1
|
Wei X, Wang J, Tan Y, Zhu H, Wang Y, Zhou S, Guo J, Wang Y, Huang L. Analysis of Coix Seed Oil Biosynthesis Facilitates the Identification of Lysophosphatidic Acid Acyltransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12093-12104. [PMID: 40304269 DOI: 10.1021/acs.jafc.4c12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Coix seed oil (CSO) is a natural substance with significant anticancer potential. However, the molecular mechanism and the gene regulatory network of lipid biosynthesis were not identified in Coix seed. Here, a comprehensive transcriptome analysis was conducted on two Coix varieties with different lipid contents. The results revealed that a total of 48,110 genes were generated by de novo assembly, of which 84.45% genes were successfully annotated by the database. Based on functional annotation and gene expression, the metabolic network of crucial genes for oil accumulation and fatty acid (FA) synthesis in Coix seed has been successfully established, and it has been confirmed that lysophosphatidic acid acyltransferase (LPAT) in triacylglycerol (TAG) biosynthesis contributed to the changes in the content of FAs and had a significant selective binding ability to unsaturated fatty acids (UFAs) by the heterologous expression of yeast. Our data provides valuable references for subsequent gene function characterization and biosynthesis pathway optimization.
Collapse
Affiliation(s)
- Xiaoyan Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jian Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuping Tan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haxiu Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shufeng Zhou
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanan Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Huang L, Liao Z, Zou Y, Liu Y, Wang H, Zou L, Liang S, Tong S, Kang Y, Chen T, Xiong X, Xing M. BnLPAT2 gene regulates oil accumulation in Brassica napus by modulating linoleic and linolenic acid levels in seeds. PLoS One 2025; 20:e0321548. [PMID: 40238837 PMCID: PMC12002453 DOI: 10.1371/journal.pone.0321548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/09/2025] [Indexed: 04/18/2025] Open
Abstract
Lysophosphatidate acyltransferase (LPAT) catalyzes the conversion of lysophosphatidic acid to phosphatidic acid, a key step in lipid biosynthesis. This study cloned four LPAT2 genes from Brassica napus: BnLPAT2-A04, A07, A09, and C08. Functional analysis using bioinformatics, qRT-PCR (Quantitative Reverse Transcription Polymerase Chain Reaction), CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9), overexpression, and transcriptome sequencing revealed that these genes encode proteins containing the conserved PLN02380 domain. BnLPAT2-A07/A09/C08 showed strong conservation with Arabidopsis AtLPAT2. Promoter analysis revealed multiple cis-elements related to stress, light, and phytohormone responses, with the BnLPAT2-A09/C08 promoters containing the most diverse cis-elements. Expression analysis showed that BnLPAT2-A07/C08 was highly expressed in various tissues, with BnLPAT2-A07 peaking during seed development. Overexpression of these genes increased seed oil content and the proportion of C18:2/C18:3 fatty acids, with BnLPAT2-A07 achieving an increase in oil content ranging from 4.46% to 6.44%. Gene knockout reduced oil content by 7.5% and affected fatty acid accumulation. Transcriptome sequencing analysis suggested that the BnLPAT2 genes promote the production of long-chain fatty acids, such as Linoleic acid (C18:2) and Linolenic acid (C18:3), through biological processes, including fatty acid biosynthesis, very long-chain fatty acid biosynthesis, and very long-chain fatty acid metabolism, thereby improving seed oil content. This study provides valuable insights into lipid metabolism and offers a theoretical foundation for improving oil content and fatty acid composition in B. napus.
Collapse
Affiliation(s)
- Luyao Huang
- Yichun Academy of Sciences, Yichun, Jiangxi, China
| | | | - Yujing Zou
- Yichun Academy of Sciences, Yichun, Jiangxi, China
| | - Yong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Huihui Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Leping Zou
- Yichun Academy of Sciences, Yichun, Jiangxi, China
| | - Sun Liang
- Yichun Academy of Sciences, Yichun, Jiangxi, China
| | - Shan Tong
- Yichun Academy of Sciences, Yichun, Jiangxi, China
| | - Yu Kang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui, China
| | - Tuo Chen
- Anxiang County Agricultural and Rural Affairs Bureau, Anxiang, Hunan, China
| | - Xinghua Xiong
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui, China
| | - Man Xing
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Panigrahi R, Glover JNM, Nallusamy S. A look into DGAT1 through the EM lenses. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184069. [PMID: 36216097 DOI: 10.1016/j.bbamem.2022.184069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
With the advent of modern detectors and robust structure solution pipeline, cryogenic electron microscopy has recently proved to be game changer in structural biology. Membrane proteins are challenging targets for structural biologists. This minireview focuses a membrane embedded triglyceride synthesizing machine, DGAT1. Decades of research had built the foundational knowledge on this enzyme's activity. However, recently solved cryo-EM structures of this enzyme, in apo and bound form, has provided critical mechanistic insights. The flipping of the catalytic histidine is critical of enzyme catalysis. The structures explain why the enzyme has preference to long fatty acyl chains over the short forms.
Collapse
Affiliation(s)
- Rashmi Panigrahi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
4
|
Genome-wide association studies and genomic selection assays made in a large sample of cacao (Theobroma cacao L.) germplasm reveal significant marker-trait associations and good predictive value for improving yield potential. PLoS One 2022; 17:e0260907. [PMID: 36201531 PMCID: PMC9536643 DOI: 10.1371/journal.pone.0260907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
A genome-wide association study (GWAS) was undertaken to unravel marker-trait associations (MTAs) between SNP markers and phenotypic traits. It involved a subset of 421 cacao accessions from the large and diverse collection conserved ex situ at the International Cocoa Genebank Trinidad. A Mixed Linear Model (MLM) in TASSEL was used for the GWAS and followed by confirmatory analyses using GAPIT FarmCPU. An average linkage disequilibrium (r2) of 0.10 at 5.2 Mb was found across several chromosomes. Seventeen significant (P ≤ 8.17 × 10-5 (-log10 (p) = 4.088)) MTAs of interest, including six that pertained to yield-related traits, were identified using TASSEL MLM. The latter accounted for 5 to 17% of the phenotypic variation expressed. The highly significant association (P ≤ 8.17 × 10-5) between seed length to width ratio and TcSNP 733 on chromosome 5 was verified with FarmCPU (P ≤ 1.12 × 10-8). Fourteen MTAs were common to both the TASSEL and FarmCPU models at P ≤ 0.003. The most significant yield-related MTAs involved seed number and seed length on chromosome 7 (P ≤ 1.15 × 10-14 and P ≤ 6.75 × 10-05, respectively) and seed number on chromosome 1 (P ≤ 2.38 × 10-05), based on the TASSEL MLM. It was noteworthy that seed length, seed length to width ratio and seed number were associated with markers at different loci, indicating their polygenic nature. Approximately 40 candidate genes that encode embryo and seed development, protein synthesis, carbohydrate transport and lipid biosynthesis and transport were identified in the flanking regions of the significantly associated SNPs and in linkage disequilibrium with them. A significant association of fruit surface anthocyanin intensity co-localised with MYB-related protein 308 on chromosome 4. Testing of a genomic selection approach revealed good predictive value (genomic estimated breeding values (GEBV)) for economic traits such as seed number (GEBV = 0.611), seed length (0.6199), seed width (0.5435), seed length to width ratio (0.5503), seed/cotyledon mass (0.6014) and ovule number (0.6325). The findings of this study could facilitate genomic selection and marker-assisted breeding of cacao thereby expediting improvement in the yield potential of cacao planting material.
Collapse
|
5
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
6
|
Xue J, Gao H, Xue Y, Shi R, Liu M, Han L, Gao Y, Zhou Y, Zhang F, Zhang H, Jia X, Li R. Functional Characterization of Soybean Diacylglycerol Acyltransferase 3 in Yeast and Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:854103. [PMID: 35693158 PMCID: PMC9174931 DOI: 10.3389/fpls.2022.854103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Diacylglycerol acyltransferases (DGAT) function as the key rate-limiting enzymes in de novo biosynthesis of triacylglycerol (TAG) by transferring an acyl group from acyl-CoA to sn-3 of diacylglycerol (DAG) to form TAG. Here, two members of the type 3 DGAT gene family, GmDGAT3-1 and GmDGAT3-2, were identified from the soybean (Glycine max) genome. Both of them were predicted to encode soluble cytosolic proteins containing the typical thioredoxin-like ferredoxin domain. Quantitative PCR analysis revealed that GmDGAT3-2 expression was much higher than GmDGAT3-1's in various soybean tissues such as leaves, flowers, and seeds. Functional complementation assay using TAG-deficient yeast (Saccharomyces cerevisiae) mutant H1246 demonstrated that GmDGAT3-2 fully restored TAG biosynthesis in the yeast and preferentially incorporated monounsaturated fatty acids (MUFAs), especially oleic acid (C18:1) into TAGs. This substrate specificity was further verified by fatty-acid feeding assays and in vitro enzyme activity characterization. Notably, transgenic tobacco (Nicotiana benthamiana) data showed that heterogeneous expression of GmDGAT3-2 resulted in a significant increase in seed oil and C18:1 levels but little change in contents of protein and starch compared to the EV-transformed tobacco plants. Taken together, GmDGAT3-2 displayed a strong enzymatic activity to catalyze TAG assembly with high substrate specificity for MUFAs, particularly C18:1, playing an important role in the cytosolic pathway of TAG synthesis in soybean. The present findings provide a scientific reference for improving oil yield and FA composition in soybean through gene modification, further expanding our knowledge of TAG biosynthesis and its regulatory mechanism in oilseeds.
Collapse
Affiliation(s)
- Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
| | - Huiling Gao
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
| | - Yinghong Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
| | - Ruixiang Shi
- College of Landscape Architecture, Northeast Forestry University, Haerbin, China
| | - Mengmeng Liu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
| | - Lijun Han
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
| | - Yu Gao
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
| | - Yali Zhou
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
| | - Fei Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
| | - Haiping Zhang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University (Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences), Taiyuan, China
| | - Xiaoyun Jia
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
7
|
Wayne LL, Gachotte DJ, Graupner PR, Adelfinskaya Y, McCaskill DG, Metz JG, Zirkle R, Walsh TA. Plant and algal lysophosphatidic acid acyltransferases increase docosahexaenoic acid accumulation at the sn-2 position of triacylglycerol in transgenic Arabidopsis seed oil. PLoS One 2021; 16:e0256625. [PMID: 34432852 PMCID: PMC8386867 DOI: 10.1371/journal.pone.0256625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Although docosahexaenoic acid (DHA), an important dietary omega-3 polyunsaturated fatty acid (PUFA), is at present primarily sourced from marine fish, bioengineered crops producing DHA may offer a more sustainable and cost-effective source. DHA has been produced in transgenic oilseed crops, however, DHA in seed oil primarily occupies the sn-1/3 positions of triacylglycerol (TAG) with relatively low amounts of DHA in the sn-2 position. To increase the amount of DHA in the sn-2 position of TAG and in seed oil, putative lysophosphatidic acid acyltransferases (LPAATs) were identified and characterized from the DHA-producing alga Schizochytrium sp. and from soybean (Glycine max). The affinity-purified proteins were confirmed to have LPAAT activity. Expression of the Schizochytrium or soybean LPAATs in DHA-producing Arabidopsis expressing the Schizochytrium PUFA synthase system significantly increased the total amount of DHA in seed oil. A novel sensitive band-selective heteronuclear single quantum coherence (HSQC) NMR method was developed to quantify DHA at the sn-2 position of glycerolipids. More than two-fold increases in sn-2 DHA were observed for Arabidopsis lines expressing Schizochytrium or soybean LPAATs, with one Schizochytrium LPAAT driving DHA accumulation in the sn-2 position to 61% of the total DHA. Furthermore, expression of a soybean LPAAT led to a redistribution of DHA-containing TAG species, with two new TAG species identified. Our results demonstrate that transgenic expression of Schizochytrium or soybean LPAATs can increase the proportion of DHA at the sn-2 position of TAG and the total amount of DHA in the seed oil of a DHA-accumulating oilseed plant. Additionally, the band-selective HSQC NMR method that we developed provides a sensitive and robust method for determining the regiochemistry of DHA in glycerolipids. These findings will benefit the advancement of sustainable sources of DHA via transgenic crops such as canola and soybean.
Collapse
Affiliation(s)
- Laura L. Wayne
- Corteva Agriscience, Johnston, Iowa, United States of America
- * E-mail:
| | | | - Paul R. Graupner
- Corteva Agriscience, Indianapolis, Indiana, United States of America
| | | | | | - James G. Metz
- DSM Nutritional Products, Columbia, Maryland, United States of America
| | - Ross Zirkle
- DSM Nutritional Products, Columbia, Maryland, United States of America
| | - Terence A. Walsh
- Corteva Agriscience, Indianapolis, Indiana, United States of America
| |
Collapse
|
8
|
Xie D, Dai Z, Yang Z, Tang Q, Deng C, Xu Y, Wang J, Chen J, Zhao D, Zhang S, Zhang S, Su J. Combined genome-wide association analysis and transcriptome sequencing to identify candidate genes for flax seed fatty acid metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:98-107. [PMID: 31300147 DOI: 10.1016/j.plantsci.2019.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 05/11/2023]
Abstract
Flax seeds have a high oil content and are rich in unsaturated fatty acids, which have advantageous effects in preventing chronic diseases, such as cardiovascular diseases. At present, flax seeds are mainly developed for oil. Therefore, it is of practical significance to identify the candidate genes of fatty acid metabolism in flax seeds for breeding flax seeds with high oil content. In the present study, a natural population of flax containing 224 samples planted in 3 different environments was studied. The genome-wide association analysis (GWAS) of seed fatty acid content was conducted based on specific length amplified fragment sequencing (SLAF-seq) data. Transcriptome sequencing (RNA-seq) of samples from 3 different periods (14 d, 21 d and 28 d after anthesis) during seed development of the low oil variety Shuangya 4 and the high oil variety NEW was performed. The candidate genes for seed fatty acid metabolism were identified by combined analysis of these 2 methods. GWAS detected 16 SNP loci significantly associated with seed fatty acid content, and RNA-seq analysis identified 11,802 differentially expressed genes between high and low oil samples. Pathway enrichment analysis revealed that some differentially expressed genes were classified into fatty acid-related pathways. After comparison of these differentially expressed genes with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, 20 genes homologous to other species were obtained. After analysis, 10 candidate genes were screened by GWAS and RNA-seq screening. Of these 10 genes, qRT-PCR assays using flax seeds in 5 different developmental stages showed that the expression levels of 6 candidate genes were significantly correlated with 5 fatty acid contents in seeds of the high oil variety NEW. Through metabolic pathway analysis found that 6 genes were involved in important fatty acid metabolic pathways, and some of them also have upstream and downstream regulation relations. The present study combined GWAS and RNA-seq methods to identify candidate genes for fatty acid metabolism in flax seeds, which provided reference for screening of candidate genes with complex traits.
Collapse
Affiliation(s)
- Dongwei Xie
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| | - Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| | - Jing Wang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China.
| | - Jing Chen
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China.
| | - Debao Zhao
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China.
| | - Shuli Zhang
- Wuchang Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Wuchang, China.
| | - Shuquan Zhang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China.
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| |
Collapse
|
9
|
Fahs Z, Rossez Y, Guénin S, Gutierrez L, Thomasset B, Perrin Y. Cloning and molecular characterization of three lysophosphatidic acid acyltransferases expressed in flax seeds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:41-50. [PMID: 30824020 DOI: 10.1016/j.plantsci.2018.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/27/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
In the context of the growing demand for α-linolenic acid due to its high nutritional value as a polyunsaturated fatty acid, we have investigated the contribution of 2-lysophosphatidic acid acyltransferase (LPAAT) enzymes from flax (Linum usitatissimum) in the accumulation of α-linolenic acid into the oil fraction of flax seed. We have isolated the cDNAs encoding three class A microsomal LPAAT2 isoforms from developing flax seeds. The three isoforms, denominated LPAAT2A, LPAAT2A2 and LPAAT2B, are able to complement the LPAAT deficient JC201 E. coli mutant, confirming their functionality. We have performed enzymatic assays showing that the specific activity of the LPAAT2A isoform is significantly higher than that of the LPAAT2A2 and LPAAT2B toward the unsaturated oleic, linoleic and linolenic acids. Moreover, LPAAT2A presents in vitro a high specificity and selectivity for linoleic and linolenic acids as compared to saturated fatty acids. The three isoforms are expressed during all the stages of seed development and in stem and leaf tissues, as shown by an analysis of the transcription level of the corresponding genes. The heterologous expression of LPAAT2A in Arabidopsis seeds leads to an increase in the accumulation of linoleic and linolenic acids in the oil fraction of the seeds from two transgenic lines.
Collapse
Affiliation(s)
- Zeinab Fahs
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France.
| | - Yannick Rossez
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France.
| | - Stéphanie Guénin
- CRRBM, Bâtiment Serres Transfert, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France.
| | - Laurent Gutierrez
- CRRBM, Bâtiment Serres Transfert, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France.
| | - Brigitte Thomasset
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France.
| | - Yolande Perrin
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
10
|
Maraschin FDS, Kulcheski FR, Segatto ALA, Trenz TS, Barrientos-Diaz O, Margis-Pinheiro M, Margis R, Turchetto-Zolet AC. Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: Function, biotechnological application and evolution. Prog Lipid Res 2019; 73:46-64. [DOI: 10.1016/j.plipres.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 12/01/2018] [Indexed: 01/30/2023]
|
11
|
Substrate preferences of long-chain acyl-CoA synthetase and diacylglycerol acyltransferase contribute to enrichment of flax seed oil with α-linolenic acid. Biochem J 2018. [PMID: 29523747 DOI: 10.1042/bcj20170910] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Seed oil from flax (Linum usitatissimum) is enriched in α-linolenic acid (ALA; 18:3Δ9cis,12cis,15cis ), but the biochemical processes underlying the enrichment of flax seed oil with this polyunsaturated fatty acid are not fully elucidated. Here, a potential process involving the catalytic actions of long-chain acyl-CoA synthetase (LACS) and diacylglycerol acyltransferase (DGAT) is proposed for ALA enrichment in triacylglycerol (TAG). LACS catalyzes the ATP-dependent activation of free fatty acid to form acyl-CoA, which in turn may serve as an acyl-donor in the DGAT-catalyzed reaction leading to TAG. To test this hypothesis, flax LACS and DGAT cDNAs were functionally expressed in Saccharomyces cerevisiae strains to probe their possible involvement in the enrichment of TAG with ALA. Among the identified flax LACSs, LuLACS8A exhibited significantly enhanced specificity for ALA over oleic acid (18:1Δ9cis ) or linoleic acid (18:2Δ9cis,12cis ). Enhanced α-linolenoyl-CoA specificity was also observed in the enzymatic assay of flax DGAT2 (LuDGAT2-3), which displayed ∼20 times increased preference toward α-linolenoyl-CoA over oleoyl-CoA. Moreover, when LuLACS8A and LuDGAT2-3 were co-expressed in yeast, both in vitro and in vivo experiments indicated that the ALA-containing TAG enrichment process was operative between LuLACS8A- and LuDGAT2-3-catalyzed reactions. Overall, the results support the hypothesis that the cooperation between the reactions catalyzed by LACS8 and DGAT2 may represent a route to enrich ALA production in the flax seed oil.
Collapse
|
12
|
Kinetics of the incorporation of the main phenolic compounds into the lignan macromolecule during flaxseed development. Food Chem 2017; 217:1-8. [DOI: 10.1016/j.foodchem.2016.08.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 11/21/2022]
|
13
|
Turchetto-Zolet AC, Christoff AP, Kulcheski FR, Loss-Morais G, Margis R, Margis-Pinheiro M. Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses. Genet Mol Biol 2016; 39:524-538. [PMID: 27706370 PMCID: PMC5127155 DOI: 10.1590/1678-4685-gmb-2016-0024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Since the first diacylglycerol acyltransferase (DGAT) gene was
characterized in plants, a number of studies have focused on understanding the role
of DGAT activity in plant triacylglycerol (TAG) biosynthesis.
DGAT enzyme is essential in controlling TAGs synthesis and is
encoded by different genes. DGAT1 and DGAT2 are the
two major types of DGATs and have been well characterized in many
plants. On the other hand, the DGAT3 and WS/DGAT
have received less attention. In this study, we present the first general view of the
presence of putative DGAT3 and
WS/DGAT in several plant species and report on
the diversity and evolution of these genes and its relationships with the two main
DGAT genes (DGAT1 and DGAT2).
According to our analyses DGAT1, DGAT2, DGAT3 and
WS/DGAT are very divergent genes and may have
distinct origin in plants. They also present divergent expression patterns in
different organs and tissues. The maintenance of several types of genes encoding DGAT
enzymes in plants demonstrates the importance of DGAT activity for TAG biosynthesis.
Evolutionary history studies of DGATs coupled with their expression patterns help us
to decipher their functional role in plants, helping to drive future biotechnological
studies.
Collapse
Affiliation(s)
- Andreia Carina Turchetto-Zolet
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Paula Christoff
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Franceli Rodrigues Kulcheski
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guilherme Loss-Morais
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática (LABINFO), Rio de Janeiro, RJ, Brazil
| | - Rogerio Margis
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Pan X, Chen G, Kazachkov M, Greer MS, Caldo KMP, Zou J, Weselake RJ. In Vivo and in Vitro Evidence for Biochemical Coupling of Reactions Catalyzed by Lysophosphatidylcholine Acyltransferase and Diacylglycerol Acyltransferase. J Biol Chem 2015; 290:18068-18078. [PMID: 26055703 DOI: 10.1074/jbc.m115.654798] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/06/2022] Open
Abstract
Seed oils of flax (Linum usitatissimum L.) and many other plant species contain substantial amounts of polyunsaturated fatty acids (PUFAs). Phosphatidylcholine (PC) is the major site for PUFA synthesis. The exact mechanisms of how these PUFAs are channeled from PC into triacylglycerol (TAG) needs to be further explored. By using in vivo and in vitro approaches, we demonstrated that the PC deacylation reaction catalyzed by the reverse action of acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) can transfer PUFAs on PC directly into the acyl-CoA pool, making these PUFAs available for the diacylglycerol acyltransferase (DGAT)-catalyzed reaction for TAG production. Two types of yeast mutants were generated for in vivo and in vitro experiments, respectively. Both mutants provide a null background with no endogenous TAG forming capacity and an extremely low LPCAT activity. In vivo experiments showed that co-expressing flax DGAT1-1 and LPCAT1 in the yeast quintuple mutant significantly increased 18-carbon PUFAs in TAG with a concomitant decrease of 18-carbon PUFAs in phospholipid. We further showed that after incubation of sn-2-[(14)C]acyl-PC, formation of [(14)C]TAG was only possible with yeast microsomes containing both LPCAT1 and DGAT1-1. Moreover, the specific activity of overall LPCAT1 and DGAT1-1 coupling process exhibited a preference for transferring (14)C-labeled linoleoyl or linolenoyl than oleoyl moieties from the sn-2 position of PC to TAG. Together, our data support the hypothesis of biochemical coupling of the LPCAT1-catalyzed reverse reaction with the DGAT1-1-catalyzed reaction for incorporating PUFAs into TAG. This process represents a potential route for enriching TAG in PUFA content during seed development in flax.
Collapse
Affiliation(s)
- Xue Pan
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Michael Kazachkov
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Michael S Greer
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jitao Zou
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Randall J Weselake
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
15
|
Thambugala D, Cloutier S. Fatty acid composition and desaturase gene expression in flax (Linum usitatissimum L.). J Appl Genet 2014; 55:423-32. [PMID: 24871199 PMCID: PMC4185102 DOI: 10.1007/s13353-014-0222-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 10/29/2022]
Abstract
Little is known about the relationship between expression levels of fatty acid desaturase genes during seed development and fatty acid (FA) composition in flax. In the present study, we looked at promoter structural variations of six FA desaturase genes and their relative expression throughout seed development. Computational analysis of the nucleotide sequences of the sad1, sad2, fad2a, fad2b, fad3a and fad3b promoters showed several basic transcriptional elements including CAAT and TATA boxes, and several putative target-binding sites for transcription factors, which have been reported to be involved in the regulation of lipid metabolism. Using semi-quantitative reverse transcriptase PCR, the expression patterns throughout seed development of the six FA desaturase genes were measured in six flax genotypes that differed for FA composition but that carried the same desaturase isoforms. FA composition data were determined by phenotyping the field grown genotypes over four years in two environments. All six genes displayed a bell-shaped pattern of expression peaking at 20 or 24 days after anthesis. Sad2 was the most highly expressed. The expression of all six desaturase genes did not differ significantly between genotypes (P = 0.1400), hence there were no correlations between FA desaturase gene expression and variations in FA composition in relatively low, intermediate and high linolenic acid genotypes expressing identical isoforms for all six desaturases. These results provide further clues towards understanding the genetic factors responsible for FA composition in flax.
Collapse
Affiliation(s)
- Dinushika Thambugala
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, Canada, R3T 2N2
| | | |
Collapse
|
16
|
Soto-Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen A, Cloutier S. Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:881-96. [PMID: 24463785 PMCID: PMC3964306 DOI: 10.1007/s00122-014-2264-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/03/2014] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE The identification of stable QTL for seed quality traits by association mapping of a diverse panel of linseed accessions establishes the foundation for assisted breeding and future fine mapping in linseed. Linseed oil is valued for its food and non-food applications. Modifying its oil content and fatty acid (FA) profiles to meet market needs in a timely manner requires clear understanding of their quantitative trait loci (QTL) architectures, which have received little attention to date. Association mapping is an efficient approach to identify QTL in germplasm collections. In this study, we explored the quantitative nature of seed quality traits including oil content (OIL), palmitic acid, stearic acid, oleic acid, linoleic acid (LIO) linolenic acid (LIN) and iodine value in a flax core collection of 390 accessions assayed with 460 microsatellite markers. The core collection was grown in a modified augmented design at two locations over 3 years and phenotypic data for all seven traits were obtained from all six environments. Significant phenotypic diversity and moderate to high heritability for each trait (0.73-0.99) were observed. Most of the candidate QTL were stable as revealed by multivariate analyses. Nine candidate QTL were identified, varying from one for OIL to three for LIO and LIN. Candidate QTL for LIO and LIN co-localized with QTL previously identified in bi-parental populations and some mapped nearby genes known to be involved in the FA biosynthesis pathway. Fifty-eight percent of the QTL alleles were absent (private) in the Canadian cultivars suggesting that the core collection possesses QTL alleles potentially useful to improve seed quality traits. The candidate QTL identified herein will establish the foundation for future marker-assisted breeding in linseed.
Collapse
Affiliation(s)
- Braulio J. Soto-Cerda
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2 Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB R3T 2M9 Canada
- Genomics and Bioinformatics Unit, Agriaquaculture Nutritional Genomic Center (CGNA), Km 10 Camino Cajón-Vilcún, Temuco, La Araucania Chile
| | - Scott Duguid
- Morden Research Station, Agriculture and Agri-Food Canada, Route 100, Morden, MB R6M 1Y5 Canada
| | - Helen Booker
- Crop Development Centre, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Gordon Rowland
- Crop Development Centre, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Axel Diederichsen
- Plant Gene Resources of Canada, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Sylvie Cloutier
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2 Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB R3T 2M9 Canada
| |
Collapse
|
17
|
Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM. Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 2013; 11:4662-97. [PMID: 24284429 PMCID: PMC3853752 DOI: 10.3390/md11114662] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/19/2022] Open
Abstract
The importance of n-3 long chain polyunsaturated fatty acids (LC-PUFAs) for human health has received more focus the last decades, and the global consumption of n-3 LC-PUFA has increased. Seafood, the natural n-3 LC-PUFA source, is harvested beyond a sustainable capacity, and it is therefore imperative to develop alternative n-3 LC-PUFA sources for both eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). Genera of algae such as Nannochloropsis, Schizochytrium, Isochrysis and Phaedactylum within the kingdom Chromista have received attention due to their ability to produce n-3 LC-PUFAs. Knowledge of LC-PUFA synthesis and its regulation in algae at the molecular level is fragmentary and represents a bottleneck for attempts to enhance the n-3 LC-PUFA levels for industrial production. In the present review, Phaeodactylum tricornutum has been used to exemplify the synthesis and compartmentalization of n-3 LC-PUFAs. Based on recent transcriptome data a co-expression network of 106 genes involved in lipid metabolism has been created. Together with recent molecular biological and metabolic studies, a model pathway for n-3 LC-PUFA synthesis in P. tricornutum has been proposed, and is compared to industrialized species of Chromista. Limitations of the n-3 LC-PUFA synthesis by enzymes such as thioesterases, elongases, acyl-CoA synthetases and acyltransferases are discussed and metabolic bottlenecks are hypothesized such as the supply of the acetyl-CoA and NADPH. A future industrialization will depend on optimization of chemical compositions and increased biomass production, which can be achieved by exploitation of the physiological potential, by selective breeding and by genetic engineering.
Collapse
Affiliation(s)
- Alice Mühlroth
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| | - Keshuai Li
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| | - Gunvor Røkke
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (G.R.); (M.F.H.-M.); (O.V.)
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| | - Yngvar Olsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| | - Martin F. Hohmann-Marriott
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (G.R.); (M.F.H.-M.); (O.V.)
| | - Olav Vadstein
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (G.R.); (M.F.H.-M.); (O.V.)
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway; E-Mails: (A.M.); (K.L.); (P.W.); (Y.O.)
| |
Collapse
|
18
|
Thambugala D, Duguid S, Loewen E, Rowland G, Booker H, You FM, Cloutier S. Genetic variation of six desaturase genes in flax and their impact on fatty acid composition. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2627-41. [PMID: 23928861 PMCID: PMC3782649 DOI: 10.1007/s00122-013-2161-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/12/2013] [Indexed: 05/09/2023]
Abstract
Flax (Linum usitatissimum L.) is one of the richest plant sources of omega-3 fatty acids praised for their health benefits. In this study, the extent of the genetic variability of genes encoding stearoyl-ACP desaturase (SAD), and fatty acid desaturase 2 (FAD2) and 3 (FAD3) was determined by sequencing the six paralogous genes from 120 flax accessions representing a broad range of germplasm including some EMS mutant lines. A total of 6 alleles for sad1 and sad2, 21 for fad2a, 5 for fad2b, 15 for fad3a and 18 for fad3b were identified. Deduced amino acid sequences of the alleles predicted 4, 2, 3, 4, 6 and 7 isoforms, respectively. Allele frequencies varied greatly across genes. Fad3a, with 110 SNPs and 19 indels, and fad3b, with 50 SNPs and 5 indels, showed the highest levels of genetic variations. While most of the SNPs and all the indels were silent mutations, both genes carried nonsense SNP mutations resulting in premature stop codons, a feature not observed in sad and fad2 genes. Some alleles and isoforms discovered in induced mutant lines were absent in the natural germplasm. Correlation of these genotypic data with fatty acid composition data of 120 flax accessions phenotyped in six field experiments revealed statistically significant effects of some of the SAD and FAD isoforms on fatty acid composition, oil content and iodine value. The novel allelic variants and isoforms identified for the six desaturases will be a resource for the development of oilseed flax with unique and useful fatty acid profiles.
Collapse
Affiliation(s)
- Dinushika Thambugala
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB R3T 2N2 Canada
| | - Scott Duguid
- Morden Research Station, Agriculture and Agri-Food Canada, 101 Route 100, Unit 100, Morden, MB R6M 1Y5 Canada
| | - Evelyn Loewen
- Morden Research Station, Agriculture and Agri-Food Canada, 101 Route 100, Unit 100, Morden, MB R6M 1Y5 Canada
| | - Gordon Rowland
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Helen Booker
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Frank M. You
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB R3T 2M9 Canada
| | - Sylvie Cloutier
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB R3T 2N2 Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB R3T 2M9 Canada
| |
Collapse
|
19
|
Thambugala D, Duguid S, Loewen E, Rowland G, Booker H, You FM, Cloutier S. Genetic variation of six desaturase genes in flax and their impact on fatty acid composition. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2627-2641. [PMID: 23928861 DOI: 10.1007/s00122-013-2161-2162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/12/2013] [Indexed: 05/24/2023]
Abstract
Flax (Linum usitatissimum L.) is one of the richest plant sources of omega-3 fatty acids praised for their health benefits. In this study, the extent of the genetic variability of genes encoding stearoyl-ACP desaturase (SAD), and fatty acid desaturase 2 (FAD2) and 3 (FAD3) was determined by sequencing the six paralogous genes from 120 flax accessions representing a broad range of germplasm including some EMS mutant lines. A total of 6 alleles for sad1 and sad2, 21 for fad2a, 5 for fad2b, 15 for fad3a and 18 for fad3b were identified. Deduced amino acid sequences of the alleles predicted 4, 2, 3, 4, 6 and 7 isoforms, respectively. Allele frequencies varied greatly across genes. Fad3a, with 110 SNPs and 19 indels, and fad3b, with 50 SNPs and 5 indels, showed the highest levels of genetic variations. While most of the SNPs and all the indels were silent mutations, both genes carried nonsense SNP mutations resulting in premature stop codons, a feature not observed in sad and fad2 genes. Some alleles and isoforms discovered in induced mutant lines were absent in the natural germplasm. Correlation of these genotypic data with fatty acid composition data of 120 flax accessions phenotyped in six field experiments revealed statistically significant effects of some of the SAD and FAD isoforms on fatty acid composition, oil content and iodine value. The novel allelic variants and isoforms identified for the six desaturases will be a resource for the development of oilseed flax with unique and useful fatty acid profiles.
Collapse
Affiliation(s)
- Dinushika Thambugala
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Mañas-Fernández A, Arroyo-Caro JM, Alonso DL, García-Maroto F. Cloning and molecular characterization of a class A lysophosphatidate acyltransferase gene (EpLPAT2) fromEchium(Boraginaceae). EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201300195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Aurora Mañas-Fernández
- Grupo de Biotecnología de Productos Naturales (BIO-279); Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería. Campus de Excelencia Internacional Agroalimentario; Almería Spain
| | - José María Arroyo-Caro
- Grupo de Biotecnología de Productos Naturales (BIO-279); Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería. Campus de Excelencia Internacional Agroalimentario; Almería Spain
| | - Diego López Alonso
- Grupo de Biotecnología de Productos Naturales (BIO-279); Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería. Campus de Excelencia Internacional Agroalimentario; Almería Spain
| | - Federico García-Maroto
- Grupo de Biotecnología de Productos Naturales (BIO-279); Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería. Campus de Excelencia Internacional Agroalimentario; Almería Spain
| |
Collapse
|
21
|
Banaś W, Sanchez Garcia A, Banaś A, Stymne S. Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds. PLANTA 2013; 237:1627-36. [PMID: 23539042 PMCID: PMC3664747 DOI: 10.1007/s00425-013-1870-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/10/2013] [Indexed: 05/07/2023]
Abstract
The last step in triacylglycerols (TAG) biosynthesis in oil seeds, the acylation of diacylglycerols (DAG), is catalysed by two types of enzymes: the acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). The relative contribution of these enzymes in the synthesis of TAG has not yet been defined in any plant tissue. In the presented work, microsomal preparations were obtained from sunflower and safflower seeds at different stages of development and used in DGAT and PDAT enzyme assays. The ratio between PDAT and DGAT activity differed dramatically between the two different species. DGAT activities were measured with two different acyl acceptors and assay methods using two different acyl-CoAs, and in all cases the ratio of PDAT to DGAT activity was significantly higher in safflower than sunflower. The sunflower DGAT, measured by both methods, showed significant higher activity with 18:2-CoA than with 18:1-CoA, whereas the opposite specificity was seen with the safflower enzyme. The specificities of PDAT on the other hand, were similar in both species with 18:2-phosphatidylcholine being a better acyl donor than 18:1-PC and with acyl groups at the sn-2 position utilised about fourfold the rate of the sn-1 position. No DAG:DAG transacylase activity could be detected in the microsomal preparations.
Collapse
Affiliation(s)
- Walentyna Banaś
- Institute of Biology, University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
| | | | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Sten Stymne
- Department of Plant Breeding, SLU, Alnarp, Sweden
| |
Collapse
|
22
|
Oil, Fatty Acid Profile and Karanjin Content in Developing Pongamia pinnata (L.) Pierre Seeds. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2126-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Li R, Yu K, Wu Y, Tateno M, Hatanaka T, Hildebrand DF. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds. Metab Eng 2012; 14:29-38. [PMID: 22107928 DOI: 10.1016/j.ymben.2011.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 11/21/2022]
Abstract
Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds.
Collapse
Affiliation(s)
- Runzhi Li
- Department of Plant and Soil Science, University of Kentucky, KY 40546-0312, USA
| | | | | | | | | | | |
Collapse
|
24
|
Rezanka T, Lukavský J, Nedbalová L, Sigler K. Effect of nitrogen and phosphorus starvation on the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga Trachydiscus minutus. PHYTOCHEMISTRY 2011; 72:2342-2351. [PMID: 21911235 DOI: 10.1016/j.phytochem.2011.08.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 05/31/2023]
Abstract
The yellow-green alga Trachydiscus minutus (Eustigmatophyceae, Heterocontophyta) was cultivated in a standard medium and under nitrogen- and phosphorus-starvation and its triacylglycerols were analyzed by RP-HPLC/MS-APCI. The molecular species of triacylglycerols included a total of 74 triacylglycerols having at least one polyunsaturated fatty acid. Polyunsaturated triacylglycerols were identified for the first time in a yellow-green alga. N-starvation brought about a nearly 50% drop in TAGs containing EPA, and also decreased TAGs containing ARA, while P-starvation had a sizable effect on those TAGs that contain two or three arachidonic acids. In four TAGs containing PUFA, i.e. EEE, EEA, EAA and AAA, N-starvation caused a rapid fivefold increase in ARA content and the ratio of TAGs containing ARA, i.e. AEE to AAA increased tenfold relative to control. Regioisomeric characterization of triacylglycerols containing palmitic, arachidonic (ARA) and eicosapentaenoic acids (EPA) showed that the proportion of positional isomers is affected by N- and P-starvation. N- and P-starvation also changed the ratio of symmetrical to asymmetrical TAGs. Positional isomers exhibited identical ratios of symmetrical and asymmetrical TAGs irrespective of the type of FAs. In control cultivation the major TAGs with a single PUFA were symmetrical ones (PEP or PAP) whose ratio to asymmetrical counterparts (PPE or PPA) was about 3:1, whereas N- and P-starvation yielded opposite ratios, 1:3-1:5. The control cultivation yielded ~90% asymmetrical TAGs with two PUFAs (i.e. PEE and PAA), whereas with N- and P-starvation the ratio of symmetrical to asymmetrical TAGs increased to 2:1 and 3:2, respectively.
Collapse
Affiliation(s)
- Tomáš Rezanka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | |
Collapse
|
25
|
Snyder CL, Yurchenko OP, Siloto RM, Chen X, Liu Q, Mietkiewska E, Weselake RJ. Acyltransferase action in the modification of seed oil biosynthesis. N Biotechnol 2009; 26:11-6. [DOI: 10.1016/j.nbt.2009.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/01/2009] [Accepted: 05/07/2009] [Indexed: 11/16/2022]
|
26
|
Herchi W, Harrabi S, Sebei K, Rochut S, Boukhchina S, Pepe C, Kallel H. Phytosterols accumulation in the seeds of Linum usitatissimum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:880-885. [PMID: 19616960 DOI: 10.1016/j.plaphy.2009.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/28/2009] [Accepted: 07/01/2009] [Indexed: 05/28/2023]
Abstract
A comparative study was performed to determine the free sterols content and composition during the development of three varieties of linseed (H52, O116 and P129). Seed samples were collected at regular intervals from 7 to 60 days after flowering (DAF). Ten compounds were identified: cholesterol, campesterol, brassicasterol, stigmasterol, beta-sitosterol, Delta5-avenasterol, cycloartenol; 24-methylene cycloartanol, obtusifoliol, citrostadienol. The maximum level of 4-desmethylsterols (1,515 mg/100g oil) was reached at 7 DAF in P129 variety. H52 had the highest level of 4-4 dimethylsterols (355 mg/100g oil) at 28 DAF. The greatest amount of 4-monomethylsterols (35 mg/100g oil) was detected in H52 at 14 DAF. During linseed development, beta sitosterol (830 mg/100g oil) was the major 4-desmethylsterols, followed by campesterol (564 mg/100g oil) and stigmasterol (265 mg/100g oil). Some of these compounds followed nearly the same accumulation pattern during linseed maturation.
Collapse
Affiliation(s)
- Wahid Herchi
- Laboratoire de Biochimie des lipides, Département de Biologie, Faculté des sciences de Tunis, 2092 ELmanar-Tunisie, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Nlandu Mputu M, Rhazi L, Vasseur G, Vu TD, Gontier E, Thomasset B. Identification of a potential bottleneck in branched chain fatty acid incorporation into triacylglycerol for lipid biosynthesis in agronomic plants. Biochimie 2009; 91:703-10. [PMID: 19327383 DOI: 10.1016/j.biochi.2009.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 03/13/2009] [Indexed: 10/21/2022]
Abstract
In plant, unusual fatty acids are produced by a limited number of species. The industrial benefits of these unusual structures have led several groups to study their production in transgenic plants. Their research results led to very modest accumulation in seeds which was largely due to a limited knowledge of the lipid metabolism and fatty acid transfer in plants. More specifically we need to better understand the substrate specificity and selectivity of acyltransferases which are required for the incorporation of these unusual fatty acids into storage triacylglycerols. In our studies we have compared the incorporation of [(14)C] Oleoyl-CoA and Branched Chain Acyls-CoA into [(3)H] LPA-C18:1 by the Lysophosphatidic acid Acyltransferase (LPAAT) from developing seeds of agronomic plants (flax (Linum usitatissimum) and rape (Brassica napus)) and from a plant capable of producing high amounts of hydroxy fatty acids (castor bean (Ricinus communis)). Our assays demonstrate that LPAATs of the three studied species (1) incorporated preferentially oleyl-CoA, (2) could incorporate cyclopropane acyl-CoA when added alone as a substrate, however very weakly for rapeseed and castor bean seeds, (3) presented a low capacity to incorporate methyl branched acyl-CoA when added alone as a substrate (4) weakly incorporated cyclopropane acyl-CoA and was unable to incorporate methyl branched acyl-CoA when presented with an equimolar mix of oleyl-CoA and branched chain acyl-CoA. In all cases, the LPAAT had a low affinity for branched chain acyl-CoAs. The results show that LPAAT activity from agronomic plants constitutes a bottleneck for the incorporation of branched Chain acyl-CoA into PA.
Collapse
Affiliation(s)
- M Nlandu Mputu
- UMR CNRS, Université de Technologie de Compiègne, France
| | | | | | | | | | | |
Collapse
|
28
|
Rao S, Abdel-Reheem M, Bhella R, McCracken C, Hildebrand D. Characteristics of high alpha-linolenic acid accumulation in seed oils. Lipids 2008; 43:749-55. [PMID: 18597133 DOI: 10.1007/s11745-008-3207-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 06/03/2008] [Indexed: 11/26/2022]
Abstract
Modern diets are often deficient in omega-3 fatty acids and additional dietary sources of omega-3 fatty acids are useful. In order to investigate the molecular basis of the high accumulation of the omega-3 fatty acid, alpha-linolenic acid (18:3), in three different plants, flax (Linum usitatissimum), Dracocephalum moldavica, and Perilla frutescens omega-3 desaturase activity, transcript levels, and 18:3 in-vivo synthesis were examined. The 18:3 content was found to be higher at the later developmental stage of D. moldavica (68%) compared with P. frutescens (59%) and flax (45%) cotyledons. The 18:3 and 18:2 contents in both PC and TAG were determined during various stages of seed development for all three plants in addition to soybean (Glycine max). Northern blot analysis data of three different stages of D. moldavica, flax, and P. frutescens compared with moderately low 18:3 producers, soybean (Glycine max), and Arabidopsis thaliana and Brassica napus, (8-10% 18:3) at a stage of zygotic embryo development of high triglyceride synthesis showed that omega-3 desaturase mRNA levels were higher in all three high 18:3 producers, flax, D. moldavica and P. frutescens. This indicates that the high level of alpha-linolenic acid in TAG may be largely controlled by the level of omega-3 desaturase gene expression. However, the PC versus TAG fatty acid composition data suggested that along with omega-3 desaturase other enzymes also play a role in 18:3 accumulation in TAG, and the high accumulators have a selective transfer of alpha-linolenic acid into TAG.
Collapse
Affiliation(s)
- Suryadevara Rao
- Plant Biochemistry/Physiology/Molecular Biology Program, University of Kentucky, 445 Plant Sci. Bldg., Lexington, KY 40546-0312, USA
| | | | | | | | | |
Collapse
|
29
|
Weselake RJ, Shah S, Tang M, Quant PA, Snyder CL, Furukawa-Stoffer TL, Zhu W, Taylor DC, Zou J, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney MM, Harwood JL. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3543-9. [PMID: 18703491 PMCID: PMC2561151 DOI: 10.1093/jxb/ern206] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 05/18/2023]
Abstract
Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.
Collapse
Affiliation(s)
- Randall J. Weselake
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - Saleh Shah
- Plant Biotechnology Unit, Alberta Research Council, Vegreville, AB, Canada T9C 1T4
| | - Mingguo Tang
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Patti A. Quant
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Crystal L. Snyder
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - Tara L. Furukawa-Stoffer
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - Weiming Zhu
- Plant Biotechnology Unit, Alberta Research Council, Vegreville, AB, Canada T9C 1T4
| | - David C. Taylor
- Plant Biotechnology Institute, National Research Council, Saskatoon, SK, Canada S7N 0W9
| | - Jitao Zou
- Plant Biotechnology Institute, National Research Council, Saskatoon, SK, Canada S7N 0W9
| | - Arvind Kumar
- Plant Biotechnology Institute, National Research Council, Saskatoon, SK, Canada S7N 0W9
| | - Linda Hall
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - Andre Laroche
- Agriculture and Agri-food Canada, Lethbridge, AB, Canada T1J 4B1
| | - Gerhard Rakow
- Agriculture and Agri-food Canada, Saskatoon, SK, Canada S7N 0X2
| | - Phillip Raney
- Agriculture and Agri-food Canada, Saskatoon, SK, Canada S7N 0X2
| | | | - John L. Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Abstract
Many plants deposit TAG in seeds and fruits as the major form of storage lipid. TAG production is of tremendous socioeconomic value in food, nutraceutical, and industrial applications, and thus numerous conventional and molecular genetic strategies have been explored in attempts to increase TAG content and modify the FA composition of plant seed oils. Much research has focused on the acyl-CoA-dependent reaction catalyzed by diacylglycerol acyltransferase (DGAT), which is an integral endoplasmic reticulum protein and has also been shown to be present in oil bodies and plastids. DGAT enzymes exhibit diverse biochemical properties among different plant species, many of which are summarized here. In addition to catalyzing a critical step in TAG biosynthesis, there is evidence that DGAT has roles in lipid metabolism associated with germination and leaf senescence. TAG can also be formed in plants via two different acyl-CoA-independent pathways, catalyzed by phospholipid: diacylglycerol acyltransferase and diacylglycerol transacylase. The current understanding of the terminal step in TAG formation in plants and the development of molecular genetic approaches aimed at altering TAG yield and FA composition of TAG are discussed.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | | |
Collapse
|
31
|
Fofana B, Cloutier S, Duguid S, Ching J, Rampitsch C. Gene expression of stearoyl-ACP desaturase and Δ12 fatty acid desaturase 2 is modulated during seed development of flax (Linum usitatissimum). Lipids 2006; 41:705-12. [PMID: 17069354 DOI: 10.1007/s11745-006-5021-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flax's recent popularity in human and animal foods is mostly due to its desirable FA composition. Flax is an excellent source of omega-3 FA, which have been shown to have many health benefits. To date, little is known about the genetic and environmental factors that control the FA composition of flax seeds. To elucidate some of the important genetic components, reverse transcriptase (RT)-PCR and real-time PCR were used to determine the expression profiles of two key FA biosynthetic genes during seed development. Plants of flax cultivar AC McDuff were grown under field conditions, and RNA was extracted from ovaries and developing bolls collected from 2 d after anthesis (DAA) to maturity. Desaturation enzymes stearoyl-ACP desaturase (SAD) and delta12 FA desaturase 2 (FAD2) were both expressed in ovaries, and their expression was differentially modulated throughout seed development. SAD was most highly expressed in ovaries. Its expression quickly decreased until 4 DAA; this was followed by a slight peak at 8 DAA, only to return to relatively low levels of expression in maturing bolls, ranging from 2.1% to 4.5% relative to the level observed in ovaries. FAD2 expression displayed a different temporal pattern. While expression of FAD2 did decrease in the early stages of seed development, expression increased starting at 8 DAA, peaking at 16 DAA, when it was 158% relative to the level observed in ovaries. FAD2, which desaturates oleic acid (18:1cisdelta9) into linoleic acid (18:2cisdelta9,12), is therefore controlled at the transcription level. To relate enzyme expression with FA profile, GC was performed on the same subsamples used for RT-PCR and real-time PCR, and proportions of palmitic, stearic, oleic, linoleic, and linolenic acids were determined for the same developmental stages. Although FAD2 expression increased from 8 to 16 DAA, relative changes in linoleic acid (18:2cis delta9,12) were not observed. However, linolenic acid (ALA; alpha-18:3; 18:3cisdelta9,12,15) levels increased steadily, meaning that linoleic acid (18:2cisdelta9,12) is a transient substrate converted by FAD3 as quickly as it is produced by FAD2. Phenotypes are the result of genotypes, environment, and the interaction of the two. To evaluate the environmental impact on the production of FA in flax, FA profiles were assessed in a total of four environments (two locations, two years). Warm and dry environmental conditions resulted in lower levels of PUFA 18:2cisdelta9,12 and 18:3cisdelta9,12,15, and higher levels of 18:1 cisdelta9. FAD2 expression and/or activity may therefore be affected by the environment.
Collapse
Affiliation(s)
- Bourlaye Fofana
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd., Winnipeg, MB, Canada R3T 2M9
| | | | | | | | | |
Collapse
|