1
|
Rodríguez-Rodríguez R, Baena M, Zagmutt S, Paraiso WK, Reguera AC, Fadó R, Casals N. International Union of Basic and Clinical Pharmacology: Fundamental insights and clinical relevance regarding the carnitine palmitoyltransferase family of enzymes. Pharmacol Rev 2025; 77:100051. [PMID: 40106976 DOI: 10.1016/j.pharmr.2025.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The carnitine palmitoyltransferases (CPTs) play a key role in controlling the oxidation of long-chain fatty acids and are potential therapeutic targets for diseases with a strong metabolic component, such as obesity, diabetes, and cancer. Four distinct proteins are CPT1A, CPT1B, CPT1C, and CPT2, differing in tissue expression and catalytic activity. CPT1s are finely regulated by malonyl-CoA, a metabolite whose intracellular levels reflect the cell's nutritional state. Although CPT1C does not exhibit significant catalytic activity, it is capable of modulating the functioning of other neuronal proteins. Structurally, all CPTs share a Y-shaped catalytic tunnel that allows the entry of 2 substrates and accommodation of the acyl group in a hydrophobic pocket. Several molecules targeting these enzymes have been described, some showing potential in normalizing blood glucose levels in diabetic patients, and others that, through a central mechanism, are anorexigenic and enhance energy expenditure. However, given the critical roles that CPTs play in certain tissues, such as the heart, liver, and brain, it is essential to fully understand the differences between the various isoforms. We analyze in detail the structure of these proteins, their cellular and physiological functions, and their potential as therapeutic targets in diseases such as obesity, diabetes, and cancer. We also describe drugs identified to date as having inhibitory or activating capabilities for these proteins. This knowledge will support the design of new drugs specific to each isoform, and the development of nanomedicines that can selectively target particular tissues or cells. SIGNIFICANCE STATEMENT: Carnitine palmitoyltransferase (CPT) proteins, as gatekeepers of fatty acid oxidation, have great potential as pharmacological targets to treat metabolic diseases like obesity, diabetes, and cancer. In recent years, significant progress has been made in understanding the 3-dimensional structure of CPTs and their pathophysiological functions. A deeper understanding of the differences between the various CPT family members will enable the design of selective drugs and therapeutic approaches with fewer side effects.
Collapse
Affiliation(s)
- Rosalía Rodríguez-Rodríguez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Miguel Baena
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Sebastián Zagmutt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - West Kristian Paraiso
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Ana Cristina Reguera
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Núria Casals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Sharma S, Sharma D, Dhobi M, Wang D, Tewari D. An insight to treat cardiovascular diseases through phytochemicals targeting PPAR-α. Mol Cell Biochem 2024; 479:707-732. [PMID: 37171724 DOI: 10.1007/s11010-023-04755-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Peroxisome proliferator-activated receptor-α (PPAR-α) belonging to the nuclear hormone receptor superfamily is a promising target for CVDs which mechanistically improves the production of high-density lipid as well as inhibit vascular smooth muscle cell proliferation. PPAR-α mainly interferes with adenosine monophosphate-activated protein kinase, transforming growth factor-β-activated kinase, and nuclear factor-κB pathways to protect against cardiac complications. Natural products/extracts could serve as a potential therapeutic strategy in CVDs for targeting PPAR-α with broad safety margins. In recent years, the understanding of naturally derived PPAR-α agonists has considerably improved; however, the information is scattered. In vitro and in vivo studies on acacetin, apigenin, arjunolic acid, astaxanthin, berberine, resveratrol, vaticanol C, hispidulin, ginsenoside Rb3, and genistein showed significant effects in CVDs complications by targeting PPAR-α. With the aim of demonstrating the tremendous chemical variety of natural products targeting PPAR-α in CVDs, this review provides insight into various natural products that can work to prevent CVDs by targeting the PPAR-α receptor along with their detailed mechanism.
Collapse
Affiliation(s)
- Supriya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
3
|
Shi L, Zou M, Zhou X, Wang S, Meng W, Lan Z. Comparison of protective effects of hesperetin and pectolinarigenin on high-fat diet-induced hyperlipidemia and hepatic steatosis in Golden Syrian hamsters. Exp Anim 2023; 72:123-131. [PMID: 36310057 PMCID: PMC9978126 DOI: 10.1538/expanim.22-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A comparative study was conducted to determine whether hesperetin and pectolinarigenin could lower total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) in a high-fat diet (HFD)-induced high lipid model in Golden Syrian hamsters. 48 Golden Syrian hamsters (8 weeks old) were fed with a HFD for 15 days. HFD induced significant increases in plasma TC, TG, LDL, and HDL. Then, these high lipid hamsters were divided into four groups and were administered with 0.5% sodium carboxymethyl cellulose (CMC-Na), hesperetin (100 mg/kg/day), pectolinarigenin (100 mg/kg/day) or atorvastatin (1.0 mg/kg/day), for 7 weeks. It was found that pectolinarigenin treatment resulted in significant reductions in body weight, adiposity index, serum levels of TC, TG and hepatic TC, TG and free fatty acid compared to those in control hamsters with hyperlipidemia (P<0.05). However, hesperetin treatment only caused reductions in plasma TC and hepatic TG levels. Besides, the hamsters treated with pectolinarigenin showed a relatively normal hepatic architecture compared to the hepatic steatosis shown in the control group. Moreover, the expressions of fatty-acid synthase (Fasn) and solute carrier family 27 member 1 (Slc27a1) involved in lipid biosynthesis, were suppressed in the pectolinarigenin-treated groups, and the expression of carnitine palmitoyltransferase 1A (Cpt1a) involved in fatty acid oxidation was increased in the pectolinarigenin-treated group. Taken together, these results suggest pectolinarigenin exerts stronger protective effects against hyperlipidemia and hepatic steatosis than hesperetin, which may involve the inhibition of lipid uptake and biosynthesis.
Collapse
Affiliation(s)
- Lulu Shi
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, No. 605, Fenglin
Road, Jingkai District, Nanchang 330013, P.R. China
| | - Mingzhe Zou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, No. 605, Fenglin
Road, Jingkai District, Nanchang 330013, P.R. China
| | - Xingxing Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, No. 605, Fenglin
Road, Jingkai District, Nanchang 330013, P.R. China
| | - Songhua Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, No. 605, Fenglin
Road, Jingkai District, Nanchang 330013, P.R. China
| | - Wei Meng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, No. 605, Fenglin
Road, Jingkai District, Nanchang 330013, P.R. China
| | - Zhou Lan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, No. 605, Fenglin
Road, Jingkai District, Nanchang 330013, P.R. China
| |
Collapse
|
4
|
He GD, Liu XC, Hou XH, Feng YQ. The effect of trimethylamine N-oxide on the metabolism of visceral white adipose tissue in spontaneously hypertensive rat. Adipocyte 2022; 11:420-433. [PMID: 35975941 PMCID: PMC9387326 DOI: 10.1080/21623945.2022.2104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Strong links have been reported among trimethylamine N-oxide (TMAO), visceral white adipose tissue (vWAT), and cardiometabolic diseases. However, the effects of TMAO on vWAT in hypertension remained incompletely explored. The impact of a chronic 22-week-long treatment with 1 g/L TMAO on vWAT, and its transcriptional and metabolic changes in spontaneously hypertensive rats (SHRs) were evaluated by serum cytokine measurements, histological analysis, fatty acid determinations, and co-expression network analyses. TMAO increased the serum interleukin-6 levels and insulin secretion in SHRs. The adipocyte size was diminished in the SHR 1 g/L TMAO group. In addition, one kind of monounsaturated fatty acids (cis-15-tetracosenoate) and four kinds of polyunsaturated fatty acids (cis-11,14,17-eicosatrienoic acid, docosatetraenoate, docosapentaenoate n-3, and docosapentaenoate n-6) were elevated by TMAO treatment. Three co-expression modules significantly related to TMAO treatment were identified and pathway enrichment analyses indicated that phagosome, lysosome, fatty acid metabolism, valine, leucine, and isoleucine degradation and metabolic pathways were the most significantly altered biological pathways. This study shed new light on the metabolic roles of TMAO on the vWAT of SHRs. TMAO regulated the metabolic status of vWAT, including reduced lipogenesis and an improved specific fatty acid composition. The mechanisms underlying these effects likely involve phagosome and lysosome pathways.
Collapse
Affiliation(s)
- Guo-Dong He
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiao-Cong Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xing-Hua Hou
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ying-Qing Feng
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| |
Collapse
|
5
|
Wang Y, Xie Z, Jiang N, Wu Z, Xue R, Dong B, Fan W, Dai G, Chen C, Li J, Chen H, Ye Z, Fang R, Choy M, Zhao J, Dong Y, Liu C. Hispidulin Attenuates Cardiac Hypertrophy by Improving Mitochondrial Dysfunction. Front Cardiovasc Med 2020; 7:582890. [PMID: 33324687 PMCID: PMC7726192 DOI: 10.3389/fcvm.2020.582890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy is a pathophysiological response to harmful stimuli. The continued presence of cardiac hypertrophy will ultimately develop into heart failure. The mitochondrion is the primary organelle of energy production, and its dysfunction plays a crucial role in the progressive development of heart failure from cardiac hypertrophy. Hispidulin, a natural flavonoid, has been substantiated to improve energy metabolism and inhibit oxidative stress. However, how hispidulin regulates cardiac hypertrophy and its underlying mechanism remains unknown. We found that hispidulin significantly inhibited pressure overload-induced cardiac hypertrophy and improved cardiac function in vivo and blocked phenylephrine (PE)-induced cardiomyocyte hypertrophy in vitro. We further proved that hispidulin remarkably improved mitochondrial function, manifested by increased electron transport chain (ETC) subunits expression, elevated ATP production, increased oxygen consumption rates (OCR), normalized mitochondrial morphology, and reduced oxidative stress. Furthermore, we discovered that Sirt1, a well-recognized regulator of mitochondrial function, might be a target of hispidulin, as evidenced by its upregulation after hispidulin treatment. Cotreatment with EX527 (a Sirt1-specific inhibitor) and hispidulin nearly completely abolished the antihypertrophic and protective effects of hispidulin on mitochondrial function, providing further evidence that Sirt1 could be the pivotal downstream effector of hispidulin in regulating cardiac hypertrophy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The Second People's Hospital of Guangdong Province, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zengshuo Xie
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Nan Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zexuan Wu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Ruicong Xue
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Bin Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Wendong Fan
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Gang Dai
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Chen Chen
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Jiayong Li
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Hao Chen
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zi Ye
- Faculty of Medicine, St Vincent Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Rong Fang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Manting Choy
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Jingjing Zhao
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chen Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| |
Collapse
|
6
|
Chen K, Ma Z, Yan X, Liu J, Xu W, Li Y, Dai Y, Zhang Y, Xiao H. Investigation of the Lipid-Lowering Mechanisms and Active Ingredients of Danhe Granule on Hyperlipidemia Based on Systems Pharmacology. Front Pharmacol 2020; 11:528. [PMID: 32435189 PMCID: PMC7218108 DOI: 10.3389/fphar.2020.00528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Investigate the active ingredients and underlying hypolipidemic mechanisms of Danhe granule (DHG). Methods The lipid-lowering effect of DHG was evaluated in hyperlipidemic hamsters induced by a high-fat diet. The ingredients absorbed into the blood after oral administration of DHG in hamsters were identified by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). A systems pharmacology approach incorporating target prediction and network construction, gene ontology (GO) enrichment and pathway analysis was performed to predict the active compounds and map the compounds-targets-disease network. Real-time polymerase chain reaction (RT-PCR) and Western blot were utilized to analyze the mRNA and protein expression levels of predicted targets. Results DHG remarkably lowered the levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), and arteriosclerosis index (AI), at the same time, elevated the levels of serum high-density lipoprotein cholesterol (HDL-c) and HDL-c/TC ratio in hyperlipidemic hamsters. Sixteen ingredients absorbed into blood after oral administration of DHG were identified as the possible components interacted with targets. Moreover, 65 potential targets were predicted after targets intersection and compounds–targets–disease network mapping. Then, compounds–targets–pathways network mapping revealed that six active compounds (emodin, naringenin, etc.) compounds could interact with 10 targets such as sterol regulatory element binding protein (SREBP) 1c, SREBP-2 and peroxisome proliferation-activated receptor (PPAR) α, regulate three lipid metabolism-related pathways including SREBP control of lipid synthesis pathway, PPAR signaling pathway and nuclear receptors in lipid metabolism and toxicity pathway, and further affect lipid metabolic processes including fatty acid biosynthesis, low-density lipoprotein receptor (LDLR)-mediated cholesterol uptake, bile acid biosynthesis, and cholesterol efflux. Experimental results indicated that DHG significantly increased SREBP-2, LDLR, PPARα, liver X receptor alpha (LXRα), cholesterol 7α-hydroxylase (CYP7A1), and ATP binding cassette subfamily A member 1 (ABCA1) mRNA and protein expressions while decreased SREBP-1c and fatty acid synthase (FAS) mRNA, and protein expressions. Conclusion DHG possessed a good hypolipidemic effect that may be through affecting the mRNA and protein expressions of SREBP-1c, FAS, SREBP-2, LDLR, PPARα, LXRα, CYP7A1, and ABCA1, involving in fatty acid synthesis, LDLR-mediated cholesterol uptake, bile acid biosynthesis, and cholesterol efflux. This study further provided experimental evidence about its practical application for treating hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Kuikui Chen
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaochen Ma
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoning Yan
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjuan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yihang Dai
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhuan Zhang
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- Research Center of Chinese Medicine Analysis and Transformation & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Gong G, Huang J, Yang Y, Qi B, Han G, Zheng Y, He H, Chan K, Tsim KW, Dong TT. Saussureae Involucratae Herba (Snow Lotus): Review of Chemical Compositions and Pharmacological Properties. Front Pharmacol 2020; 10:1549. [PMID: 32009958 PMCID: PMC6971814 DOI: 10.3389/fphar.2019.01549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Saussureae Involucratae Herba is the dried ground part of Saussurea involucrata (Kar. et Kir.) Sch.-Bip, which is also named as “Snow lotus” and being used in traditional Uyghur and/or Chinese medicine. This rare herb can be found at 4,000 m elevation in western part of Tianshan Mountain, Xinjiang China. According to China Pharmacopoeia (2015), the major pharmaceutical values of “Snow lotus” (Xuě liánhuā in Chinese) are alleviating rheumatoid arthritis, accelerating blood circulation and mitigating other “cold” syndromes. Traditionally, the clinical application of “Snow lotus” includes the treatments in inflammation-associated disorder, blood circulation acceleration and heat and dampness elimination. Recent studies suggested that “Snow lotus” possessed therapeutic effects associating with anti-cancer, anti-oxidation, adipogenesis suppression and neuroprotection activities, which were proposed to be related with its bioactive constitutes, i.e. acacetin, hispidulin, and rutin. In the present review, we aim to summarize pharmacological effects and underlying cell signaling pathways of “Snow lotus” in treating various medical problems.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Jing Huang
- College of Environmental and Biological Engineering, Putian University, Putian, China
| | - Yang Yang
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Baohui Qi
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Guangyi Han
- Gansu Institute for Drug Control, Lanzhou, China
| | - Yuzhong Zheng
- Department of Biology, Hanshan Normal University, Chaozhou, China
| | - Huan He
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Kelvin Chan
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Karl Wk Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Tina Tx Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| |
Collapse
|
8
|
Lu H, Guo J, Xu C. Cardioprotective Efficacy of Hispidulin on Isoproterenol-induced Heart Failure in Wistar Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.816.822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Wang M, Xiao FL, Mao YJ, Ying LL, Zhou B, Li Y. Quercetin decreases the triglyceride content through the PPAR signalling pathway in primary hepatocytes of broiler chickens. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1635528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Mi Wang
- Department of Animal Nutrition and Feed Science, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, PR China
- Department of Technology, Shenyang BOIN Feed Ltd., Shenyang, Liaoning, PR China
| | - Feng Lin Xiao
- Department of Animal Nutrition and Feed Science, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yan Jun Mao
- Department of Animal Nutrition and Feed Science, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Lin Lin Ying
- Department of Animal Nutrition and Feed Science, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Bo Zhou
- Department of Animal Nutrition and Feed Science, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yao Li
- Department of Animal Nutrition and Feed Science, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| |
Collapse
|
10
|
Bakhtiarizadeh MR, Salehi A, Alamouti AA, Abdollahi-Arpanahi R, Salami SA. Deep transcriptome analysis using RNA-Seq suggests novel insights into molecular aspects of fat-tail metabolism in sheep. Sci Rep 2019; 9:9203. [PMID: 31235755 PMCID: PMC6591244 DOI: 10.1038/s41598-019-45665-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Fat-tail content of sheep breeds is varied and the molecular mechanisms regulating fat-tail development have not been well characterized. Aiming at better identifying the important candidate genes and their functional pathways contributing to fat deposition in the tail, a comparative transcriptome analysis was performed between fat- (Lori-Bakhtiari) and thin-tailed (Zel) Iranian sheep breeds using RNA-seq. The experiment was conducted on six male lambs (three lambs per each breed) at seven months of age. Four different combinations of aligners and statistical methods including Hisat2 + edgeR, Hisat2 + DESeq2, STAR + edgeR and STAR + DESeq2 were used to identify the differentially expressed genes (DEGs). The DEGs were selected for functional enrichment analysis and protein-protein interaction (PPI) network construction. Module analysis was also conducted to mine the functional sub-networks from the PPI network. In total, 264 genes including 80 up- and 184 down-regulated genes were identified as DEGs. The RNA-Seq results were validated by Q-RT-PCR. Functional analysis of DEGs and the module analysis of PPI network demonstrated that in addition to pathways affecting lipid metabolism, a series of enriched functional terms related to "response to interleukin", "MAPK signaling pathways", "Wnt signaling pathway", "ECM-receptor interaction", "regulation of actin cytoskeleton", and "response to cAMP" might contribute to the deposition of fat in tails of sheep. Overall results using RNA-Seq analysis characterized important candidate genes involved in the fatty acid metabolism and regulation of fat deposition, suggesting novel insights into molecular aspects of fat-tail metabolism in sheep. Selected DEGs should be further investigated as potential markers associated with the fat-tail development in sheep breeds.
Collapse
Affiliation(s)
| | - Abdolreza Salehi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Ali A Alamouti
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
11
|
Kim DE, Min KJ, Kim MJ, Kim SH, Kwon TK. Hispidulin Inhibits Mast Cell-Mediated Allergic Inflammation through Down-Regulation of Histamine Release and Inflammatory Cytokines. Molecules 2019; 24:molecules24112131. [PMID: 31195760 PMCID: PMC6600596 DOI: 10.3390/molecules24112131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hispidulin (4',5,7-trihydroxy-6-methoxyflavone) is a natural compound derived from traditional Chinese medicinal herbs, and it is known to have an anti-inflammatory effect. Here, we investigated the effect of hispidulin on the immunoglobulin E (IgE)-mediated allergic responses in rat basophilic leukemia (RBL)-2H3 mast cells. When RBL-2H3 cells were sensitized with anti-dinitrophenyl (anti-DNP) IgE and subsequently stimulated with DNP-human serum albumin (HSA), histamine and β-hexosaminidase were released from the cells by degranulation of activated mast cells. However, pretreatment with hispidulin before the stimulation of DNP-HSA markedly attenuated release of both in anti-DNP IgE-sensitized cells. Furthermore, we investigated whether hispidulin inhibits anti-DNP IgE and DNP-HSA-induced passive cutaneous anaphylaxis (PCA), as an animal model for Type I allergies. Hispidulin markedly decreased the PCA reaction and allergic edema of ears in mice. In addition, activated RBL-2H3 cells induced the expression of inflammatory cytokines (tumor necrosis factor-α and interleukin-4), which are critical for the pathogenesis of allergic disease, through the activation of c-Jun N-terminal kinase (JNK). Inhibition of JNK activation by hispidulin treatment reduced the induction of cytokine expression in the activated mast cells. Our results indicate that hispidulin might be a possible therapeutic candidate for allergic inflammatory diseases through the suppression of degranulation and inflammatory cytokines expression.
Collapse
Affiliation(s)
- Dong Eun Kim
- Department of Otolaryngology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea.
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea.
| | - Min-Jong Kim
- Department of Pharmacology, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - Sang-Hyun Kim
- Department of Pharmacology, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea.
| |
Collapse
|
12
|
Cheng C, Zhuo S, Zhang B, Zhao X, Liu Y, Liao C, Quan J, Li Z, Bode AM, Cao Y, Luo X. Treatment implications of natural compounds targeting lipid metabolism in nonalcoholic fatty liver disease, obesity and cancer. Int J Biol Sci 2019; 15:1654-1663. [PMID: 31360108 PMCID: PMC6643217 DOI: 10.7150/ijbs.33837] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/19/2019] [Indexed: 01/23/2023] Open
Abstract
Metabolic disorders can lead to a scarcity or excess of certain metabolites such as glucose, lipids, proteins, purines, and metal ions, which provide the biochemical foundation and directly contribute to the etiology of metabolic diseases. Nonalcoholic fatty liver disease, obesity, and cancer are common metabolic disorders closely associated with abnormal lipid metabolism. In this review, we first describe the regulatory machinery of lipid metabolism and its deregulation in metabolic diseases. Next, we enumerate and integrate the mechanism of action of some natural compounds, including terpenoids and flavonoids, to ameliorate the development of metabolic diseases by targeting lipid metabolism. Medicinal natural products have an established history of use in health care and therapy. Natural compounds might provide a good source of potential therapeutic agents for treating or preventing metabolic diseases with lipid metabolic abnormalities.
Collapse
Affiliation(s)
- Can Cheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Songming Zhuo
- Department of Respiratory Medicine, Shenzhen Longgang Center Hospital, Shenzhen, Guangdong 518116, PR China
| | - Bo Zhang
- Department of Ultrasound Imaging,Xiangya Hospital,Central South University, Changsha, Hunan 410078, PR China
| | - Xu Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Ying Liu
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| | - Chaoliang Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Zhenzhen Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China.,Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China.,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan 410078, PR China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078,PR China.,Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
13
|
Saha P, Talukdar AD, Nath R, Sarker SD, Nahar L, Sahu J, Choudhury MD. Role of Natural Phenolics in Hepatoprotection: A Mechanistic Review and Analysis of Regulatory Network of Associated Genes. Front Pharmacol 2019; 10:509. [PMID: 31178720 PMCID: PMC6543890 DOI: 10.3389/fphar.2019.00509] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
The liver is not only involved in metabolism and detoxification, but also participate in innate immune function and thus exposed to frequent target Thus, they are the frequent target of physical injury. Interestingly, liver has the unique ability to regenerate and completely recoup from most acute, non-iterative situation. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease, long term alcohol abuse and chronic use of medications can cause persistent injury in which regenerative capacity eventually becomes dysfunctional resulting in hepatic scaring and cirrhosis. Despite the recent therapeutic advances and significant development of modern medicine, hepatic diseases remain a health problem worldwide. Thus, the search for the new therapeutic agents to treat liver disease is still in demand. Many synthetic drugs have been demonstrated to be strong radical scavengers, but they are also carcinogenic and cause liver damage. Present day various hepatic problems are encountered with number of synthetic and plant based drugs. Nexavar (sorafenib) is a chemotherapeutic medication used to treat advanced renal cell carcinoma associated with several side effects. There are a few effective varieties of herbal preparation like Liv-52, silymarin and Stronger neomin phages (SNMC) against hepatic complications. Plants are the huge repository of bioactive secondary metabolites viz; phenol, flavonoid, alkaloid etc. In this review we will try to present exclusive study on phenolics with its mode of action mitigating liver associated complications. And also its future prospects as new drug lead.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Life Science & Bioinformatics, Assam University, Silchar, India
| | - Anupam Das Talukdar
- Department of Life Science & Bioinformatics, Assam University, Silchar, India
| | - Rajat Nath
- Department of Life Science & Bioinformatics, Assam University, Silchar, India
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jagajjit Sahu
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
14
|
Hispidulin inhibits adipogenesis in 3T3-L1 adipocytes through PPARγ pathway. Chem Biol Interact 2018; 293:89-93. [PMID: 30055130 DOI: 10.1016/j.cbi.2018.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/25/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
Hispidulin, a natural flavone, has been reported to have diverse pharmacological effects, including antifungal, antioxidant, and antithrombotic properties. However, an anti-adipogenic effect has not yet been reported, which is the focus of the current study. Hispidulin suppressed the differentiation of adipocytes and cellular lipid accumulation without cytotoxicity. Treatment with hispidulin at concentrations of 10, 20, and 40 μM reduced intracellular lipids by 88.1%, 81.9%, and 75.8%, respectively. In addition, hispidulin reduced mRNA and protein expression of peroxisome proliferator-activated receptor gamma (PPARγ) and adiponectin. To our knowledge, these results are the first evidence of the anti-adipogenic effects of hispidulin in 3T3-L1 adipocytes, indicating that hispidulin has potential as a novel anti-obesity therapeutic.
Collapse
|
15
|
Duncan G, Firth K, George V, Hoang MD, Staniforth A, Smith G, Denning C. Drug-Mediated Shortening of Action Potentials in LQTS2 Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2017; 26:1695-1705. [PMID: 28992755 PMCID: PMC5706629 DOI: 10.1089/scd.2017.0172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) are now a well-established modality for modeling genetic disorders of the heart. This is especially so for long QT syndrome (LQTS), which is caused by perturbation of ion channel function, and can lead to fainting, malignant arrhythmias and sudden cardiac death. LQTS2 is caused by mutations in KCNH2, a gene whose protein product contributes to IKr (also known as HERG), which is the predominant repolarizing potassium current in CMs. β-blockers are the mainstay treatment for patients with LQTS, functioning by reducing heart rate and arrhythmogenesis. However, they are not effective in around a quarter of LQTS2 patients, in part, because they do not correct the defining feature of the condition, which is excessively prolonged QT interval. Since new therapeutics are needed, in this report, we biopsied skin fibroblasts from a patient who was both genetically and clinically diagnosed with LQTS2. By producing LQTS-hiPSC-CMs, we assessed the impact of different drugs on action potential duration (APD), which is used as an in vitro surrogate for QT interval. Not surprisingly, the patient's own β-blocker medication, propranolol, had a marginal effect on APD in the LQTS-hiPSC-CMs. However, APD could be significantly reduced by up to 19% with compounds that enhanced the IKr current by direct channel binding or by indirect mediation through the PPARδ/protein 14-3-3 epsilon/HERG pathway. Drug-induced enhancement of an alternative potassium current, IKATP, also reduced APD by up to 21%. This study demonstrates the utility of LQTS-hiPSC-CMs in evaluating whether drugs can shorten APD and, importantly, shows that PPARδ agonists may form a new class of therapeutics for this condition.
Collapse
Affiliation(s)
- Gary Duncan
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Karl Firth
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Vinoj George
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom .,2 Guy Hilton Research Centre, Institute for Science and Technology in Medicine (ISTM), Keele University , Staffordshire, United Kingdom
| | - Minh Duc Hoang
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom .,2 Guy Hilton Research Centre, Institute for Science and Technology in Medicine (ISTM), Keele University , Staffordshire, United Kingdom
| | - Andrew Staniforth
- 3 Department of Cardiovascular Medicine, Queen's Medical Centre , Nottingham, United Kingdom
| | - Godfrey Smith
- 4 Institute of Cardiovascular and Medical Sciences, University of Glasgow , Glasgow, United Kingdom
| | - Chris Denning
- 1 Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| |
Collapse
|
16
|
Rigano D, Sirignano C, Taglialatela-Scafati O. The potential of natural products for targeting PPAR α. Acta Pharm Sin B 2017; 7:427-438. [PMID: 28752027 PMCID: PMC5518659 DOI: 10.1016/j.apsb.2017.05.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator activated receptors (PPARs) α, -γ and -β/δ are ligand-activated transcription factors and members of the superfamily of nuclear hormone receptor. These receptors play key roles in maintaining glucose and lipid homeostasis by modulating gene expression. PPARs constitute a recognized druggable target and indeed several classes of drugs used in the treatment of metabolic disease symptoms, such as dyslipidemia (fibrates, e.g. fenofibrate and gemfibrozil) and diabetes (thiazolidinediones, e.g. rosiglitazone and pioglitazone) are ligands for the various PPAR isoforms. More precisely, antidiabetic thiazolidinediones act on PPARγ, while PPARα is the main molecular target of antidyslipidemic fibrates. Over the past few years, our understanding of the mechanism underlying the PPAR modulation of gene expression has greatly increased. This review presents a survey on terrestrial and marine natural products modulating the PPARα system with the objective of highlighting how the incredible chemodiversity of natural products can provide innovative leads for this "hot" target.
Collapse
|