1
|
Indelicato S, Di Stefano V, Avellone G, Piazzese D, Vazzana M, Mauro M, Arizza V, Bongiorno D. HPLC/HRMS and GC/MS for Triacylglycerols Characterization of Tuna Fish Oils Obtained from Green Extraction. Foods 2023; 12:foods12061193. [PMID: 36981119 PMCID: PMC10048091 DOI: 10.3390/foods12061193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Fish oil is one of the most common lipidic substances that is consumed as a dietary supplement. The high omega-3 fatty acid content in fish oil is responsible for its numerous health benefits. Fish species such as mackerel, herring, tuna, and salmon are particularly rich in these lipids, which contain two essential omega-3 fatty acids, known as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Objectives: Due to the scarcity of information in the literature, this study aimed to conduct a qualitative and quantitative characterization of triglycerides (TAGs) in crude tuna fish oil using HPLC/HRMS. Fatty acid (FA) determination was also performed using GC/MS. The tuna fish oils analyzed were produced using a green, low-temperature process from the remnants of fish production, avoiding the use of any extraction solvents. Results: The analyses led to the tentative identification and semi-quantitation of 81 TAGs. In silico saponification and comparison with fatty acid methyl ester results helped to confirm the identified TAGs and their quantities. The study found that the produced oil is rich in EPA, DHA, and erucic acid, while the negligible isomerization of fatty acids to trans-derivatives was observed.
Collapse
Affiliation(s)
- Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppe Avellone
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Daniela Piazzese
- Department of Earth and Marine Sciences (DISTEM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
- Correspondence: ; Tel.: +39-09123891900
| |
Collapse
|
2
|
Progress in the genetic engineering of cereals to produce essential polyunsaturated fatty acids. J Biotechnol 2018; 284:115-122. [DOI: 10.1016/j.jbiotec.2018.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023]
|
3
|
Valencak TG, Gamsjäger L, Ohrnberger S, Culbert NJ, Ruf T. Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking. BMC Res Notes 2015; 8:273. [PMID: 26116375 PMCID: PMC4483215 DOI: 10.1186/s13104-015-1254-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/19/2015] [Indexed: 11/25/2022] Open
Abstract
Background Intensive farming of livestock along with recent food scandals and consumer deception have increased awareness about risks for human nutrition. In parallel, the demand for meat obtained under more natural conditions from animals that can freely forage has largely increased. Interestingly, the consumption of game meat has not become more common despite its excellent quality and content of polyunsaturated fatty acids (PUFAs). Context and purpose We addressed the question if game meat fatty acid composition is modified through kitchen preparation. By analysing muscle fatty acid (FA) composition (polar and total lipids) of five European game species in a raw and a processed state, we aimed to quantify the proportion of PUFA that are oxidised and hydrogenated during processing. All game meat species originated from local hunters and free-living individuals. To mimic a realistic situation a professional chef prepared the meat samples with gentle use of heat in a standardised way. Results Expectedly, the overall content of polyunsaturated fatty acids declined during the cooking process but the decrease size was <5% and the nutritiously most important n-3/n-6 ratio was not affected by processing (F1,54 = 0.46; p = 0.5). Generally, our samples contained species-specific high PUFA and n-3 FA contents but we point out that differentiating between species is necessary. Conclusion Game meat thus provides a healthy meat source, as cooking does not substantially alter its favourable fatty acid composition. Further research is needed to elucidate species-specific differences and the role of habitat quality and locomotion for tissue composition.
Collapse
Affiliation(s)
- Teresa G Valencak
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160, Vienna, Austria.
| | - Lisa Gamsjäger
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160, Vienna, Austria.
| | - Sarah Ohrnberger
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160, Vienna, Austria.
| | - Nicole J Culbert
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160, Vienna, Austria.
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160, Vienna, Austria.
| |
Collapse
|
4
|
The desaturase OPIN17 from Phytophthora infestans converts arachidonic acid to eicosapentaenoic acid in CHO cells. Appl Biochem Biotechnol 2013; 171:975-88. [PMID: 23912207 DOI: 10.1007/s12010-013-0332-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
We demonstrate the ability to increase the amount of eicosapentaenoic acid (EPA, 20:5n-3) in mammalian cells using OPIN17 desaturase gene. This gene was codon optimized based on genomic sequence of Δ17 from Phytophthora infestans and introduced into Chinese hamster ovary cells using liposome-mediated transfection protocol. Reverse transcription polymerase chain reaction was utilized to evaluate co-expression of AcGFP1 and OPIN17. Our results indicate that the OPIN17 gene can be expressed in mammalian cells. Heterologous expression of this gene was evaluated by assessing the fatty acid content of OPIN17-transfected cells. A total cellular lipid analysis of transfected cells which were fed with arachidonic acid (AA, 20:4n-6) as a substrate resulted in an 86.5-246 % (p < 0.05) increase in the amount of EPA in transfected cells compared with that in control cells. The ratio of AA to EPA was reduced from approximately 4.07:1 in control cells to 2.2:1 in transfected cells (p < 0.05), which indicates an EPA percent conversion of 30.94 %. Our study demonstrates that the codon-optimized OPIN17 gene can be functionally expressed in mammalian cells, converting AA into EPA and elevating the level of ω-3 polyunsaturated fatty acids efficiently. These results provide an additional support for the use of this gene in generating transgenic livestock.
Collapse
|
5
|
Ruiz-Lopez N, Haslam RP, Usher SL, Napier JA, Sayanova O. Reconstitution of EPA and DHA biosynthesis in arabidopsis: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants. Metab Eng 2013; 17:30-41. [PMID: 23500000 PMCID: PMC3650579 DOI: 10.1016/j.ymben.2013.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/21/2013] [Accepted: 03/01/2013] [Indexed: 11/19/2022]
Abstract
An iterative approach to optimising the accumulation of non-native long chain polyunsaturated fatty acids in transgenic plants was undertaken in Arabidopsis thaliana. The contribution of a number of different transgene enzyme activities was systematically determined, as was the contribution of endogenous fatty acid metabolism. Successive iterations were informed by lipidomic analysis of neutral, polar and acyl-CoA pools. This approach allowed for a four-fold improvement on levels previously reported for the accumulation of eicosapentaenoic acid in Arabidopsis seeds and also facilitated the successful engineering of the high value polyunsaturated fatty acid docosahexaenoic acid to 10-fold higher levels. Our studies identify the minimal gene set required to direct the efficient synthesis of these fatty acids in transgenic seed oil.
Collapse
Key Words
- ala, α-linolenic acid
- ara, arachidonic acid
- dag, diacylglycerol
- dha, docosahexaenoic acid
- dpa, docosapentaenoic acid
- epa, eicosapentaenoic acid
- gla, γ-linolenic acid
- la, linoleic acid
- lc-pufa, long chain polyunsaturated fatty acid
- pc, phosphatidylcholine
- pe, phosphatidylethanolamine
- pi, phosphatidylinositol
- ps, phosphatidylserine
- sda, stearidonic acid
- tag, triacylglycerol
- desaturase
- elongase
- nutritional enhancement
- omega-3 long chain polyunsaturated fatty acids
- transgenic plants
Collapse
Affiliation(s)
| | | | | | - Johnathan A. Napier
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | |
Collapse
|
6
|
Ruiz-López N, Haslam RP, Venegas-Calerón M, Li T, Bauer J, Napier JA, Sayanova O. Enhancing the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Arabidopsis thaliana via iterative metabolic engineering and genetic crossing. Transgenic Res 2012; 21:1233-43. [PMID: 22350763 DOI: 10.1007/s11248-012-9596-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/03/2012] [Indexed: 11/28/2022]
Abstract
The synthesis and accumulation of long chain polyunsaturated fatty acids such as eicosapentaenoic acid has previously been demonstrated in the seeds of transgenic plants. However, the obtained levels are relatively low, indicating the need for further studies and the better definition of the interplay between endogenous lipid synthesis and the non-native transgene-encoded activities. In this study we have systematically compared three different transgenic configurations of the biosynthetic pathway for eicosapentaenoic acid, using lipidomic profiling to identify metabolic bottlenecks. We have also used genetic crossing to stack up to ten transgenes in Arabidopsis. These studies indicate several potential approaches to optimize the accumulation of target fatty acids in transgenic plants. Our data show the unexpected channeling of heterologous C20 polyunsaturated fatty acids into minor phospholipid species, and also the apparent negative metabolic regulation of phospholipid-dependent Δ6-desaturases. Collectively, this study confirms the benefits of iterative approaches to metabolic engineering of plant lipid synthesis.
Collapse
Affiliation(s)
- Noemi Ruiz-López
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | | | | | | | | | | | |
Collapse
|
7
|
Sayanova O, Ruiz-Lopez N, Haslam RP, Napier JA. The role of Δ6-desaturase acyl-carrier specificity in the efficient synthesis of long-chain polyunsaturated fatty acids in transgenic plants. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:195-206. [PMID: 21902798 DOI: 10.1111/j.1467-7652.2011.00653.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The role of acyl-CoA-dependent Δ6-desaturation in the heterologous synthesis of omega-3 long-chain polyunsaturated fatty acids was systematically evaluated in transgenic yeast and Arabidopsis thaliana. The acyl-CoA Δ6-desaturase from the picoalga Ostreococcus tauri and orthologous activities from mouse (Mus musculus) and salmon (Salmo salar) were shown to generate substantial levels of Δ6-desaturated acyl-CoAs, in contrast to the phospholipid-dependent Δ6-desaturases from higher plants that failed to modify this metabolic pool. Transgenic plants expressing the acyl-CoA Δ6-desaturases from either O. tauri or salmon, in conjunction with the two additional activities required for the synthesis of C20 polyunsaturated fatty acids, contained higher levels of eicosapentaenoic acid compared with plants expressing the borage phospholipid-dependent Δ6-desaturase. The use of acyl-CoA-dependent Δ6-desaturases almost completely abolished the accumulation of unwanted biosynthetic intermediates such as γ-linolenic acid in total seed lipids. Expression of acyl-CoA Δ6-desaturases resulted in increased distribution of long-chain polyunsaturated fatty acids in the polar lipids of transgenic plants, reflecting the larger substrate pool available for acylation by enzymes of the Kennedy pathway. Expression of the O. tauriΔ6-desaturase in transgenic Camelina sativa plants also resulted in the accumulation of high levels of Δ6-desaturated fatty acids. This study provides evidence for the efficacy of using acyl-CoA-dependent Δ6-desaturases in the efficient metabolic engineering of transgenic plants with high value traits such as the synthesis of omega-3 LC-PUFAs.
Collapse
Affiliation(s)
- Olga Sayanova
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, UK
| | | | | | | |
Collapse
|
8
|
Abstract
Growing evidence suggests that omega-3 long chain polyunsaturated fatty acids (VLC-PUFAs), especially eicosapentaenoic acid (EPA; 20:5Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6Δ4,7,10,13,16,19) play critical roles in human health and development. VLC-PUFAs are mainly found in fish, some fungi, marine bacteria and microalgae. Currently, the predominant dietary sources of VLC-PUFAs are marine fish and seafood. However, the increasing demand for fish and fish oils is putting enormous pressure on marine ecosystems leading to a depletion of fish stocks while commercial cultivation of marine microorganisms and aquaculture are not sustainable and cannot compensate for the shortage in fish supply. Therefore, there is an obvious requirement for an alternative and sustainable source for VLC-PUFAs. Over the last decade, many genes encoding the primary VLC-PUFAs biosynthetic activities became available providing a toolkit for the "reverse-engineering" of transgenic plants to produce fish oils. In this review, we will describe the recent advances in this field and the insights they give us into the complexities of metabolic engineering of oil-seed crops producing VLC-PUFAs.
Collapse
Affiliation(s)
- Olga Sayanova
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| | | |
Collapse
|
9
|
Why and How Meet n-3 PUFA Dietary Recommendations? Gastroenterol Res Pract 2010; 2011:364040. [PMID: 21197079 PMCID: PMC3004387 DOI: 10.1155/2011/364040] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/20/2010] [Accepted: 10/09/2010] [Indexed: 01/12/2023] Open
Abstract
Obesity and the metabolic syndrome are systemic inflammatory diseases reaching epidemic proportions. Contemporary changes in human nutrition occurred characterized by increased consumption of fat and of vegetable oils rich in n-6 polyunsaturated fatty acids (PUFAs) together with decrease in n-3 PUFA-rich foods, resulting in an n-6/n-3 ratio of 10–20/1 in Western diet for a ratio around 1/1 in the diet of our ancestors. The literature provides compelling evidence for the health benefit of n-3 PUFA consumption on inflammation and metabolic syndrome prevention and treatment. Such evidence led to the establishment of comprehensive recommendations. However, we show here that, both in collective catering proposed to children and in hospital diet, it is not straightforward to meet such recommendations. Willingness of governments to institute changes, with accountable decisions on catering, nutritional education, and food processing, is required to face our neglected responsibility in promoting balanced diet and consumption of foods rich in essential nutrients in the general population.
Collapse
|
10
|
Xue G, Liu F, Wang Y, Huang K. Optimization of Synthetic Conditions for the Preparation of Dihomo-γ-Linolenic Acid from γ-Linolenic Acid. J AM OIL CHEM SOC 2008. [DOI: 10.1007/s11746-008-1320-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Damude HG, Kinney AJ. Engineering Oilseed Plants for a Sustainable, Land-Based Source of Long Chain Polyunsaturated Fatty Acids. Lipids 2007; 42:179-85. [PMID: 17393224 DOI: 10.1007/s11745-007-3049-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Numerous clinical studies have demonstrated the cardiovascular and mental health benefits of including very long chain omega-3 polyunsaturated fatty acids, namely eicospentaenoic acid (EPA) and docosohexaenoic acid (DHA) in the human diet. Certain fish oils can be a rich source of omega-3 long chain polyunsaturated fatty acids although processed marine oils are generally undesirable as food ingredients because of the associated objectionable flavors and contaminants that are difficult and cost-prohibitive to remove. Oilseed plants rich in omega-3 fatty acids, such as flax and walnut oils, contain only the 18-carbon omega-3 polyunsaturated fatty acid alpha-linolenic acid, which is poorly converted by the human body to EPA and DHA. It is now possible to engineer common omega-6 rich oilseeds such as soybean and canola to produce EPA and DHA and this has been the focus of a number of academic and industrial research groups. Recent advances and future prospects in the production of EPA and DHA in oilseed crops are discussed here.
Collapse
Affiliation(s)
- Howard G Damude
- Crop Genetics Research, DuPont Experimental Station, Wilmington, DE 19880-0353, USA
| | | |
Collapse
|
12
|
Napier JA, Sayanova O. The production of very-long-chain PUFA biosynthesis in transgenic plants: towards a sustainable source of fish oils. Proc Nutr Soc 2007; 64:387-93. [PMID: 16048673 DOI: 10.1079/pns2005447] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is now considerable evidence of the importance of n-3 long-chain PUFA in human health and development. At the same time, the marine fish stocks that serve as the primary sources of these fatty acids are threatened by continued over-exploitation. Thus, there is an urgent need to provide a sustainable alternative source of the n-3 long-chain PUFA normally found in fish oils. The possibility of using transgenic plants genetically engineered to synthesise these important fatty acids has recently been demonstrated. The approaches taken to realise this outcome will be discussed, as will their prospects for providing a sustainable resource for the future.
Collapse
Affiliation(s)
- Johnathan A Napier
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK.
| | | |
Collapse
|
13
|
Venegas-Calerón M, Beaudoin F, Sayanova O, Napier JA. Co-transcribed genes for long chain polyunsaturated fatty acid biosynthesis in the protozoon Perkinsus marinus include a plant-like FAE1 3-ketoacyl coenzyme A synthase. J Biol Chem 2007; 282:2996-3003. [PMID: 17092943 DOI: 10.1074/jbc.m607051200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The marine parasitic protozoon Perkinus marinus synthesizes the polyunsaturated fatty acid arachidonic acid via the unusual alternative Delta8 pathway in which elongation of C18 fatty acids generates substrate for two sequential desaturations. Here we have shown that genes encoding the three P. marinus activities responsible for arachidonic acid biosynthesis (C18 Delta9-elongating activity, C20 Delta8 desaturase, C20 Delta5 desaturase) are genomically clustered and co-transcribed as an operon. The acyl elongation reaction, which underpins this pathway, is catalyzed by a FAE1 (fatty acid elongation 1)-like 3-ketoacyl-CoA synthase class of condensing enzyme previously only reported in higher plants and algae. This is the first example of an elongating activity involved in the biosynthesis of a polyunsaturated fatty acid that is not a member of the ELO/SUR4 family. The P. marinus FAE1-like elongating activity is sensitive to the herbicide flufenacet, similar to some higher plant 3-ketoacyl-CoA synthases, but unable to rescue the yeast elo2Delta/elo3Delta mutant consistent with a role in the elongation of polyunsaturated fatty acids. P. marinus represents a key organism in the taxonomic separation of the single-celled eukaryotes collectively known as the alveolates, and our data imply a lineage in which ancestral acquisition of plant-like genes, such as FAE1-like 3-ketoacyl-CoA synthases, occurred via endosymbiosis. The P. marinus FAE1-like elongating activity is also indicative of the independent evolution of the alternative Delta8 pathway, distinct from ELO/SUR4-dependent examples.
Collapse
Affiliation(s)
- Mónica Venegas-Calerón
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | | | | | | |
Collapse
|
14
|
Abstract
The ability to genetically engineer plants has facilitated the generation of oilseeds synthesizing non-native fatty acids. Two particular classes of fatty acids are considered in this review. First, so-called industrial fatty acids, which usually contain functional groups such as hydroxyl, epoxy, or acetylenic bonds, and second, very long chain polyunsaturated fatty acids normally found in fish oils and marine microorganisms. For industrial fatty acids, there has been limited progress toward obtaining high-level accumulation of these products in transgenic plants. For very long chain polyunsaturated fatty acids, although they have a much more complex biosynthesis, accumulation of some target fatty acids has been remarkably successful. In this review, we consider the probable factors responsible for these different outcomes, as well as the potential for further optimization of the transgenic production of unusual fatty acids in transgenic plants.
Collapse
|
15
|
Hauvermale A, Kuner J, Rosenzweig B, Guerra D, Diltz S, Metz JG. Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 2006; 41:739-47. [PMID: 17120926 DOI: 10.1007/s11745-006-5025-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Schizochytrium sp. is a marine microalga that has been developed as a commercial source for docosahexaenoic acid (DHA, C22:6 (omega-3), enriched biomass, and oil. Previous work suggested that the DHA, as well as docosapentaenoic acid (DPA, C22:5 omega-6), that accumulate in Schizochytrium are products of a multi-subunit polyunsaturated fatty acid (PUFA) synthase (1). Here we show data to support this view and also provide information on other aspects of fatty acid synthesis in this organism. Three genes encoding subunits of the PUFA synthase were isolated from genomic DNA and expressed in E. coli along with an essential accessory gene encoding a phosphopantetheinyl transferase (PPTase). The resulting transformants accumulated both DHA and DPA. The ratio of DHA to DPA was approximately the same as that observed in Schizochytrium. Treatment of Schizochytrium cells with certain levels of cerulenin resulted in inhibition of 14C acetate incorporation into short chain fatty acids without affecting labeling of PUFAs, indicating distinct biosynthetic pathways. A single large gene encoding the presumed short chain fatty acid synthase (FAS) was cloned and sequenced. Based on sequence homology and domain organization, the Schizochytrium FAS resembles a fusion of fungal FAS beta and alpha subunits.
Collapse
Affiliation(s)
- A Hauvermale
- Martek Biosciences Boulder Corporation, Boulder, CO 80301, USA
| | | | | | | | | | | |
Collapse
|
16
|
Sayanova O, Haslam R, Guschina I, Lloyd D, Christie WW, Harwood JL, Napier JA. A bifunctional Delta12,Delta15-desaturase from Acanthamoeba castellanii directs the synthesis of highly unusual n-1 series unsaturated fatty acids. J Biol Chem 2006; 281:36533-41. [PMID: 16950768 DOI: 10.1074/jbc.m605158200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The free-living soil protozoon Acanthamoeba castellanii synthesizes a range of polyunsaturated fatty acids, the balance of which can be altered by environmental changes. We have isolated and functionally characterized in yeast a microsomal desaturase from A. castellanii, which catalyzes the sequential conversion of C(16) and C(18) Delta9-monounsaturated fatty acids to di- and tri-unsaturated forms. In the case of C(16) substrates, this bifunctional A. castellanii Delta12,Delta15-desaturase generated a highly unusual fatty acid, hexadecatrienoic acid (16:3Delta(9,12,15)(n-1)). The identification of a desaturase, which can catalyze the insertion of a double bond between the terminal two carbons of a fatty acid represents a new addition to desaturase functionality and plasticity. We have also co-expressed in yeast the A. castellanii bifunctional Delta12,Delta15-desaturase with a microsomal Delta6-desaturase, resulting in the synthesis of the highly unsaturated C(16) fatty acid hexadecatetraenoic acid (16:4Delta(6,9,12,15)(n-1)), previously only reported in marine microorganisms. Our work therefore demonstrates the feasibility of the heterologous synthesis of polyunsaturated fatty acids of the n-1 series. The presence of a bifunctional Delta12,Delta15-desaturase in A. castellanii is also considered with reference to the evolution of desaturases and the lineage of this protist.
Collapse
Affiliation(s)
- Olga Sayanova
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
17
|
Sayanova O, Haslam R, Venegas-Calerón M, Napier JA. Identification of Primula "front-end" desaturases with distinct n-6 or n-3 substrate preferences. PLANTA 2006; 224:1269-77. [PMID: 16773377 DOI: 10.1007/s00425-006-0306-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 04/26/2006] [Indexed: 05/10/2023]
Abstract
cDNA clones encoding cytochrome b(5) fusion desaturases were isolated from Primula cortusoides L. and Primula luteola Ruprecht, species previously shown to preferentially accumulate either n-6 or n-3 Delta6-desaturated fatty acids, respectively. Functional characterisation of these desaturases in yeast revealed that the recombinant Primula enzymes displayed substrate preferences, resulting in the predominant synthesis of either gamma-linolenic acid (n-6) or stearidonic acid (n-3). Independent expression of the two Primula desaturases in transgenic Arabidopsis thaliana confirmed these results, with gamma-linolenic acid and stearidonic acid accumulating in both leaf and seed tissues to different levels, depending on the substrate specificity of the desaturase. Targeted lipid analysis of transgenic Arabidopsis lines revealed the presence of Delta6-desaturated fatty acids in the acyl-CoA pools of leaf but not seed tissue. The implications for the transgenic synthesis of C(20) polyunsaturated fatty acids via the elongation of Delta6-desaturated fatty acids are discussed, as is the potential of using Primula desaturases in the synthesis of C(18) n-3 polyunsaturated fatty acids such as stearidonic acid.
Collapse
|
18
|
Damude HG, Zhang H, Farrall L, Ripp KG, Tomb JF, Hollerbach D, Yadav NS. Identification of bifunctional delta12/omega3 fatty acid desaturases for improving the ratio of omega3 to omega6 fatty acids in microbes and plants. Proc Natl Acad Sci U S A 2006; 103:9446-51. [PMID: 16763049 PMCID: PMC1480427 DOI: 10.1073/pnas.0511079103] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Indexed: 11/18/2022] Open
Abstract
We report the identification of bifunctional Delta12/omega3 desaturases from Fusarium moniliforme, Fusarium graminearum, and Magnaporthe grisea. The bifunctional activity of these desaturases distinguishes them from all known Delta12 or omega3 fatty acid desaturases. The omega3 desaturase activity of these enzymes also shows a broad omega6 fatty acid substrate specificity by their ability to convert linoleic acid (LA), gamma-linolenic acid, di-homo-gamma-linolenic acid, and arachidonic acid to the omega3 fatty acids, alpha-linolenic acid (ALA), stearidonic acid, eicosatetraenoic acid, and eicosapentaenoic acid (EPA), respectively. Phylogenetic analysis suggests that omega3 desaturases arose by independent gene duplication events from a Delta12 desaturase ancestor. Expression of F. moniliforme Delta12/omega3 desaturase resulted in high ALA content in both Yarrowia lipolytica, an oleaginous yeast naturally deficient in omega3 desaturation, and soybean. In soybean, seed-specific expression resulted in 70.9 weight percent of total fatty acid (%TFA) ALA in a transformed seed compared with 10.9%TFA in a null segregant seed and 53.2%TFA in the current best source of ALA, linseed oil. The ALA/LA ratio in transformed seed was 22.3, a 110- and 7-fold improvement over the null segregant seed and linseed oil, respectively. Thus, these desaturases have potential for producing nutritionally desirable omega3 long-chain polyunsaturated fatty acids, such as EPA, with a significantly improved ratio of omega3/omega6 long-chain polyunsaturated fatty acids in both oilseeds and oleaginous microbes.
Collapse
Affiliation(s)
- Howard G. Damude
- Crop Genetics, Pioneer, Dupont Company, Dupont Experimental Station, Wilmington, DE 19880; and
| | - Hongxiang Zhang
- Biochemical Sciences and Engineering, Central Research and Development, Dupont Company, DuPont Experimental Station, Wilmington, DE 19898
| | - Leonard Farrall
- Crop Genetics, Pioneer, Dupont Company, Dupont Experimental Station, Wilmington, DE 19880; and
| | - Kevin G. Ripp
- Crop Genetics, Pioneer, Dupont Company, Dupont Experimental Station, Wilmington, DE 19880; and
| | - Jean-Francois Tomb
- Biochemical Sciences and Engineering, Central Research and Development, Dupont Company, DuPont Experimental Station, Wilmington, DE 19898
| | - Dieter Hollerbach
- Biochemical Sciences and Engineering, Central Research and Development, Dupont Company, DuPont Experimental Station, Wilmington, DE 19898
| | - Narendra S. Yadav
- Biochemical Sciences and Engineering, Central Research and Development, Dupont Company, DuPont Experimental Station, Wilmington, DE 19898
| |
Collapse
|
19
|
Sayanova O, Haslam R, Qi B, Lazarus CM, Napier JA. The alternative pathway C20 Delta8-desaturase from the non-photosynthetic organism Acanthamoeba castellanii is an atypical cytochrome b5-fusion desaturase. FEBS Lett 2006; 580:1946-52. [PMID: 16530193 DOI: 10.1016/j.febslet.2006.02.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 11/25/2022]
Abstract
A cDNA encoding a C20 Delta8-desaturase was isolated from the free-living soil amoeba, Acanthamoeba castellanii and functionally characterised by heterologous expression. The open reading frame of the A. castellanii C20 Delta8-desaturase showed similarity to other microsomal front-end desaturases, but the N-terminal domain contained a variant form of the conserved heme-binding motif in which H-P-G-G is replaced by H-P-A-G. Co-expression of the A. castellani Delta8-desaturase with the Isochrysis galbana Delta9-elongase in transgenic Arabidopsis plants confirmed the activity observed in yeast and its role in the alternative pathway for C20 polyunsaturated fatty acid synthesis. Acyl-CoA profiles of these transgenic plants revealed an unexpected accumulation of C20 fatty acids in the acyl-CoA pool. This is the first report of an alternative pathway C20 Delta8-desaturase from a non-photosynthetic organism, and also the first report of a front-end desaturase lacking the canonical cytochrome b5 domain.
Collapse
|
20
|
Kajikawa M, Yamato KT, Sakai Y, Fukuzawa H, Ohyama K, Kohchi T. Isolation and functional characterization of fatty acid delta5-elongase gene from the liverwort Marchantia polymorpha L. FEBS Lett 2005; 580:149-54. [PMID: 16359669 DOI: 10.1016/j.febslet.2005.11.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 11/25/2005] [Accepted: 11/25/2005] [Indexed: 11/24/2022]
Abstract
Bryophyte Marchantia polymorpha L. produces C22 very-long-chain polyunsaturated fatty acid (VLCPUFA). Thus far, no enzyme that mediates elongation of C20 VLCPUFAs has been identified in land plants. Here, we report the isolation and characterization of the gene MpELO2, which encodes an ELO-like fatty acid elongase in M. polymorpha. Heterologous expression in yeast demonstrated that MpELO2 encodes delta5-elongase, which mediates elongation of arachidonic (20:4) and eicosapentaenoic acids (20:5). Phylogenetic and gene structural analysis indicated that the MpELO2 gene is closely related to bryophyte Delta6-elongase genes for C18 fatty acid elongation and diverged from them by local gene duplication.
Collapse
Affiliation(s)
- Masataka Kajikawa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Wijesundera C. Synthesis of regioisomerically pure triacylglycerols containingn-3 very long-chain polyunsaturated fatty acids. EUR J LIPID SCI TECH 2005. [DOI: 10.1002/ejlt.200500238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|