1
|
Etcheverry L, Spaccesi FG, Cappelletti NE, Lavarías SML. Basal levels of biochemical biomarkers in the freshwater prawn Palaemon argentinus and their alterations due to the exposure of both insecticides cypermethrin and spirotetramat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174958. [PMID: 39067605 DOI: 10.1016/j.scitotenv.2024.174958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The aim of this study was to evaluate the sensitivity of the prawn Palaemon argentinus to the pyrethroid cypermethrin (CYP) and the tetramic acid spirotetramat (STM). These treatments were compared with prawns collected at a reference site to define their basal physiological state. Initially, physicochemical parameters and several pollutants at the selected site were analyzed. The LC50-96 h was determined in adult prawns. Then, prawns were exposed for 96 h to sublethal concentrations of CYP (0.0005 μg/l) and STM (0.44 mg/l) to evaluate the effects on some biochemical endpoints. A treatment combining both pesticides was also added at 5 % of these values. Controls with and without solvent (acetone) were included. The LC50-96 h values were 0.005 μg/l and 4.43 mg/l for CYP and STM, respectively. Moreover, some biomarkers linked to oxidative and energy metabolism were analyzed in the hepatopancreas and muscle of both essayed prawns and those at the basal state. The STM caused a significant decrease in total protein content (32 %) in contrast to the increase of protein carbonyl content (71 %) (p < 0.05). Also, glutathione S-transferase (52 %) and catalase (61 %) activities in the hepatopancreas of exposed prawns were higher compared to both the control and state basal groups (p < 0.05). In muscle, only a significant decrease in the lactate content (69 %) was caused by STM (p < 0.05). In addition, CYP caused a significant increase in the lactate dehydrogenase activity (110 %) in muscle and triacylglycerol content (73 %) in the hepatopancreas (p < 0.05). The integrated biomarker index (IBRv2) analysis showed that STM caused greater damage than CYP. Besides, the combined treatment showed an antagonistic interaction between both insecticides. The differential response of biomarkers to both CYP and STM exposure with respect to their basal levels shows a high sensitivity of P. argentinus demonstrating its potential role as a bioindicator organism.
Collapse
Affiliation(s)
- Leda Etcheverry
- Instituto de Limnología de La Plata "Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP)- Asoc. CIC, Buenos Aires, Argentina; Facultad de Cs. Exactas, UNLP, Buenos Aires, Argentina
| | - Fernando G Spaccesi
- Instituto de Limnología de La Plata "Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP)- Asoc. CIC, Buenos Aires, Argentina; Facultad de Cs. Naturales y Museo, UNLP, Buenos Aires, Argentina
| | - Natalia E Cappelletti
- CONICET-Departamento de Ambiente y Turismo, Universidad Nacional de Avellaneda, Buenos Aires, Argentina
| | - Sabrina M L Lavarías
- Instituto de Limnología de La Plata "Dr. Raúl A. Ringuelet" (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP)- Asoc. CIC, Buenos Aires, Argentina; Facultad de Cs. Médicas, UNLP, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Current Progress in Lipidomics of Marine Invertebrates. Mar Drugs 2021; 19:md19120660. [PMID: 34940659 PMCID: PMC8708635 DOI: 10.3390/md19120660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Marine invertebrates are a paraphyletic group that comprises more than 90% of all marine animal species. Lipids form the structural basis of cell membranes, are utilized as an energy reserve by all marine invertebrates, and are, therefore, considered important indicators of their ecology and biochemistry. The nutritional value of commercial invertebrates directly depends on their lipid composition. The lipid classes and fatty acids of marine invertebrates have been studied in detail, but data on their lipidomes (the profiles of all lipid molecules) remain very limited. To date, lipidomes or their parts are known only for a few species of mollusks, coral polyps, ascidians, jellyfish, sea anemones, sponges, sea stars, sea urchins, sea cucumbers, crabs, copepods, shrimp, and squid. This paper reviews various features of the lipid molecular species of these animals. The results of the application of the lipidomic approach in ecology, embryology, physiology, lipid biosynthesis, and in studies on the nutritional value of marine invertebrates are also discussed. The possible applications of lipidomics in the study of marine invertebrates are considered.
Collapse
|
3
|
Lipidomic profiling reveals biosynthetic relationships between phospholipids and diacylglycerol ethers in the deep-sea soft coral Paragorgia arborea. Sci Rep 2021; 11:21285. [PMID: 34711899 PMCID: PMC8553863 DOI: 10.1038/s41598-021-00876-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
The cold-water gorgonian coral Paragorgia arborea is considered as a foundation species of deep-sea ecosystems in the northern Atlantic and Pacific oceans. To advance lipidomic studies of deep-sea corals, molecular species compositions of diacylglycerol ethers (DAGE), which are specific storage lipids of corals, and structural glycerophospholipids (GPL) including ethanolamine, choline, inositol and serine GPL (PE, PC, PI, and PS, respectively) were analyzed in P. arborea by HPLC and tandem mass spectrometry. In DAGE molecules, alkyl groups (16:0, 14:0, and 18:1), polyunsaturated fatty acids (PUFA), and monounsaturated FA are mainly substituted the glycerol moiety at position sn-1, sn-2, and sn-3, respectively. The ether form (1-O-alkyl-2-acyl) predominates in PE and PC, while PI is comprised of the 1,2-diacyl form. Both ether and diacyl forms were observed in PS. At position sn-2, C20 PUFA are mainly attached to PC, but C24 PUFA, soft coral chemotaxonomic markers, concentrate in PS, PI, and PE. A comparison of non-polar parts of molecules has shown that DAGE, ether PE, and ether PC can originate from one set of 1-O-alkyl-2-acyl-sn-glycerols. Ether PE may be converted to ether PS by the base-exchange reaction. A diacylglycerol unit generated from phosphatidic acid can be a precursor for diacyl PS, PC, and PI. Thus, a lipidomic approach has confirmed the difference in biosynthetic origins between ether and diacyl lipids of deep-sea gorgonians.
Collapse
|
4
|
Laino A, Garcia CF. Study of the effect of cypermethrin on the spider Polybetes phytagoricus in different energy states. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104559. [PMID: 32359558 DOI: 10.1016/j.pestbp.2020.104559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Spiders are found among the most important predators of plague insects of numerous agricultural systems. They are the most numerous representatives of the Class Arachnid and are widely distributed in numerous ecosystems. Due to multiple variables, living beings are exposed to quantitative transitions of their energetic reserves, which affect their sensitivity before the different xenobiotics. In the present study we evaluate the effect of cypermethrin (pyrethroid) on different metabolic/energetic stages of the spider Polybetes pythagoricus (Sparassidae). We firstly studied LD50 of cypermethrin on young, males and, pre-vitellogenic and post-vitellogenic females. The activity of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST) and acetylcholinesterase (AChE) was analyzed. Results indicate that young have a higher caloric content compared to adults, females have a higher caloric content than males and vitellogenesis generates a great calory decrease in females. The LD50 was significantly lower in young (10%) (103 ng/g weight) in relation to the three models of adults (969-1108 ng/g weight). Vitellogenesis causes an increase of free radicals as a result of the different metabolic processes which manifest as an increase in the lipid peroxidation. Doses at the LD30 and LD40 levels of cypermethrin did not generate alterations in any of the enzymes analyzed in young, this fact may probably provoke an increase of lipid peroxidation (evaluated as a great MDA increase). The activity of the enzymes linked to oxidative stress was altered by this doses in the three adult models, the enzymatic activity CAT, GR, and GST was sex-dependent. Post-vitellogenic females showed a greater activity of CAT, SOD, GST and GR before the xenobiotics than pre-vitellogenic ones, probably as a consequence of metabolic stress generated during vitellogenesis.
Collapse
Affiliation(s)
- A Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", 60 y 120 s/n, La Plata, Buenos Aires, Argentina
| | - C F Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", 60 y 120 s/n, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Lavarías S, Ocon C, van Oosterom VL, Laino A, Medesani DA, Fassiano A, Garda H, Donadelli J, de Molina MR, Capítulo AR. Multibiomarker responses in aquatic insect Belostoma elegans (Hemiptera) to organic pollution in freshwater system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1322-1337. [PMID: 27771882 DOI: 10.1007/s11356-016-7493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
The present study analyzes a battery of biomarkers in the water bug Belostoma elegans from a stream polluted with organic matter (OMS), and another one considered as reference site (RS) during spring-summer season (December to March). Biochemical parameters of glucidic, lipidic and oxidative metabolic pathways were analyzed in males and females of this insect. In general, no significant differences were observed in all biomarkers assayed between both sexes, except lactate concentration which was higher in males than in females (p < 0.0006) in the first three months. About carbohydrate metabolism parameters, only pyruvate-kinase showed significant differences between insects collected in both streams (p < 0.05) during December. However, the total lipid content, saturated fatty acid, and mainly triacylglycerol were higher in insects from RS compared to those from OMS (p < 0.002) in all sampled months. Levels of lipoperoxidation, protein oxidation, reduced glutathione and glutathione-S-transferase activity showed no differences between insects collected from both streams. Nevertheless, the significant increase observed in superoxide dismutase and catalase activities (p < 0.004) could be due to the elevated oxidative metabolism in insects from RS compared to those from OMS with lower dissolved oxygen. Regarding those responding parameters, males accounted for the differences between the two sites during the study period. In conclusion, our results support that lipidic energetic reserves and antioxidant enzyme activities in B. elegans could be used as biomarkers of environmental pollution by organic matter.
Collapse
Affiliation(s)
- S Lavarías
- Instituto de Limnología de La Plata (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), Boulevard 120 y 62, 1900, La Plata, Argentina.
| | - C Ocon
- Instituto de Limnología de La Plata (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), Boulevard 120 y 62, 1900, La Plata, Argentina
| | - V López van Oosterom
- Instituto de Limnología de La Plata (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), Boulevard 120 y 62, 1900, La Plata, Argentina
| | - A Laino
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - D A Medesani
- IQUIBICEN Fac. Cs. Exactas y Naturales. Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - A Fassiano
- IQUIBICEN Fac. Cs. Exactas y Naturales. Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - H Garda
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - J Donadelli
- Instituto de Limnología de La Plata (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), Boulevard 120 y 62, 1900, La Plata, Argentina
| | - M Ríos de Molina
- IQUIBICEN Fac. Cs. Exactas y Naturales. Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - A Rodrigues Capítulo
- Instituto de Limnología de La Plata (ILPLA) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), Boulevard 120 y 62, 1900, La Plata, Argentina
| |
Collapse
|
6
|
Pasquevich MY, Dreon MS, Gutierrez Rivera JN, Vázquez Boucard C, Heras H. Effect of crude oil petroleum hydrocarbons on protein expression of the prawn Macrobrachium borellii. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:390-6. [PMID: 23570752 DOI: 10.1016/j.cbpc.2013.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/28/2013] [Accepted: 03/30/2013] [Indexed: 11/29/2022]
Abstract
Hydrocarbon pollution is a major environmental threat to ecosystems in marine and freshwater environments, but its toxicological effect on aquatic organisms remains little studied. A proteomic approach was used to analyze the effect of a freshwater oil spill on the prawn Macrobrachium borellii. To this aim, proteins were extracted from midgut gland (hepatopancreas) of male and female prawns exposed 7 days to a sublethal concentration (0.6 ppm) of water-soluble fraction of crude oil (WSF). Exposure to WSF induced responses at the protein expression level. Two-dimensional gel electrophoresis (2-DE) revealed 10 protein spots that were differentially expressed by WSF exposure. Seven proteins were identified using MS/MS and de novo sequencing. Nm23 oncoprotein, arginine methyltransferase, fatty aldehyde dehydrogenase and glutathione S-transferase were down-regulated, whereas two glyceraldehyde-3-phosphate dehydrogenase isoforms and a lipocalin-like crustacyanin (CTC) were up-regulated after WSF exposure. CTC mRNA levels were further analyzed by quantitative real-time PCR showing an increased expression after WSF exposure. The proteins identified are involved in carbohydrate and amino acid metabolism, detoxification, transport of hydrophobic molecules and cellular homeostasis among others. These results provide evidence for better understanding the toxic mechanisms of hydrocarbons. Moreover, some of these differentially expressed proteins would be employed as potential novel biomarkers.
Collapse
Affiliation(s)
- M Y Pasquevich
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET CCT-La Plata, La Plata, Argentina
| | | | | | | | | |
Collapse
|
7
|
Laino A, Cunningham M, Costa FG, Garcia CF. Energy sources from the eggs of the wolf spider Schizocosa malitiosa: isolation and characterization of lipovitellins. Comp Biochem Physiol B Biochem Mol Biol 2013; 165:172-80. [PMID: 23618789 DOI: 10.1016/j.cbpb.2013.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 11/19/2022]
Abstract
In oviparous species, proteins and lipids found in the vitellus form the lipoproteins called lipovitellins that are the major source of energy for the development, growth, and survival of the embryo. The energy resources provided by the lipovitellins have not yet been investigated in the Order Araneae. Using the wolf spider Schizocosa malitiosa (Lycosidae) as an experimental model, we identified and characterized the lipovitellins present in the cytosol, focusing on the energetic contribution of those lipoprotein particles in the vitellus. Two lipovitellins (LV) named SmLV1 and SmLV2 were isolated. SmLV1 is a high-density lipoprotein with 67% lipid and 3.6% carbohydrate, and SmLV2 is a very high-density lipoprotein with 9% lipid and 8.8% carbohydrate. Through electrophoresis in native conditions we observed that SmLV1 has a molecular mass of 559 kDa composed of three apolipoproteins of 116, 87, and 42 kDa, respectively. SmLV2 comprised several proteins composed of different proportions of the same subunits (135, 126, 109, and 70 kDa). The principal lipids of these lipovitellins are sphingomyelin + lysophosphatidylcholine, esterified sterols, and phosphatidylcholine. Lipovitellin-free cytosol contains abundant phospatidylcholine and triacylglyceride related to the yolk nuclei (the vitellus organizing center). The principal fatty acids of SmLV1 and SmLV2 are 18:2 n-6, 18:1 n-9, and 16:0. Spectrophotometry detected no pigments in either the lipovitellins or the cytosol. The egg caloric content was 92 cal/g, at proportions of 59.8% protein, 20.1% carbohydrate, and 19.9% lipid. SmLV1 and SmLV2 provided 19.5% and 17.1% of the calories, respectively. Both lipovitellins contribute mainly with proteins (15.8-18%), with the input of carbohydrates and lipids being lower than 1.3%.
Collapse
Affiliation(s)
- Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata CONICET-UNLP, Calle 60 y 120, 1900 La Plata, Argentina
| | | | | | | |
Collapse
|
8
|
Triacylglycerol catabolism in the prawn Macrobrachium borellii (Crustacea: Palaemoniade). Comp Biochem Physiol B Biochem Mol Biol 2011; 160:201-7. [PMID: 21889599 DOI: 10.1016/j.cbpb.2011.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/22/2022]
Abstract
While invertebrates store neutral lipids as their major energy source, little is known about triacylglycerol (TAG) class composition and their differential catabolism in aquatic arthropods. This study focuses on the composition of the main energy source and its catabolism by lipase from the midgut gland (hepatopancreas) of the crustacean Macrobrachium borellii. Silver-ion thin-layer chromatography of prawn large TAG deposit (80% of total lipids) and its subsequent fatty acid analysis by gas chromatography allowed the identification of 4 major fractions. These are composed of fatty acids of decreasing unsaturation and carbon chain length, the predominant being 18:1n-9. Fraction I, the most unsaturated one, contained mainly 20:5n-3; fraction II 18:2n-6; fraction III 18:1n-9 while the most saturated fraction contained mostly 16:0. Hepatopancreas main lipase (Mr 72 kDa) cross-reacted with polyclonal antibodies against insect lipase, was not dependent on the presence of Ca(2+) and had an optimum activity at 40°C and pH 8.0. Kinetic analysis showed a Michaelis-Menten behavior. A substrate competition assay evidenced lipase specificity following the order: 18:1n-9-TAG>PUFA-enriched-TAG>16:0-TAG different from that in vertebrates. These data indicate there is a reasonable correspondence between the fatty acid composition of TAG and the substrate specificity of lipase, which may be an important factor in determining which fatty acids are mobilized during lipolysis for oxidation in crustaceans.
Collapse
|
9
|
Lavarías S, Heras H, Pedrini N, Tournier H, Ansaldo M. Antioxidant response and oxidative stress levels in Macrobrachium borellii (Crustacea: Palaemonidae) exposed to the water-soluble fraction of petroleum. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:415-21. [PMID: 21320634 DOI: 10.1016/j.cbpc.2011.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
The aim of the present work was to evaluate the effect of the water soluble fraction of hydrocarbons (WSF) on the antioxidant status of the freshwater prawn Macrobrachium borellii. First, seasonal variations were studied in a non-polluted area. Hepatopancreas and gills showed season-related fluctuations in catalase (CAT), glutathione-S-transferase (GST) activities and in lipid peroxidation levels (LPO), but not in superoxide dismutase (SOD). Then, adults were exposed semi-statically to sublethal doses for 7days. CAT, SOD, GST, and glutathione peroxidase (GPx) activities and LPO, reduced glutathione (GSH) and protein oxidation (PO) levels were determined. Exposed individuals showed significant increases in CAT, SOD, and GST activities in hepatopancreas and CAT activity in gills. GPx activity did not vary in either tissues. While LPO levels increased, GSH levels decreased significantly in hepatopancreas of exposed animals, but PO levels showed no variation. Induction of SOD was also assessed by Real-time PCR mRNA expression in hepatopancreas. The non-enzymatic antioxidant activity was also tested; ABTS 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid) was higher in hemolymph of treated-prawns compared to controls, but ferric reducing activity of plasma assay (FRAP) values did not change. Taken together, the present results indicated that the antioxidant defenses of M. borellii, mainly in hepatopancreas, were significantly affected by aquatic hydrocarbon contamination, regardless of the season.
Collapse
Affiliation(s)
- S Lavarías
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP) CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), calles 60 y 120, (1900) La Plata, Argentina.
| | | | | | | | | |
Collapse
|
10
|
Laino A, Cunningham ML, Heras H, Garcia F. Isolation and characterization of two vitellins from eggs of the spider Polybetes pythagoricus (Araneae: Sparassidae). Comp Biochem Physiol B Biochem Mol Biol 2011; 158:142-8. [PMID: 21056682 DOI: 10.1016/j.cbpb.2010.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 11/17/2022]
Affiliation(s)
- Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, 60 y 120 (1900) La Plata, Argentina
| | | | | | | |
Collapse
|
11
|
Olsvik PA, Waagbø R, Pedersen SA, Meier S. Transcriptional effects of dietary exposure of oil-contaminated Calanus finmarchicus in Atlantic herring (Clupea harengus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:508-528. [PMID: 21391095 DOI: 10.1080/15287394.2011.550560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Suppression subtractive hybridization (SSH) cDNA library construction and characterization was used to identify differentially regulated transcripts from oil exposure in liver of male Atlantic herring (Clupea harengus) fed a diet containing 900 mg crude oil/kg for 2 mo. In total, 439 expressed sequence tags (EST) were sequenced, 223 from the forward subtracted library (enriched for genes putatively upregulated by oil exposure) and 216 from the reverse subtracted library (enriched for genes putatively downregulated by oil exposure). Follow-up reverse-transcription (RT) quantitative polymerase chain reaction (qPCR) analyses of gene transcription were conducted on additional herring exposed to food containing 9 (low), 90 (medium), and 900 (high) mg crude oil/kg feed for 2 mo. Chronic exposure of Atlantic herring to an oil-contaminated diet mediated upregulation of transcripts encoding antifreeze proteins, proteins in the classical complement pathway (innate immunity), and iron-metabolism proteins. Gene ontology (GO) analysis showed that "cellular response to stress," "regulation to biological quality," "response to abiotic stimuli," and "temperature homeostasis" were the most affected go at the biological processes level, and "carbohydrate binding," "water binding," and "ion binding" at the molecular function level. Of the genes examined with RT-qPCR, CYP1A, antifreeze protein, retinol binding protein 1, deleted in malignant brain tumor 1, and ovary-specific C1q-like factor demonstrated a significant upregulation. Myeloid protein 1, microfibrillar-associated protein 4, WAP65, and pentraxin were downregulated in liver of fish from the high exposure group. In conclusion, this study suggests that 2 mo of oil exposure affected genes encoding proteins involved in temperature homeostasis and possible membrane stability in addition to immune-responsive proteins in Atlantic herring.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway.
| | | | | | | |
Collapse
|
12
|
Laino A, Cunningham ML, García F, Heras H. First insight into the lipid uptake, storage and mobilization in arachnids: role of midgut diverticula and lipoproteins. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:1118-1124. [PMID: 19686754 DOI: 10.1016/j.jinsphys.2009.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 05/28/2023]
Abstract
The importance of midgut diverticula (M-diverticula) and hemolymph lipoproteins in the lipid homeostasis of Polybetes phythagoricus was studied. Radioactivity distribution in tissues and hemolymph was analyzed either after feeding or injecting [1-(14)C]-palmitate. In both experiments, radioactivity was mostly taken up by M-diverticula that synthesized diacylglycerols, triacylglycerols and phospholipids in a ratio close to its lipid class composition. M-diverticula total lipids represent 8.08% (by wt), mostly triacylglycerols (74%) and phosphatidylcholine (13%). Major fatty acids were (in decreasing order of abundance) 18:1n-9, 18:2n-6, 16:0, 16:1n-7, 18:0, 18:3n-3. Spider hemocyanin-containing lipoprotein (VHDL) transported 83% of the circulating label at short incubation times. After 24h, VHDL and HDL-1 (comparable to insect lipophorin) were found to be involved in the lipid uptake and release from M-diverticula, HDL-2 playing a negligible role. Lipoprotein's labelled lipid changed with time, phospholipids becoming the main circulating lipid after 24h. These results indicate that arachnid M-diverticula play a central role in lipid synthesis, storage and movilization, analogous to insect fat body or crustacean midgut gland. The relative contribution of HDL-1 and VHDL to lipid dynamics indicated that, unlike insects, spider VHDL significantly contributes to the lipid exchange between M-diverticula and hemolymph.
Collapse
Affiliation(s)
- Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata, CCT-La Plata CONICET-UNLP, La Plata 1900, Argentina
| | | | | | | |
Collapse
|
13
|
Lavarías S, Pasquevich MY, Dreon MS, Heras H. Partial characterization of a malonyl-CoA-sensitive carnitine O-palmitoyltransferase I from Macrobrachium borellii (Crustacea: Palaemonidae). Comp Biochem Physiol B Biochem Mol Biol 2009; 152:364-9. [PMID: 19171199 DOI: 10.1016/j.cbpb.2009.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/02/2009] [Accepted: 01/04/2009] [Indexed: 11/15/2022]
Abstract
The shuttle system that mediates the transport of fatty acids across the mitochondrial membrane in invertebrates has received little attention. Carnitine O-palmitoyltransferase I (EC 2.3.1.21; CPT I) is a key component of this system that in vertebrates controls long-chain fatty acid beta-oxidation. To gain knowledge on the acyltransferases in aquatic arthropods, physical, kinetic, regulatory and immunological properties of CPT of the midgut gland mitochondria of Macrobrachium borellii were assayed. CPT I optimum conditions were 34 degrees C and pH=8.0. Kinetic analysis revealed a Km for carnitine of 2180+/-281 microM and a Km for palmitoyl-CoA of 98.9+/-8.9 microM, while V(max) were 56.5+/-6.6 and 36.7+/-4.8 nmol min(-1) mg protein(-1), respectively. A Hill coefficient, n~1, indicate a Michaelis-Menten behavior. The CPT I activity was sensitive to regulation by malonyl-CoA, with an IC(50) of 25.2 microM. Electrophoretic and immunological analyses showed that a 66 kDa protein with an isoelectric point of 5.1 cross-reacted with both rat liver and muscle-liver anti CPT I polyclonal antibodies, suggesting antigenic similarity with the rat enzymes. Although CPT I displayed kinetic differences with insect and vertebrates, prawn showed a high capacity for energy generation through beta-oxidation of long-chain fatty acids.
Collapse
Affiliation(s)
- Sabrina Lavarías
- Instituto de Investigaciones Bioquímicas de La Plata, Universidad Nacional de La Plata-CONICET CCT, Argentina
| | | | | | | |
Collapse
|
14
|
Lavarías S, García F, Pollero RJ, Heras H. Effect of the water-soluble fraction of petroleum on microsomal lipid metabolism of Macrobrachium borellii (Arthropoda: Crustacea). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 82:265-71. [PMID: 17433457 DOI: 10.1016/j.aquatox.2007.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 02/22/2007] [Accepted: 02/27/2007] [Indexed: 05/14/2023]
Abstract
The effect of the water-soluble fraction of crude oil (WSF) on lipid metabolism was studied at critical metabolic points, namely fatty acid activation, enzymes of triacylglycerol and phospholipid synthesis, and membrane (lipid packing) properties in the freshwater prawn Macrobrachium borellii. To determine the effect of the contaminant, adults and embryos at different stages of development were exposed to a sublethal concentration of WSF for 7 days. After exposure, microsomal palmitoyl-CoA synthetase (ACS) showed a two-fold increase in adult midgut gland. Embryo's ACS activity was also affected, the increment being correlated with the developing stage. Endoplasmic reticulum acylglycerol synthesis was also increased by WSF exposure in adults and stage 5 embryos, but not at earlier stages of development. Triacylglycerol synthesis was particularly increased (18.5%) in adult midgut gland. The microsomal membrane properties were studied by fluorescent steady-state anisotropy, using the rotational behavior of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). Microsomes from midgut gland of WSF-exposed prawn showed no differences in fluidity. Nevertheless, microsomes incubated with WSF in vitro increased their fluidity in a temperature- and WSF concentration-dependent fashion. Both, aliphatic and aromatic hydrocarbons individually tested elicited an increase in membrane fluidity at 10 mg/l, but at 4 mg/l only nC10-C16 aliphatics did. In vivo results indicate that WSF increased the activity of microsomal enzymes that are critical in lipid metabolism, though this change was not due to direct alterations in membrane fluidity, suggesting a synthesis induction, or an enzyme-regulatory mechanism. Nevertheless, hydrocarbons elicited membrane fluidity alterations in in vitro experiments at concentrations that could be found in the environment after an oil spill.
Collapse
Affiliation(s)
- S Lavarías
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET - Cátedra de Bioquímica, UNLP, Calles 60 y 120, (1900) La Plata, Argentina
| | | | | | | |
Collapse
|