1
|
Cao B, Liu YL, Wang N, Huang Y, Lu CX, Li QY, Zou HY. Alterations of serum metabolic profile in major depressive disorder: A case-control study in the Chinese population. World J Psychiatry 2025; 15:102618. [DOI: 10.5498/wjp.v15.i5.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/22/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by persistent depressed mood and cognitive symptoms. This study aimed to discover biomarkers for MDD, explore its pathological mechanisms, and examine the associations of the identified biomarkers with clinical and psychological variables.
AIM To discover candidate biomarkers for MDD identification and provide insight into the pathological mechanism of MDD.
METHODS The current study adopted a single-center cross-sectional case-control design. Serum samples were obtained from 100 individuals diagnosed with MDD and 97 healthy controls (HCs) aged between 18 to 60 years. Metabolomics was performed on an Ultimate 3000 UHPLC system coupled with Q-Exactive MS (Thermo Scientific). The online software Metaboanalyst 6.0 was used to process and analyze the acquired raw data of peak intensities from the instrument.
RESULTS The study included 100 MDD patients and 97 HCs. Metabolomic profiling identified 35 significantly different metabolites (e.g., cortisol, sebacic acid, and L-glutamic acid). Receiver operating characteristic curve analysis highlighted 8-HETE, 10-HDoHE, cortisol, 12-HHTrE, and 10-hydroxydecanoic acid as top diagnostic biomarkers for MDD. Significant correlations were found between metabolites (e.g., some lipids, steroids, and amino acids) and clinical and psychological variables.
CONCLUSION Our study reported metabolites (some lipids, steroids, amino acids, carnitines, and alkaloids) responsible for discriminating MDD patients and HCs. This metabolite profile may enable the development of a laboratory-based diagnostic test for MDD. The mechanisms underlying the association between psychological or clinical variables and differential metabolites deserve further exploration.
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yuan-Li Liu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Na Wang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yan Huang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Chen-Xuan Lu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Qian-Ying Li
- Department of Laboratory Medicine, Jiulongpo District Psychiatric Health Center of Chongqing, Chongqing 401329, China
| | - Hong-Yu Zou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400000, China
| |
Collapse
|
2
|
Avalos-Hernandez A, Juarez-Navarro K, Ruiz-Baca E, Meneses-Morales I, Espino-Saldaña E, Martinez-Torres A, Lopez-Rodriguez A. Unlocking cellular traffic jams: olive oil-mediated rescue of CNG mutant channels. Front Pharmacol 2024; 15:1408156. [PMID: 39119605 PMCID: PMC11306028 DOI: 10.3389/fphar.2024.1408156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
One of the reasons to suggest olive oil consumption for a healthy life is its potential to induce robust lipidomic remodeling through membrane modification by dietary lipids. This remodeling might, in turn, modulate essential lipid-protein interactions while maintaining accurate transmembrane protein/domain orientation. Oleic acid, the primary compound in olive oil, has been suggested as a modulator of ion channel function. In this study, we explored whether this lipid could rescue the trafficking of mutated transmembrane proteins. In our initial approach, we supplemented the cell culture medium of HEK-293 cells expressing cyclic nucleotide channels tagged using green fluorescent protein (CNG-GFP) with olive oil or oleic acid. In addition to wild-type channels, we also expressed R272Q and R278W mutant channels, two non-functional intracellularly retained channels related to retinopathies. We used fluorescence microscopy and patch-clamp in the inside-out configuration to assess changes in the cell localization and function of the tested channels. Our results demonstrated that olive oil and oleic acid facilitated the transport of cyclic nucleotide-gated R272Q mutant channels towards the plasma membrane, rendering them electrophysiologically functional. Thus, our findings reveal a novel property of olive oil as a membrane protein traffic inductor.
Collapse
Affiliation(s)
| | - Karina Juarez-Navarro
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Ivan Meneses-Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Edith Espino-Saldaña
- Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Campus Juriquilla, Juriquilla, Mexico
| | - Ataulfo Martinez-Torres
- Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México. Campus Juriquilla, Juriquilla, Mexico
| | | |
Collapse
|
3
|
Zupo R, Castellana F, Crupi P, Desantis A, Rondanelli M, Corbo F, Clodoveo ML. Olive Oil Polyphenols Improve HDL Cholesterol and Promote Maintenance of Lipid Metabolism: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Metabolites 2023; 13:1187. [PMID: 38132869 PMCID: PMC10745457 DOI: 10.3390/metabo13121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
In 2011, the European Food Safety Authority (EFSA) accorded a health claim to olive oil polyphenols in that they protected LDL particles from oxidative damage. However, limited scientific evidence has so far failed to confer any claim of function on the maintenance of normal lipid metabolism. We performed a systematic review and meta-analysis of human RCTs, evaluating the effect of olive oil polyphenol administration on lipid profiles. Previous literature was acquired from six electronic databases until June 2023. A total of 75 articles were retrieved and screened for inclusion criteria, which resulted in the selection of 10 RCTs that evaluated the effect of daily exposure to olive oil polyphenols on serum lipids in adults. Meta-analyses were built by tertiles of outcomes, as follows: low (0-68 mg/kg), medium (68-320 mg/kg), and high (320-600 mg/kg) polyphenols for HDL and LDL cholesterol (HDL-C and LDL-C, respectively), and low (0-59.3 mg/kg), medium (59.3-268 mg/kg), and high (268-600 mg/kg) polyphenols for total cholesterol (TC). The study protocol was registered on PROSPERO (registration code: CRD42023403383). The study design was predominantly cross-over (n = 8 of 10) but also included parallel (n = 2 of 10). The study population was predominantly European and healthy. Daily consumption of olive oil polyphenols did not affect TC levels and only slightly significantly reduced LDL-C, with WMD statistically significant only for high daily consumption of olive oil polyphenols (WMD -4.28, 95%CI -5.78 to -2.77). Instead, our data found a statistically significant HDL-C enhancing effect (WMD pooled effect model: 1.13, 95%CI 0.45; 1.80, heterogeneity 38%, p = 0.04) with WMD by daily exposure level showing a statistically significant improvement effect for low (WMD 0.66, 95%CI 0.10-1.23), medium (WMD 1.36, 95%CI 0.76-1.95), and high (WMD 1.13, 95%CI 0.45-1.80) olive oil polyphenol consumptions. Olive oil polyphenols contribute toward maintaining lipid metabolism. Thus, food labeling regulations should stress this health feature of olive oil, whereby a declaration of the olive oil polyphenol content should be added to products on the market. Consumers need to be aware of the quality and possible health effects of any products they consume, and enforcement of nutrition labels offers the best way of providing this information.
Collapse
Affiliation(s)
- Roberta Zupo
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy; (F.C.); (P.C.); (M.L.C.)
| | - Fabio Castellana
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy; (F.C.); (P.C.); (M.L.C.)
| | - Pasquale Crupi
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy; (F.C.); (P.C.); (M.L.C.)
| | - Addolorata Desantis
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.D.); (F.C.)
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.D.); (F.C.)
| | - Maria Lisa Clodoveo
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy; (F.C.); (P.C.); (M.L.C.)
| |
Collapse
|
4
|
Zhou C, Chen Y, Xue S, Shi Q, Guo L, Yu H, Xue F, Cai M, Wang H, Peng Z. rTMS ameliorates depressive-like behaviors and regulates the gut microbiome and medium- and long-chain fatty acids in mice exposed to chronic unpredictable mild stress. CNS Neurosci Ther 2023; 29:3549-3566. [PMID: 37269082 PMCID: PMC10580350 DOI: 10.1111/cns.14287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) is a clinically useful therapy for depression. However, the effects of rTMS on the metabolism of fatty acids (FAs) and the composition of gut microbiota in depression are not well established. METHODS Mice received rTMS (15 Hz, 1.26 T) for seven consecutive days after exposure to chronic unpredictable mild stress (CUMS). The subsequent depressive-like behaviors, the composition of gut microbiota of stool samples, as well as medium- and long-chain fatty acids (MLCFAs) in the plasma, prefrontal cortex (PFC), and hippocampus (HPC) were evaluated. RESULTS CUMS induced remarkable changes in gut microbiotas and fatty acids, specifically in community diversity of gut microbiotas and PUFAs in the brain. 15 Hz rTMS treatment alleviates depressive-like behaviors and partially normalized CUMS induced alterations of microbiotas and MLCFAs, especially the abundance of Cyanobacteria, Actinobacteriota, and levels of polyunsaturated fatty acids (PUFAs) in the hippocampus and PFC. CONCLUSION These findings revealed that the modulation of gut microbiotas and PUFAs metabolism might partly contribute to the antidepressant effect of rTMS.
Collapse
Affiliation(s)
- Cui‐Hong Zhou
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Yi‐Huan Chen
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Shan‐Shan Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Qing‐Qing Shi
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Lin Guo
- Department of PsychiatryChang'an HospitalXi'anChina
| | - Huan Yu
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Min Cai
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Hua‐Ning Wang
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
5
|
A Preliminary Comparison of Plasma Tryptophan Metabolites and Medium- and Long-Chain Fatty Acids in Adult Patients with Major Depressive Disorder and Schizophrenia. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020413. [PMID: 36837614 PMCID: PMC9968143 DOI: 10.3390/medicina59020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Background and Objectives: Disturbance of tryptophan (Trp) and fatty acid (FA) metabolism plays a role in the pathogenesis of psychiatric disorders. However, quantitative analysis and comparison of plasma Trp metabolites and medium- and long-chain fatty acids (MCFAs and LCFAs) in adult patients with major depressive disorder (MDD) and schizophrenia (SCH) are limited. Materials and Methods: Clinical symptoms were assessed and the level of Trp metabolites and MCFAs and LCFAs for plasma samples from patients with MDD (n = 24) or SCH (n = 22) and healthy controls (HC, n = 23) were obtained and analyzed. Results: We observed changes in Trp metabolites and MCFAs and LCFAs with MDD and SCH and found that Trp and its metabolites, such as N-formyl-kynurenine (NKY), 5-hydroxyindole-3-acetic acid (5-HIAA), and indole, as well as omega-3 polyunsaturated fatty acids (N3) and the ratio of N3 to omega-6 polyunsaturated fatty acids (N3: N6), decreased in both MDD and SCH patients. Meanwhile, levels of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) decreased in SCH patients, and there was a significant difference in the composition of MCFAs and LCFAs between MDD and SCH patients. Moreover, the top 10 differential molecules could distinguish the two groups of diseases from HC and each other with high reliability. Conclusions: This study provides a further understanding of dysfunctional Trp and FA metabolism in adult patients with SCH or MDD and might develop combinatorial classifiers to distinguish between these disorders.
Collapse
|
6
|
Currenti W, Godos J, Alanazi AM, Lanza G, Ferri R, Caraci F, Galvano F, Castellano S, Grosso G. Dietary Fats and Depressive Symptoms in Italian Adults. Nutrients 2023; 15:675. [PMID: 36771380 PMCID: PMC9919703 DOI: 10.3390/nu15030675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Depression represents one of the major causes of disability worldwide, with an important socioeconomic cost. Although many risk factors have been considered in its pathogenesis, nutrition seems to play a determinant role in its prevention. With regard to individual macronutrients, dietary fats and especially n-3 polyunsaturated fatty acids (n-3 PUFA) are the most studied. However, previous data about other dietary fatty acids, such as n-6 PUFA, are conflicting, and little is known about saturated fatty acids (SFA), especially when considering carbon chain length. Thus, we investigated whether single types and subtypes of dietary fats are related to depressive symptoms in Italian individuals living in the Mediterranean area. METHODS Dietary and socio-demographic data of 1572 individuals were analyzed. Food frequency questionnaires (FFQs) were used to determine the consumption of total dietary fat and each specific class of dietary fat, such as SFA, monounsaturated fatty acid (MUFA), and PUFA. The intake of fatty acids was also assessed according to the carbon-chain length of each single class. The Center for Epidemiologic Studies Depression Scale (CES-D) was used as a screening tool for depressive symptoms. RESULTS After adjustment for potential confounding factors, a significant inverse association between low/moderate levels of PUFA intake and depressive symptoms (Q2 vs. Q1, odds ratio (OR) = 0.60, 95% CI: 0.44, 0.84) was found. On the other hand, moderate saturated fat consumption was associated with depressive symptoms (Q3 vs. Q1, OR = 1.44, 95% CI: 1.02, 2.04). However, when considering carbon chain length, individuals with a lower to moderate intake of short-chain saturated fatty acids (SCSFA) and medium-chain saturated fatty acids (MCSFA) were less likely to have depressive symptoms (Q3 vs. Q1, OR = 0.48, 95% CI: 0.31, 0.75), while moderate intake of arachidic acid (C20:0) was directly associated with depressive symptoms (Q3 vs. Q1, OR = 1.87, 95% CI: 1.26, 2.77). Among single MUFAs, higher myristoleic acid (C14:1) intake was directly associated with depressive symptoms (Q4 vs. Q1, OR = 1.71, 95% CI: 1.12, 2.61), while moderate intake of erucic acid (C22:1) was associated with lower odds of having depressive symptoms (Q3 vs. Q1, OR = 0.54, 95% CI: 0.33, 0.86). When considering individual PUFAs, individuals with moderate and higher intakes of arachidonic acid (C20:4) were less likely to have depressive symptoms (OR = 0.64, 95% CI: 0.45, 0.91; OR = 0.59, 95% CI: 0.38, 0.91, respectively). Similarly, higher eicosapentaenoic acid (C20:5) intake was inversely associated with depressive symptoms (Q4 vs. Q1, OR = 0.35, 95% CI: 0.12, 0.98), while a significant association for docosahexaenoic acid (C22:6) was retrieved only for low intakes (Q2 vs. Q1, OR = 0.33, 95% CI: 0.12, 0.88). CONCLUSIONS Dietary fat intake may be associated with depressive symptoms, underlying the importance of distinguishing between different fat types. This study confirms the pivotal role of PUFAs and reopens the debate on the role of saturated fatty acids, suggesting plausible effects of moderate intakes of short-chain fatty acids.
Collapse
Affiliation(s)
- Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Amer M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Filippo Caraci
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
7
|
Pontifex MG, Martinsen A, Saleh RNM, Harden G, Tejera N, Müller M, Fox C, Vauzour D, Minihane AM. APOE4 genotype exacerbates the impact of menopause on cognition and synaptic plasticity in APOE-TR mice. FASEB J 2021; 35:e21583. [PMID: 33891334 DOI: 10.1096/fj.202002621rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/15/2023]
Abstract
The impact of sex and menopausal status in Alzheimer's disease remains understudied despite increasing evidence of greater female risk, particularly in APOE4 carriers. Utilizing female APOE-TR mice maintained on a high-fat diet background we induced ovarian failure through repeated VCD injections, to mimic human menopause. At 12 months of age, recognition memory and spatial memory were assessed using object recognition, Y-maze spontaneous alternation, and Barnes maze. A VCD*genotype interaction reduced the recognition memory (P < .05), with APOE4 VCD-treated animals unable to distinguish between novel and familiar objects. APOE4 mice displayed an additional 37% and 12% reduction in Barnes (P < .01) and Y-maze (P < .01) performance, indicative of genotype-specific spatial memory impairment. Molecular analysis indicated both VCD and genotype-related deficits in synaptic plasticity with BDNF, Akt, mTOR, and ERK signaling compromised. Subsequent reductions in the transcription factors Creb1 and Atf4 were also evident. Furthermore, the VCD*genotype interaction specifically diminished Ephb2 expression, while Fos, and Cnr1 expression reduced as a consequence of APOE4 genotype. Brain DHA levels were 13% lower in VCD-treated animals independent of genotype. Consistent with this, we detected alterations in the expression of the DHA transporters Acsl6 and Fatp4. Our results indicate that the combination of ovarian failure and APOE4 leads to an exacerbation of cognitive and neurological deficits.
Collapse
Affiliation(s)
| | | | | | - Glenn Harden
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Noemi Tejera
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Chris Fox
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
8
|
Fatemi F, Siassi F, Qorbani M, Sotoudeh G. Higher dietary fat quality is associated with lower anxiety score in women: a cross-sectional study. Ann Gen Psychiatry 2020; 19:14. [PMID: 32127909 PMCID: PMC7045483 DOI: 10.1186/s12991-020-00264-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/10/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The relationship between anxiety and dietary fat quality (DFQ) has not been well studied. The aim of this study was to investigate the relationship between anxiety disorder and fatty acids' intake in women. METHODS This cross-sectional study included 300 women aged 18-49 attending healthcare centers. Dietary exposure was measured by a 168-item semi-quantitative food frequency questionnaire (FFQ). To determine the status of anxiety, the Depression, Anxiety, and Stress Scale (DASS) questionnaire was used. Based on the total score of anxiety, the participants were divided into two groups of without anxiety (< 8) and with anxiety (≥ 8). The relationship between fatty acids intake and odd ratio (OR) for anxiety was analyzed by simple logistic regression. RESULTS About 37.7% of individuals reported anxiety. After adjustment for covariates, an increase in the OR for anxiety was observed across the quintuples of saturated fatty acids (SFAs) (OR 3.17; 95% CI 1.43-7.00; p-trend = 0.005). In addition, higher intakes of monounsaturated fatty acids (MUFAs) (OR 0.15; 95% CI 0.05-0.44; p-trend = 0.001), oleic acid (OR 0.25; 95% CI 0.09-0.67; p-trend = 0.002), alpha-linolenic acid (ALA) (OR 0.07; 95% CI 0.02-0.23; p-trend < 0.001), and n-3:n-6 poly unsaturated fatty acids (PUFAs) (OR 0.56; 95% CI 0.24-1.03; p-trend = 0.02) were found to be related with lower OR of anxiety. CONCLUSION Intake of SFAs was positively related to anxiety disorder, whereas MUFAs, oleic acid, ALA, and n-3: n-6 PUFAs intake were inversely related to anxiety score. For investigating the association of fat intake and anxiety disorder, DFQ may be a useful measure.
Collapse
Affiliation(s)
- Fatemeh Fatemi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Hojatdost street, Naderi street, Keshavarz Blv., Tehran, Iran
| | - Fereydoun Siassi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Hojatdost street, Naderi street, Keshavarz Blv., Tehran, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gity Sotoudeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Hojatdost street, Naderi street, Keshavarz Blv., Tehran, Iran
| |
Collapse
|
9
|
Tsartsou E, Proutsos N, Castanas E, Kampa M. Network Meta-Analysis of Metabolic Effects of Olive-Oil in Humans Shows the Importance of Olive Oil Consumption With Moderate Polyphenol Levels as Part of the Mediterranean Diet. Front Nutr 2019; 6:6. [PMID: 30809527 PMCID: PMC6379345 DOI: 10.3389/fnut.2019.00006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/16/2019] [Indexed: 12/28/2022] Open
Abstract
The beneficial role of olive oil consumption is nowadays widely recognized. However, it is not clear whether its health effects are due to the presence of monounsaturated lipids and/or to the antioxidant fraction of microconstituents present in olive oil. The aim of the present study was to analyze the exact role of olive oil in the modification of metabolic factors (glucose and circulating lipids) and explore the role of its antioxidant polyphenols. In the present work, we have performed a network meta-analysis of 30 human intervention studies, considering direct and indirect interactions and impact of each constituent. Interestingly, we show that the impact of olive oil on glucose, triglycerides, and LDL-cholesterol is mediated through an adherence to the Mediterranean diet, with the only notable effect of olive oil polyphenols being the increase of HDL-cholesterol, and the amelioration of the antioxidant and inflammatory status of the subjects. Additionally, we report for the first time that lower antioxidant polyphenol levels may be sufficient for the beneficial effects of olive oil, while we show that the lipid fraction of olive oil may be responsible for some of its beneficial actions. In all parameters examined the beneficial effect of olive oil was more pronounced in subjects with an established metabolic syndrome or other chronic conditions/diseases. In conclusion, all these findings provide new knowledge that could lead to re-establishment of the role of olive oil in human nutrition.
Collapse
Affiliation(s)
- Evangelia Tsartsou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
10
|
Perona JS. Membrane lipid alterations in the metabolic syndrome and the role of dietary oils. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1690-1703. [PMID: 28428072 DOI: 10.1016/j.bbamem.2017.04.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 12/13/2022]
Abstract
The metabolic syndrome is a cluster of pathological conditions, including hypertension, hyperglycemia, hypertriglyceridemia, obesity and low HDL levels that is of great concern worldwide, as individuals with metabolic syndrome have an increased risk of type-2 diabetes and cardiovascular disease. Insulin resistance, the key feature of the metabolic syndrome, might be at the same time cause and consequence of impaired lipid composition in plasma membranes of insulin-sensitive tissues like liver, muscle and adipose tissue. Diet intervention has been proposed as a powerful tool to prevent the development of the metabolic syndrome, since healthy diets have been shown to have a protective role against the components of the metabolic syndrome. Particularly, dietary fatty acids are capable of modulating the deleterious effects of these conditions, among other mechanisms, by modifications of the lipid composition of the membranes in insulin-sensitive tissues. However, there is still scarce data based of high-level evidence on the effects of dietary oils on the effects of the metabolic syndrome and its components. This review summarizes the current knowledge on the effects of dietary oils on improving alterations of the components of the metabolic syndrome. It also examines their influence in the modulation of plasma membrane lipid composition and in the functionality of membrane proteins involved in insulin activity, like the insulin receptor, GLUT-4, CD36/FAT and ABCA-1, and their effect in the metabolism of glucose, fatty acids and cholesterol, and, in turn, the key features of the metabolic syndrome. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Javier S Perona
- Bioactive Compunds, Nutrition and Health, Instituto de la Grasa-CSIC, Campus Universidad Pablo de Olavide, Ctra. Utrera km 1, Building 46, 41013 Seville, (Spain)
| |
Collapse
|
11
|
Fernandes MF, Mutch DM, Leri F. The Relationship between Fatty Acids and Different Depression-Related Brain Regions, and Their Potential Role as Biomarkers of Response to Antidepressants. Nutrients 2017; 9:nu9030298. [PMID: 28304335 PMCID: PMC5372961 DOI: 10.3390/nu9030298] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
Depression is a complex disorder influenced by a variety of biological and environmental factors. Due to significant heterogeneity, there are remarkable differences in how patients respond to treatment. A primary objective of psychiatric research is to identify biological markers that could be used to better predict and enhance responses to antidepressant treatments. Diet impacts various aspects of health, including depression. The fatty acid composition of the Western diet, which has a high ratio of n-6:n-3 polyunsaturated fatty acids, is associated with increased incidence of depression. The brain is rich in lipids, and dietary fatty acids act within specific brain regions to regulate processes that impact emotional behavior. This manuscript reviews existing evidence demonstrating brain region-specific fatty acid profiles, and posits that specific fatty acids may serve as predictive biomarkers of response to antidepressants. Furthermore, increasing blood levels of certain fats, such as n-3s, via dietary intervention may serve as an adjunct to improve the efficacy of antidepressants. Notably, most of the existing research regarding fats and depression-related brain regions has focused on n-3s, as compared to n-6s, monounsaturated, and saturated fats. This review article will help guide future work investigating the relationships between fatty acids, brain regions, and antidepressant efficacy.
Collapse
Affiliation(s)
- Maria Fernanda Fernandes
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada.
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Francesco Leri
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
12
|
Fukumitsu S, Villareal MO, Fujitsuka T, Aida K, Isoda H. Anti-inflammatory and anti-arthritic effects of pentacyclic triterpenoids maslinic acid through NF-κB inactivation. Mol Nutr Food Res 2015; 60:399-409. [PMID: 26499467 DOI: 10.1002/mnfr.201500465] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/10/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
Abstract
SCOPE Consumption of olives (Olea europaea L.), including table olives and oil, is associated with low incidence of inflammation-related diseases. In this study, the effects of maslinic acid (MA), the main constituent of olive pomace, on the expression of genes and proteins involved in inflammatory activity in RAW 264.7 cells were investigated. Furthermore, the effect of MA on carrageenan-induced paw edema and collagen antibody induced arthritis in mice was determined. METHODS AND RESULTS We confirmed the suppressive effects of MA on LPS-induced tumor necrosis factor α production and on the expression of inflammatory response associated genes in RAW 264.7 cells. We also clarified the suppressive effect of MA on LPS-induced nuclear factor-kappa B activation as well as the phosphorylation of IκB-α. Furthermore, MA (200 mg/kg in the edema model or 100 mg/kg in the arthritis model) exerted anti-inflammatory and antiarthritis effects as shown by the suppression of paw edema, arthritis score, inflammatory cells, and destruction of synovium in knee joints. CONCLUSION Olive products containing MA are useful as a new preventive and therapeutic food ingredient for inflammatory and arthritic diseases.
Collapse
Affiliation(s)
- Satoshi Fukumitsu
- Nippon Flour Mills Co, Ltd, Central Laboratory, Midorigaoka, Atsugi, Kanagawa, Japan
| | - Myra O Villareal
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Kazuhiko Aida
- Nippon Flour Mills Co, Ltd, Central Laboratory, Midorigaoka, Atsugi, Kanagawa, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
|
14
|
Tasset I, Pontes AJ, Hinojosa AJ, de la Torre R, Túnez I. Olive oil reduces oxidative damage in a 3-nitropropionic acid-induced Huntington's disease-like rat model. Nutr Neurosci 2013; 14:106-11. [DOI: 10.1179/1476830511y.0000000005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Peroxisomal and mitochondrial β-oxidation pathways influence the virulence of the pathogenic fungus Cryptococcus neoformans. EUKARYOTIC CELL 2012; 11:1042-54. [PMID: 22707485 DOI: 10.1128/ec.00128-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An understanding of the connections between metabolism and elaboration of virulence factors during host colonization by the human-pathogenic fungus Cryptococcus neoformans is important for developing antifungal therapies. Lipids are abundant in host tissues, and fungal pathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. In addition, lipids are important signaling molecules in both fungi and mammals. In this report, we demonstrate that defects in the peroxisomal and mitochondrial β-oxidation pathways influence the growth of C. neoformans on fatty acids as well as the virulence of the fungus in a mouse inhalation model of cryptococcosis. Disease attenuation may be due to the cumulative influence of altered carbon source acquisition or processing, interference with secretion, changes in cell wall integrity, and an observed defect in capsule production for the peroxisomal mutant. Altered capsule elaboration in the context of a β-oxidation defect was unexpected but is particularly important because this trait is a major virulence factor for C. neoformans. Additionally, analysis of mutants in the peroxisomal pathway revealed a growth-promoting activity for C. neoformans, and subsequent work identified oleic acid and biotin as candidates for such factors. Overall, this study reveals that β-oxidation influences virulence in C. neoformans by multiple mechanisms that likely include contributions to carbon source acquisition and virulence factor elaboration.
Collapse
|
16
|
Arsenault D, Julien C, Chen CT, Bazinet RP, Calon F. Dietary intake of unsaturated fatty acids modulates physiological properties of entorhinal cortex neurons in mice. J Neurochem 2012; 122:427-43. [PMID: 22551210 DOI: 10.1111/j.1471-4159.2012.07772.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dietary lipids modify brain fatty acid profile, but evidence of their direct effect on neuronal function is sparse. The enthorinal cortex (EC) neurons connecting to the hippocampus play a critical role in learning and memory. Here, we have exposed mice to diets based on canola:soybean oils (40 : 10, g/kg) or safflower : corn oils (25 : 25, g/kg) to investigate the relationship between the lipid profile of brain fatty acids and the intrinsic properties of EC neurons. Consumption of canola : soybean oil-enriched diet led to the increase of the monounsaturated fatty acid oleic acid and to a decrease of arachidonic acid in ethanolamine glycerophospholipids of the white matter. We also found an important rise in docosahexaenoic acid (DHA) within ethanolamine glycerophospholipids and phosphatidylserine of gray matter. The canola:soybean oil treatment led to a shorter duration of action potential (-21%), a reduction in the duration of postsynaptic response (-21%) and increased firing activity (+43%). Data from additional experiments with animals fed DHA alone or DHA with canola oil suggested that dietary monounsaturated fatty acid may have contributed to these effects on EC neuron physiology. Since neuronal function within the enthorhinal-hippocampal loop is critical to learning and memory processes, the present data may provide a functional basis for the beneficial cognitive effects of canola oil-based diets.
Collapse
Affiliation(s)
- Dany Arsenault
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
| | | | | | | | | |
Collapse
|