1
|
Kupczyk D, Bilski R, Szeleszczuk Ł, Mądra-Gackowska K, Studzińska R. The Role of Diet in Modulating Inflammation and Oxidative Stress in Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis. Nutrients 2025; 17:1603. [PMID: 40362911 PMCID: PMC12073256 DOI: 10.3390/nu17091603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Rheumatic diseases such as rheumatoid arthritis (RA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA) are chronic autoimmune disorders characterized by persistent inflammation and oxidative stress, leading to joint damage and reduced quality of life. In recent years, increasing attention has been given to diet as a modifiable environmental factor that can complement pharmacological therapy. This review summarizes current evidence on how key dietary components-such as omega-3 fatty acids, fiber, polyphenols, and antioxidant vitamins-affect inflammatory pathways and oxidative balance. Special emphasis is placed on the Mediterranean diet, low-starch diets, and hypocaloric regimens, which have shown potential in improving disease activity. The gut microbiota emerges as a critical mediator between diet and immune function, with dietary interventions capable of restoring eubiosis and strengthening the intestinal barrier. Additionally, this paper discusses challenges in the clinical implementation of diet therapy, the need for personalized nutritional strategies, and the importance of integrating diet into holistic patient care. Collectively, findings suggest that dietary interventions may reduce disease activity, mitigate systemic inflammation, and enhance patients' overall well-being.
Collapse
Affiliation(s)
- Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-093 Warsaw, Poland;
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowskiej Curie Str., 85-094 Bydgoszcz, Poland;
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Chero‐Sandoval L, Higuera‐Gómez A, Martínez‐Urbistondo M, Castejón R, Mellor‐Pita S, Moreno‐Torres V, de Luis D, Cuevas‐Sierra A, Martínez JA. Comparative assessment of phenotypic markers in patients with chronic inflammation: Differences on Bifidobacterium concerning liver status. Eur J Clin Invest 2025; 55:e14339. [PMID: 39468772 PMCID: PMC11744921 DOI: 10.1111/eci.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The relationship between systemic lupus erythematosus (SLE) and low-grade metabolic inflammation (MI) with the microbiota is crucial for understanding the pathogenesis of these diseases and developing effective therapeutic interventions. In this context, it has been observed that the gut microbiota plays a key role in the immune regulation and inflammation contributing to the exacerbation through inflammatory mediators. This research aimed to describe similarities/differences in anthropometric, biochemical, inflammatory, and hepatic markers as well as to examine the putative role of gut microbiota concerning two inflammatory conditions: SLE and MI. METHODS Data were obtained from a cohort comprising adults with SLE and MI. Faecal samples were determined by 16S technique. Statistical analyses compared anthropometric and clinical variables, and LEfSe and MetagenomeSeq were used for metagenomic data. An interaction analysis was fitted to investigate associations of microbiota with fatty liver index (FLI) depending on the inflammatory condition. RESULTS Participants with low-grade MI showed worse values in anthropometry and biochemicals compared with patients with SLE. The liver profile of patients with MI was unhealthier, while no relevant differences were found in most of the inflammatory markers between groups. LEfSe analysis revealed an overrepresentation of Bifidobacteriaceae family in SLE group. An interactive association between gut Bifidobacterium abundance and type of disease was identified for FLI values, suggesting an effect modification of the gut microbiota concerning liver markers depending on the inflammatory condition. CONCLUSION This study found phenotypical and microbial similarities and disparities between these two inflammatory conditions, evidenced in clinical and hepatic markers, and showed the interactive interplay between gut Bifidobacterium and liver health (measured by FLI) that occur in a different manner depending on the type of inflammatory disease. These results underscore the importance of personalized approaches and individual microbiota in the screening of different inflammatory situations, considering unique hepatic and microbiota profiles.
Collapse
Affiliation(s)
- Lourdes Chero‐Sandoval
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies)Campus of International Excellence (CEI) UAM+CSICMadridSpain
- Department of Endocrinology and Nutrition, University Clinical HospitalUniversity of ValladolidValladolidSpain
| | - Andrea Higuera‐Gómez
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies)Campus of International Excellence (CEI) UAM+CSICMadridSpain
| | | | - Raquel Castejón
- Internal Medicine ServicePuerta de Hierro Majadahonda University HospitalMadridSpain
| | - Susana Mellor‐Pita
- Internal Medicine ServicePuerta de Hierro Majadahonda University HospitalMadridSpain
| | - Víctor Moreno‐Torres
- Internal Medicine ServicePuerta de Hierro Majadahonda University HospitalMadridSpain
- Health Sciences School and Medical CentreInternational University of the Rioja (UNIR)MadridSpain
| | - Daniel de Luis
- Department of Endocrinology and Nutrition, University Clinical HospitalUniversity of ValladolidValladolidSpain
- Centre of Endocrinology and NutritionUniversity of ValladolidValladolidSpain
| | - Amanda Cuevas‐Sierra
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies)Campus of International Excellence (CEI) UAM+CSICMadridSpain
- Health Sciences School and Medical CentreInternational University of the Rioja (UNIR)MadridSpain
| | - J. Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies)Campus of International Excellence (CEI) UAM+CSICMadridSpain
- Centre of Endocrinology and NutritionUniversity of ValladolidValladolidSpain
- CIBERobn Physiopathology of Obesity and NutritionInstitute of Health Carlos III (ISCIII)MadridSpain
| |
Collapse
|
3
|
Chasov V, Gilyazova E, Ganeeva I, Zmievskaya E, Davletshin D, Valiullina A, Bulatov E. Gut Microbiota Modulation: A Novel Strategy for Rheumatoid Arthritis Therapy. Biomolecules 2024; 14:1653. [PMID: 39766360 PMCID: PMC11674688 DOI: 10.3390/biom14121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to joint inflammation, progressive tissue damage and significant disability, severely impacting patients' quality of life. While the exact mechanisms underlying RA remain elusive, growing evidence suggests a strong link between intestinal microbiota dysbiosis and the disease's development and progression. Differences in microbial composition between healthy individuals and RA patients point to the role of gut microbiota in modulating immune responses and promoting inflammation. Therapies targeting microbiota restoration have demonstrated promise in improving treatment efficacy, enhancing patient outcomes and slowing disease progression. However, the complex interplay between gut microbiota and autoimmune pathways in RA requires further investigation to establish causative relationships and mechanisms. Here, we review the current understanding of the gut microbiota's role in RA pathogenesis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Vitaly Chasov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Elvina Gilyazova
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Irina Ganeeva
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Ekaterina Zmievskaya
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Damir Davletshin
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Aygul Valiullina
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Emil Bulatov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
4
|
Huang H, Liu C, Sun X, Wei R, Liu L, Chen H, Abdugheni R, Wang C, Wang X, Jiang H, Niu H, Feng L, He J, Jiang Y, Zhao Y, Wang Y, Shu Q, Bi M, Zhang L, Liu B, Liu S. The rheumatoid arthritis gut microbial biobank reveals core microbial species that associate and effect on host inflammation and autoimmune responses. IMETA 2024; 3:e242. [PMID: 39429876 PMCID: PMC11487554 DOI: 10.1002/imt2.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Gut microbiota dysbiosis has been implicated in rheumatoid arthritis (RA) and influences disease progression. Although molecular and culture-independent studies revealed RA patients harbored a core microbiome and had characteristic bacterial species, the lack of cultured bacterial strains had limited investigations on their functions. This study aimed to establish an RA-originated gut microbial biobank (RAGMB) that covers and further to correlates and validates core microbial species on clinically used and diagnostic inflammation and immune indices. We obtained 3200 bacterial isolates from fecal samples of 20 RA patients with seven improved and 11 traditional bacterial cultivation methods. These isolates were phylogenetically identified and selected for RAGMB. The RAGMB harbored 601 bacterial strains that represented 280 species (including 43 novel species) of seven bacterial phyla. The RAGMB covered 93.2% at species level of medium- and high-abundant (relative abundances ≥0.2%) RA gut microbes, and included four rare species of the phylum Synergistota. The RA core gut microbiome was defined and composed of 20 bacterial species. Among these, Mediterraneibacter tenuis and Eubacterium rectale were two species that statistically and significantly correlated with clinically used diagnostic indices such as erythrocyte sedimentation rate (ESR) and IL-10. Thus, M. tenuis and E. rectale were selected for experimental validation using DSS-treated and not DSS-treated mice model. Results demonstrated both M. tenuis and E. rectale exacerbated host inflammatory responses, including shortened colon length and increased spleen weight, decreased IL-10 and increased IL-17A levels in plasma. Overall, we established the RAGMB, defined the RA core microbiome, correlated and demonstrated core microbial species effected on host inflammatory and immune responses. This work provides diverse gut microbial resources for future studies on RA etiology and potential new targets for new biomedical practices.
Collapse
Affiliation(s)
- Hao‐Jie Huang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Chang Liu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Xin‐Wei Sun
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Rui‐Qi Wei
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Ling‐Wei Liu
- Department of RheumatologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Hao‐Yu Chen
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid LandsXinjiang Institute of Ecology and Geography, Chinese Academy of SciencesÜrűmqiChina
| | - Chang‐Yu Wang
- School of Life Sciences, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xiao‐Meng Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - He Jiang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Han‐Yu Niu
- College of Veterinary MedicineShanxi Agricultural UniversityTaiguChina
| | - Li‐Juan Feng
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Jia‐Hui He
- College of Veterinary MedicineShanxi Agricultural UniversityTaiguChina
| | - Yu Jiang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Yan Zhao
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yu‐Lin Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Qiang Shu
- Department of RheumatologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Ming‐Xia Bi
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Lei Zhang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
- Microbiome‐XSchool of Public Health, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Bin Liu
- Department of RheumatologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Shuang‐Jiang Liu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
- State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Yan J, Li B, Luo C. Gut microbiota's role in glioblastoma risk, with a focus on the mediating role of metabolites. Front Neurol 2024; 15:1386885. [PMID: 39022732 PMCID: PMC11253649 DOI: 10.3389/fneur.2024.1386885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
This study employed Mendelian randomization (MR) analysis to systematically investigate the potential connections between gut microbiota and the risk of glioblastoma (GBM). We identified 12 microbial groups closely associated with the incidence risk of GBM. Subsequently, MR analysis was conducted on 1,091 blood metabolites and 309 metabolite ratios, revealing 19 metabolites that exert an impact on the occurrence of GBM. Hypothesizing that gut microbiota may influence the risk of glioblastoma multiforme by modulating these metabolites, we performed MR analyses, considering each microbial group as exposure and each metabolite as an outcome. Through these analyses, we constructed a regulatory network encompassing gut microbiota, metabolites, and GBM, providing a novel perspective for a deeper understanding of the role of the gut-brain axis in the pathogenesis of GBM. This research offers crucial insights into how gut microbiota may affect the risk of GBM by regulating specific metabolites. The identified regulatory network of the gut-brain axis may play a significant role in the formation and development of GBM, providing valuable information for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Junqing Yan
- Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Bo Li
- Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Chun Luo
- Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Slouma M, Kharrat L, Tezegdenti A, Dhahri R, Ghazouani E, Gharsallah I. Pro-inflammatory cytokines in spondyloarthritis: a case-control study. Expert Rev Clin Immunol 2024; 20:655-663. [PMID: 38205504 DOI: 10.1080/1744666x.2024.2304080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
OBJECTIVES We aimed to determine the discriminative values of pro-inflammatory cytokines to distinguish spondyloarthritis patients from healthy subjects and to assess the association between these cytokines and spondyloarthritis characteristics. METHODS We conducted a case-control study, including 144 subjects matched for age and sex: 72 spondyloarthritis patients(G1) and 72 controls (G2). The disease activity was assessed using ASDAS-CRP and BASDAI. Structural damage was assessed using BASRI. The levels of interleukin (IL) IL-1, IL-6, IL-8, IL-17, IL-23, and tumor necrosis factor α(TNFα) were measured. RESULTS Each group included 57 men. The mean age was 44.84 ± 13.42 years. Except for IL-8, all cytokine levels were significantly higher in patients compared to controls (IL-1: p = 0.05, IL-6: p = 0.021, TNFα: p = 0.039, IL-17 and IL-23: p < 0.001). Cutoff values of IL-17 and IL-23 distinguishing patients in G1 from those in G2 were 17.6 and 7.96 pg/mL, respectively. TNFα level correlated to BASDAI (p = 0.029) and BASRI (p = 0.002). Multivariate analysis showed that structural damage was associated with the male gender (p = 0.017), longer disease duration (p = 0.038), and high disease activity (p = 0.044). Disease activity was associated with longer disease duration (p = 0.012) and increased IL-6 levels (p = 0.05). CONCLUSION Our study showed that IL-17 was the ablest to distinguish between spondyloarthritis patients and controls, suggesting that IL-17 may be helpful for the diagnosis of spondyloarthritis.
Collapse
Affiliation(s)
- Maroua Slouma
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
- Faculté des sciences de Tunis, Mycology, pathologies, and biomarkers laboratory, Tunis, Tunisia
| | - Lobna Kharrat
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Aymen Tezegdenti
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
- Department of Immunology, Military Hospital, Tunis, Tunisia
| | - Rim Dhahri
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Ezzeddine Ghazouani
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
- Department of Immunology, Military Hospital, Tunis, Tunisia
| | - Imen Gharsallah
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
- Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|