acid, hexadecanoic acid-methyl ester, and oleic acid, 3-hydroxypropyl ester were evaluated against the target crystal structures of E. coli (MenB) (PDB ID:3T88) and the structure of cyclophilin of a colon cancer cell line (PDB ID: 2HQ6). The observed results provide insight into how molecular modeling methods might inhibit the tested substances, which may have applications in the treatment of E. coli and colon cancer. Thus, H. sabdariffa methanol extract is a promising candidate to be further investigated for developing alternative natural therapies for infection treatment.
Collapse
Affiliation(s)
- Amira E Sehim
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Basma H Amin
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Hanaa M Salama
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42521, Egypt
| | - Dalal Hussien Alkhalifah
- Department of Biology, Collage of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Maha Abdullah Alwaili
- Department of Biology, Collage of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rasha Y Abd Elghaffar
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
18
|
Csiki-Fejer E, Traczewski M, Procop GW, Davis TE, Hackel M, Dwivedi HP, Pincus DH. Multicenter Clinical Performance Evaluation of Omadacycline Susceptibility Testing of Enterobacterales on VITEK 2 Systems. J Clin Microbiol 2023:e0017423. [PMID: 37162363 DOI: 10.1128/jcm.00174-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
We present the first performance evaluation results for omadacycline on the VITEK 2 and VITEK 2 Compact Systems (bioMérieux, Inc.). The trial was conducted at four external sites and one internal site. All sites were in the United States, geographically dispersed as follows: Indianapolis, IN; Schaumburg, IL; Wilsonville, OR; Cleveland, OH; and Hazelwood, MO. In this multisite study, omadacycline was tested against 858 Enterobacterales on the VITEK 2 antimicrobial susceptibility test (AST) Gram-negative (GN) card, and the results were compared to the Clinical and Laboratory Standards Institute broth microdilution (BMD) reference method. The results were analyzed and are presented as essential agreement (EA), category agreement (CA), minor error (mE) rates, major error (ME) rates, and very major error (VME) rates following the US Food and Drug Administration (FDA) and International Standards Organization (ISO) performance criteria requirements. Omadacycline has susceptibility testing interpretive criteria (breakpoints) established by the FDA only; nevertheless, the analysis was also performed using the ISO acceptance criteria to satisfy the registration needs of countries outside the United States. The analysis following FDA criteria (including only Klebsiella pneumoniae and Enterobacter cloacae) showed the following performance: EA = 97.9% (410/419), CA = 94.3% (395/419), VME = 2% (1/51), with no ME present. The performance following ISO criteria (including all Enterobacterales tested) after error resolutions was EA = 98.1% (842/858) and CA = 96.9% (831/858). No ME or VME were observed. The VITEK 2 test met the ISO and FDA criteria of ≥ 95% reproducibility, and ≥ 95% quality control (QC) results within acceptable ranges for QC organisms. In June 2022, the omadacycline VITEK 2 test received FDA 510(k) clearance (K213931) FDA as a diagnostic device to be used in the treatment of acute bacterial skin and skin-structure infections caused by E. cloacae and K. pneumoniae, and for treatment of community-acquired bacterial pneumonia caused by K. pneumoniae. The new VITEK 2 AST-GN omadacycline test provides an alternative to the BMD reference method testing and increases the range of automated diagnostic tools available for determining omadacycline MICs in Enterobacterales.
Collapse
Affiliation(s)
| | | | | | - Thomas E Davis
- Indiana University School of Medicine Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
19
|
Routray A, Mane A. Knowledge, Attitude, and Practice (KAP) Survey on the Management of Multidrug-Resistant Gram-Negative Infections With Innovative Antibiotics: Focus on Ceftazidime-Avibactam. Cureus 2023; 15:e39245. [PMID: 37378116 PMCID: PMC10292104 DOI: 10.7759/cureus.39245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major public health dilemma and a chief health concern globally. The rising incidence of resistance against carbapenems, which are considered most effective against gram-negative bacteria, has added to the concern and has limited the number of available treatment options. Newer antibiotic options may be required to tackle the mounting concern of antibiotic resistance. However, only a few antimicrobials are in the pipeline for managing infections instigated by multidrug-resistant (MDR) gram-negative bacteria. This justifies the prudent application of already available antibiotics. Among newer antibiotics available to healthcare professionals (HCPs), ceftazidime-avibactam (CAZ-AVI) has shown good efficacy in the management of MDR gram-negative infections. METHOD A cross-sectional survey on the knowledge, attitude, and practices (KAP) among HCPs was carried out using a questionnaire comprising 21 parameters related to AMR patterns on the need for innovative antibiotics to manage MDR gram-negative infections and the usage of CAZ-AVI by HCPs while managing such infections. The KAP scores were calculated to rank respondents' KAP levels. RESULT Out of the 204 study respondents, the majority (~80%) (n=160) believed that renewed efforts should be made to seek antimicrobial agents that will add to the armamentarium of treatment options for MDR gram-negative infections. CAZ-AVI is an important treatment alternative for managing MDR gram-negative infections (n=90, 45%). Further, it can be the first choice of definitive therapy for oxacillinases (OXA)-48-producing carbapenem-resistant Enterobacterales (n=84, 42%). HCPs also believed that the use of CAZ-AVI in clinical practice will require high levels of antimicrobial stewardship (n=100, 49%). CONCLUSION Novel and innovative antibiotics are the need of the hour in the management of MDR gram-negative infections. CAZ-AVI has established its effectiveness in treating these infections; however, the molecule must be utilized prudently while keeping stewardship principles in mind.
Collapse
|
20
|
Behling AH, Wilson BC, Ho D, Virta M, O'Sullivan JM, Vatanen T. Addressing antibiotic resistance: computational answers to a biological problem? Curr Opin Microbiol 2023; 74:102305. [PMID: 37031568 DOI: 10.1016/j.mib.2023.102305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023]
Abstract
The increasing prevalence of infections caused by antibiotic-resistant bacteria is a global healthcare crisis. Understanding the spread of resistance is predicated on the surveillance of antibiotic resistance genes within an environment. Bioinformatics and artificial intelligence (AI) methods applied to metagenomic sequencing data offer the capacity to detect known and infer yet-unknown resistance mechanisms, and predict future outbreaks of antibiotic-resistant infections. Machine learning methods, in particular, could revive the waning antibiotic discovery pipeline by helping to predict the molecular structure and function of antibiotic resistance compounds, and optimising their interactions with target proteins. Consequently, AI has the capacity to play a central role in guiding antibiotic stewardship and future clinical decision-making around antibiotic resistance.
Collapse
Affiliation(s)
- Anna H Behling
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Brooke C Wilson
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Daniel Ho
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Justin M O'Sullivan
- Liggins Institute, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Australian Parkinsons Mission, Garvan Institute of Medical Research, Sydney, New South Wales, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton SO16 6YD, United Kingdom; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore.
| | - Tommi Vatanen
- Liggins Institute, University of Auckland, Auckland, New Zealand; Department of Microbiology, University of Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
21
|
Mougakou E, Mastrogianni E, Kyziroglou M, Tziomalos K. The Role of Novel Antibiotics in the Management of Diabetic Foot Infection. Diabetes Ther 2023; 14:251-263. [PMID: 36565422 PMCID: PMC9944220 DOI: 10.1007/s13300-022-01357-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetic foot infection is a frequent and potentially life-threatening complication of diabetes mellitus. Antibiotic treatment is the cornerstone of management of diabetic foot infection but the rising prevalence of antibiotic resistance has resulted in increasing rates of treatment failure. In this context, the development of several novel antibiotics might represent a useful tool in severe diabetic foot infections caused by multidrug-resistant bacteria. In the present review, we summarize the safety and efficacy of novel antibiotics in patients with diabetic foot infection. Relevant data are limited, and randomized controlled studies that evaluated the role of these agents in this field are lacking. Until more robust data are available, cefiderocol and dalbavancin, which have been studied more extensively in patients with bone infections, might be attractive options in carefully selected patients with severe diabetic foot infection.
Collapse
Affiliation(s)
- Efterpi Mougakou
- Second Department of Internal Medicine, Sismanogleio Hospital, Athens, Greece
| | - Elpida Mastrogianni
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Maria Kyziroglou
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 1 Stilponos Kyriakidi Street, 54636, Thessaloniki, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 1 Stilponos Kyriakidi Street, 54636, Thessaloniki, Greece.
| |
Collapse
|
22
|
Juhas M. Into a Brighter Future. BRIEF LESSONS IN MICROBIOLOGY 2023:143-149. [DOI: 10.1007/978-3-031-29544-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Choudhary MI, Römling U, Nadeem F, Bilal HM, Zafar M, Jahan H, ur-Rahman A. Innovative Strategies to Overcome Antimicrobial Resistance and Tolerance. Microorganisms 2022; 11:microorganisms11010016. [PMID: 36677308 PMCID: PMC9863313 DOI: 10.3390/microorganisms11010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance and tolerance are natural phenomena that arose due to evolutionary adaptation of microorganisms against various xenobiotic agents. These adaptation mechanisms make the current treatment options challenging as it is increasingly difficult to treat a broad range of infections, associated biofilm formation, intracellular and host adapted microbes, as well as persister cells and microbes in protected niches. Therefore, novel strategies are needed to identify the most promising drug targets to overcome the existing hurdles in the treatment of infectious diseases. Furthermore, discovery of novel drug candidates is also much needed, as few novel antimicrobial drugs have been introduced in the last two decades. In this review, we focus on the strategies that may help in the development of innovative small molecules which can interfere with microbial resistance mechanisms. We also highlight the recent advances in optimization of growth media which mimic host conditions and genome scale molecular analyses of microbial response against antimicrobial agents. Furthermore, we discuss the identification of antibiofilm molecules and their mechanisms of action in the light of the distinct physiology and metabolism of biofilm cells. This review thus provides the most recent advances in host mimicking growth media for effective drug discovery and development of antimicrobial and antibiofilm agents.
Collapse
Affiliation(s)
- M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Faiza Nadeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hafiz Muhammad Bilal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Munirah Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Atta ur-Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
24
|
Koh Jing Jie A, Hussein M, Rao GG, Li J, Velkov T. Drug Repurposing Approaches towards Defeating Multidrug-Resistant Gram-Negative Pathogens: Novel Polymyxin/Non-Antibiotic Combinations. Pathogens 2022; 11:pathogens11121420. [PMID: 36558754 PMCID: PMC9781023 DOI: 10.3390/pathogens11121420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Multidrug-resistant (MDR) Gram-negative pathogens remain an unmet public health threat. In recent times, increased rates of resistance have been reported not only to commonly used antibiotics, but also to the last-resort antibiotics, such as polymyxins. More worryingly, despite the current trends in resistance, there is a lack of new antibiotics in the drug-discovery pipeline. Hence, it is imperative that new strategies are developed to preserve the clinical efficacy of the current antibiotics, particularly the last-line agents. Combining conventional antibiotics such as polymyxins with non-antibiotics (or adjuvants), has emerged as a novel and effective strategy against otherwise untreatable MDR pathogens. This review explores the available literature detailing the latest polymyxin/non-antibiotic combinations, their mechanisms of action, and potential avenues to advance their clinical application.
Collapse
Affiliation(s)
- Augustine Koh Jing Jie
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Maytham Hussein
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Tony Velkov
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
25
|
Zhang Y, Lai L, Liu Y, Chen B, Yao J, Zheng P, Pan Q, Zhu W. Biomineralized Cascade Enzyme-Encapsulated ZIF-8 Nanoparticles Combined with Antisense Oligonucleotides for Drug-Resistant Bacteria Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6453-6464. [PMID: 35094518 DOI: 10.1021/acsami.1c23808] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The unrestrained use of antibiotics accelerates the development of drug-resistant bacteria and leads to an increasing threat to human health. Therefore, there is an urgent need to explore novel and effective strategies for the treatment of bacterial infections. Herein, zeolite imidazole framework-8 (ZIF-8) material was utilized to construct biomineralized nanomaterial (GOx&HRP@ZIF-8/ASO) by encapsulating biological cascade enzymes and combining with antisense oligonucleotides (ASOs), which achieved effective and synergistic antidrug-resistant bacteria therapy. Various in vitro assays confirmed that GOx&HRP@ZIF-8/ASO exhibited excellent antibacterial properties against Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA) during catalysis of glucose (Glu), especially the minimum inhibitory concentration (MIC) against MRSA was only 16 μg/mL. Compared with simple ZIF-8 (32.85%) and ftsZ ASO (58.65%), GOx&HRP@ZIF-8/ASO+Glu exhibited superb biofilm destruction ability, and the bacteria removal efficiency of the MRSA biofilm could be as high as 88.2%, indicating that the reactive oxygen species (ROS) produced by the cascade enzyme reaction imparted the main synergistic antibacterial capability, and simultaneously, ftsZ ASO significantly enhanced the antibacterial effect by inhibiting the expression of the ftsZ gene. In vivo anti-infection treatment experiments revealed that GOx&HRP@ZIF-8/ASO exhibited the best wound repairing performance and excellent biocompatibility in the presence of Glu. These findings suggested that GOx&HRP@ZIF-8/ASO has favorably realized high-efficiency treatment of MRSA infection and filled the gap in the antibacterial application of biological enzymes.
Collapse
Affiliation(s)
- Yan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Luogen Lai
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Yijun Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Beini Chen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Jing Yao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| |
Collapse
|
26
|
Lee D, Lee E, Jang S, Kim K, Cho E, Mun SJ, Son W, Jeon HI, Kim HK, Jeong YJ, Lee Y, Oh JE, Yoo HH, Lee Y, Min SJ, Yang CS. Discovery of Mycobacterium tuberculosis Rv3364c-Derived Small Molecules as Potential Therapeutic Agents to Target SNX9 for Sepsis. J Med Chem 2022; 65:386-408. [PMID: 34982557 DOI: 10.1021/acs.jmedchem.1c01551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The serine protease inhibitor Rv3364c of Mycobacterium tuberculosis (MTB) is highly expressed in cells during MTB exposure. In this study, we showed that the 12WLVSKF17 motif of Rv3364c interacts with the BAR domain of SNX9 and inhibits endosome trafficking to interact with p47phox, thereby suppressing TLR4 inflammatory signaling in macrophages. Derived from the structure of this Rv3364c peptide motif, 2,4-diamino-6-(4-tert-butylphenyl)-1,3,5-trazine, DATPT as a 12WLVSKF17 peptide-mimetic small molecule has been identified. DATPT can block the SNX9-p47phox interaction in the endosome and suppress reactive oxygen species and inflammatory cytokine production; it demonstrated significant therapeutic effects in a mouse model of cecal ligation and puncture-induced sepsis. DATPT has considerably improved potency, with an IC50 500-fold (in vitro) or 2000-fold (in vivo) lower than that of the 12WLVSKF17 peptide. Furthermore, DATPT shows potent antibacterial activities by reduction in ATP production and leakage of intracellular ATP out of bacteria. These results provide evidence for peptide-derived small molecule DATPT with anti-inflammatory and antibacterial functions for the treatment of sepsis.
Collapse
Affiliation(s)
- Daeun Lee
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea
| | - Eunbi Lee
- Department of Applied Chemistry, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Sein Jang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Kyungmin Kim
- Department of Applied Chemistry, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Euni Cho
- Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea.,Department of Bionano Technology, Hanyang University, Seoul 04673, S. Korea
| | - Seok-Jun Mun
- Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea.,Department of Bionano Technology, Hanyang University, Seoul 04673, S. Korea
| | - Wooic Son
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Hye-In Jeon
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Hyo Keun Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Young Jin Jeong
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Yuno Lee
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon 34114, S. Korea
| | - Ji Eun Oh
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, S. Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, S. Korea
| | - Youngbok Lee
- Department of Applied Chemistry, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea.,Department of Chemical & Molecular Engineering, Hanyang University, Ansan 15588, S. Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea.,Department of Chemical & Molecular Engineering, Hanyang University, Ansan 15588, S. Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| |
Collapse
|
27
|
Bassetti M, Falletta A, Cenderello G, Giacobbe DR, Vena A. Safety evaluation of current therapies for high-risk severely ill patients with carbapenem-resistant infections. Expert Opin Drug Saf 2021; 21:487-498. [PMID: 34632905 DOI: 10.1080/14740338.2022.1990262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Infections due to carbapenem-resistant Gram-negative bacteria (CR-GNB) are increasingly frequent events, which are associated with a high mortality rate. Traditionally, combination regimens including high doses of "old antibiotics" such as polymyxins, tigecycline, and aminoglycosides have been used to treat these infections, but they were often associated with low efficacy and high excess of side effects and toxicity, especially nephrotoxicity. Along with the development of new compounds, the last decade has seen substantial improvements in the management of CR infections. AREAS COVERED In this review, we aimed to discuss the safety characteristics and tolerability of different new options for treatment of CR infections. EXPERT OPINION The availability of new drugs showing a potent in vitro activity against CR-GNB represents a unique opportunity to face the threat of resistance, while potentially reducing toxicity. A thorough understanding of the safety profile from clinical trials may guide the use of these new drugs in critically ill patients at high risk for the development of adverse events. Future data coming from real-life studies for drugs targeting CR infections are crucial to confirm the safety profile observed in pivotal trials.
Collapse
Affiliation(s)
- Matteo Bassetti
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Antonio Falletta
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | - Daniele R Giacobbe
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Antonio Vena
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|