1
|
Liu X, Li K, Ye L, Cao X, Wang P, Xie X, Yang M, Xu L, Yan Y, Yan J. In-situ co-immobilization of lipase, lipoxygenase and L-cysteine within a metal-amino acid framework for conversion of soybean oil into higher-value products. Food Chem 2024; 458:140187. [PMID: 38950510 DOI: 10.1016/j.foodchem.2024.140187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
We propose a co-immobilized chemo-enzyme cascade system to mitigate random intermediate diffusion from the mixture of individual immobilized catalysts and achieve a one-pot reaction of multi-enzyme and reductant. Catalyzed by lipase and lipoxygenase, unsaturated lipid hydroperoxides (HPOs) were synthesized. 13(S)-hydroperoxy-9Z, 11E-octadecadienoic acid (13-HPODE), one compound of HPOs, was subsequently reduced to 13(S)-hydroxy-9Z, 11E-octadecadienoic acid (13-HODE) by cysteine. Upon the optimized conditions, 75.28 mg of 13-HPODE and 4.01 mg of 13-HODE were produced from per milliliter of oil. The co-immobilized catalysts exhibited improved yield compared to the mixture of individually immobilized catalysts. Moreover, it demonstrated satisfactory durability and recyclability, maintaining a relative HPOs yield of 78.5% after 5 cycles. This work has achieved the co-immobilization of lipase, lipoxygenase and the reductant cysteine for the first time, successfully applying it to the conversion of soybean oil into 13-HODE. It offers a technological platform for transforming various oils into high-value products.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kai Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Luona Ye
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinghong Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengbo Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoman Xie
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Chrisnasari R, Hennebelle M, Nguyen KA, Vincken JP, van Berkel WJH, Ewing TA. Engineering the substrate specificity and regioselectivity of Burkholderia thailandensis lipoxygenase. N Biotechnol 2024; 84:64-76. [PMID: 39341453 DOI: 10.1016/j.nbt.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Lipoxygenases (LOXs) catalyze the regioselective dioxygenation of polyunsaturated fatty acids (PUFAs), generating fatty acid hydroperoxides (FAHPs) with diverse industrial applications. Bacterial LOXs have garnered significant attention in recent years due to their broad activity towards PUFAs, yet knowledge about the structural factors influencing their substrate preferences remains limited. Here, we characterized a bacterial LOX from Burkholderia thailandensis (Bt-LOX), and identified key residues affecting its substrate preference and regioselectivity through site-directed mutagenesis. Bt-LOX preferred ω-6 PUFAs and exhibited regioselectivity at the ω-5 position. Mutations targeting the substrate binding pocket and the oxygen access channel led to the production of three active variants with distinct catalytic properties. The A431G variant bifurcated dioxygenation between the ω-5 and ω-9 positions, while F446V showed reduced regioselectivity with longer PUFAs. Interestingly, L445A displayed altered substrate specificity, favoring ω-3 over ω-6 PUFAs. Furthermore, L445A shifted the regioselectivity of dioxygenation to the ω-2 position in ω-3 PUFAs, and, for some substrates, facilitated dioxygenation closer to the carboxylic acid terminus, suggesting an altered substrate orientation. Among these variants, L445A represents a significant milestone in LOX research, as these alterations in substrate specificity, dioxygenation regioselectivity, and substrate orientation were achieved by a single mutation only. These findings illuminate key residues governing substrate preference and regioselectivity in Bt-LOX, offering opportunities for synthesizing diverse FAHPs and highlighting the potential of bacterial LOXs as biocatalysts with widespread applications.
Collapse
Affiliation(s)
- Ruth Chrisnasari
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Faculty of Biotechnology, University of Surabaya (UBAYA), Surabaya 60293, Indonesia.
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Khoa A Nguyen
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Tom A Ewing
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
3
|
Production of C20 9S- and C22 11S-hydroxy fatty acids by cells expressing Shewanella hanedai arachidonate 9S-lipoxygenase. Appl Microbiol Biotechnol 2022; 107:247-260. [DOI: 10.1007/s00253-022-12285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
|
4
|
Oh CW, Kim SE, Lee J, Oh DK. Bioconversion of C20- and C22-polyunsaturated fatty acids into 9S,15S- and 11S,17S-dihydroxy fatty acids by Escherichia coli expressing double-oxygenating 9S-lipoxygenase from Sphingopyxis macrogoltabida. J Biosci Bioeng 2022; 134:14-20. [PMID: 35466059 DOI: 10.1016/j.jbiosc.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Double-oxygenating lipoxygenase (LOX) converted C20- and C22-polyunsaturated fatty acids (PUFAs) into C20 dihydroxy fatty acids (DiHFAs) as inflammatory mediators and C22 DiHFAs as specialized pro-resolving mediators, which are involved in the resolution of inflammation and infection in humans, and their isomers, respectively. However, the quantitative bioconversion of C20- and C22-PUFAs into 9S,15S- and 11S,17S-DiHFAs has been not attempted to date, respectively. Here, we performed the efficient quantitative production of 9S,15S- and 11S,17S-DiHFAs by Escherichia coli expressing 9S-LOX from Sphingopyxis macrogoltabida. The optimal bioconversion conditions of the C20 PUFA arachidonic acid or the C22-PUFA docosahexaenoic acid were pH 8.5, 35 °C, 6 mM substrate, and 5 g dry cells/L for C20 PUFAs or 7 g dry cells/L for C22 PUFAs, respectively. Under these conditions, E. coli expressing double-oxygenating 9S-LOX from S. macrogoltabida converted arachidonic acid, eicosapentaenoic acid, docosapentaenoic acidn-3, and docosahexaenoic acid into 5.85 mM 9S,15S-dihydroxyeicosatetraenoic acid, 5.79 mM 9S,15S-dihydroxyeicosapentaenoic acid, 5.89 mM 11S,17S-hydroxydocosapentaenoic acidn-3, and 5.24 mM 11S,17S-dihydroxydocosahexaenoic acid in 40, 30, 50, and 60 min, with conversion yields of 97.5%, 96.5%, 98.1%, and 87.3%; and volumetric productivities of 8.78, 11.6, 7.07, and 5.24 mM/h, respectively. To date, these are the highest concentrations, conversion yields, and volumetric productivities reported in the bioconversion of C20- and C22-PUFAs into DiHFAs.
Collapse
Affiliation(s)
- Chae-Won Oh
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| |
Collapse
|
5
|
Kim S, Kim T, Kim M, Oh D. Production of
11
R
‐hydroxyeicosatetraenoic
acid from arachidonic acid by
Escherichia coli
cells expressing arachidonate
11
R
‐lipoxygenase
from
Nostoc
sp. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Su‐Eun Kim
- Department of Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| | - Tae‐Hun Kim
- Department of Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| | - Min‐Ju Kim
- Department of Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| | - Deok‐Kun Oh
- Department of Bioscience and Biotechnology Konkuk University Seoul Republic of Korea
| |
Collapse
|
6
|
Shin K, Seo M, Ju J, Oh D. Production of 6,8‐Dihydroxy Fatty Acids by Recombinant
Escherichia coli
Expressing T879A Variant 6,8‐Linoleate Diol Synthase from
Penicillium oxalicum. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kyung‐Chul Shin
- Department of Bioscience and BiotechnologyKonkuk University Seoul 143‐701 Republic of Korea
| | - Min‐Ju Seo
- Department of Bioscience and BiotechnologyKonkuk University Seoul 143‐701 Republic of Korea
| | - Jeong‐Hun Ju
- Department of Bioscience and BiotechnologyKonkuk University Seoul 143‐701 Republic of Korea
| | - Deok‐Kun Oh
- Department of Bioscience and BiotechnologyKonkuk University Seoul 143‐701 Republic of Korea
| |
Collapse
|
7
|
Shin KC, Kang WR, Seo MJ, Kim DW, Oh DK. Production of 8S- and 10S-hydroxy polyunsaturated fatty acids by recombinant Escherichia coli cells expressing mouse arachidonate 8S-lipoxygenase. Biotechnol Lett 2019; 41:575-582. [PMID: 30825045 DOI: 10.1007/s10529-019-02659-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/26/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To quantitatively hydroxylate 8S- and 10S-positions on polyunsaturated fatty acids by recombinant Escherichia coli cells expressing mouse arachidonate 8S-lipoxygenase (8S-LOX). RESULTS Hydroxylated products gained from the conversion of arachidonic acid (20:4Δ5Z,8Z,11Z,14Z, AA), eicosapentanoic acid (20:5Δ5Z,8Z,11Z,14Z,17Z, EPA), and (22:6Δ4Z,7Z,10Z,13Z,16Z,19Z, DHA) by recombinant E. coli cells containing 8S-LOX from mouse were identified as 8S-hydroxy-5,9,11,14(Z,E,Z,Z)-eicosatetranoic acid (8S-HETE), 8S-hydroxy-5,9,11,14,17(Z,E,Z,Z,Z)-eicosapentanoic acid (8S-HEPE), and 10S-hydroxy-4,8,12,14,16,19(Z,E,Z,Z,Z,Z)-docosahexaenoic acid (10S-HDoHE), respectively. Under the optimal hydroxylation conditions of pH 7.5, 30 °C, 5% (v/v) ethanol, 15 g cells l-1, and 5 mM substrate, AA, EPA, and DHA were hydroxylated into 4.37 mM 8S-HETE, 3.77 mM 8S-HEPE, and 3.13 mM 10S-HDoHE for 60, 90, and 60 min, with 87, 75, and 63% molar conversions, respectively. CONCLUSION To the best of our knowledge, this is the first quantitatively biotechnological production of 8S-HETE, 8S-HEPE, and 10S-HDoHE.
Collapse
Key Words
- 10S-hydroxy-4,8,12,14,16,19(Z,E,Z,Z,Z,Z)-docosahexaenoic acid
- 8S-hydroxy-5,9,11,14(Z,E,Z,Z)-eicosatetranoic acid
- 8S-hydroxy-5,9,11,14,17(Z,E,Z,Z,Z)-eicosapentanoic acid
- 8S-lipoxygenase
- Mus musculus
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Woo-Ri Kang
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Min-Ju Seo
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Dae Wook Kim
- Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa, 36209, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Choi JH, Seo MJ, Lee KT, Oh DK. Biotransformation of fatty acid-rich tree oil hydrolysates to hydroxy fatty acid-rich hydrolysates by hydroxylases and their feasibility as biosurfactants. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0374-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Liang N, Cai P, Wu D, Pan Y, Curtis JM, Gänzle MG. High-Speed Counter-Current Chromatography (HSCCC) Purification of Antifungal Hydroxy Unsaturated Fatty Acids from Plant-Seed Oil and Lactobacillus Cultures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11229-11236. [PMID: 29224354 DOI: 10.1021/acs.jafc.7b05658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydroxy unsaturated fatty acids (HUFA) can function as antifungal agents. To investigate the antifungal spectrum, that is, the scope of the in vitro fungal-inhibition activities of HUFA and their potential applications, three HUFA were produced by microbial transformation or extracted from plant-seed oils; these compounds included coriolic acid (13-hydroxy-9,11-octadecadienoic acid) from Coriaria seed oil, 10-hydroxy-12-octadecenoic acid from cultures of Lactobacillus hammesii, and 13-hydroxy-9-octadecenoic acid from cultures of Lactobacillus plantarum TMW1.460Δlah. HUFA were purified by high-speed counter-current chromatography (HSCCC), characterized by LC-MS and MS/MS, and their antifungal activities were evaluated with 15 indicator fungal strains. The HUFA had different antifungal spectra when compared with unsaturated fatty acids with comparable structures but without hydroxy groups. The inhibitory effects of HUFA specifically targeted filamentous fungi, including Aspergillus niger and Penicillium roqueforti, whereas yeasts, including Candida spp. and Saccharomyces spp., were resistant to HUFA. The findings here support the development of food applications for antifungal HUFA.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton T6G 2R3, Canada
| | - Pengfei Cai
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Datong Wu
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton T6G 2R3, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta , Edmonton T6G 2R3, Canada
| |
Collapse
|
10
|
Kim MJ, Seo MJ, Shin KC, Oh DK. Production of 8,11-dihydroxy and 8-hydroxy unsaturated fatty acids from unsaturated fatty acids by recombinant Escherichia coli expressing 8,11-linoleate diol synthase from Penicillium chrysogenum. Biotechnol Prog 2016; 33:390-396. [PMID: 27997074 DOI: 10.1002/btpr.2426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/17/2016] [Indexed: 11/08/2022]
Abstract
Hydroxy unsaturated fatty acids can be used as antimicrobial surfactants. 8,11-Linoleate diol synthase (8,11-LDS) catalyzes the conversion of unsaturated fatty acid to 8-hydroperoxy unsaturated fatty acid, and it is subsequently isomerized to 8,11-dihydroxy unsaturated fatty acid by the enzyme. The optimal reaction conditions of recombinant Escherichia coli expressing Penicillium chrysogenum 8,11-LDS for the production of 8,11-dihydroxy-9,12(Z,Z)-octadecadienoic acid (8,11-DiHODE), 8,11-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid (8,11-DiHOTrE), 8-hydroxy-9(Z)-hexadecenoic acid (8-HHME), and 8-hydroxy-9(Z)-octadecenoic acid (8-HOME) were pH 7.0, 25°C, 10 g/L linoleic acid, and 20 g/L cells; pH 6.0, 25°C, 6 g/L α-linolenic acid, and 60 g/L cells; pH 7.0, 25°C, 8 g/L palmitoleic acid, and 25 g/L cells; and pH 8.5, 30°C, 6 g/L oleic acid, and 25 g/L cells, respectively. Under these optimized conditions, the recombinant cells produced 6.0 g/L 8,11-DiHODE for 60 min, with a conversion of 60% (w/w) and a productivity of 6.0 g/L/h; 4.3 g/L 8,11-DiHOTrE for 60 min, with a conversion of 72% (w/w) and a productivity of 4.3 g/L/h; 4.3 g/L 8-HHME acid for 60 min, with a conversion of 54% (w/w) and a productivity of 4.3 g/L/h; and 0.9 g/L 8-HOME for 30 min, with a conversion of 15% (w/w) and a productivity of 1.8 g/L/h. To best of our knowledge, this is the first report on the biotechnological production of 8,11-DiHODE, 8,11-DiHOTrE, 8-HHME, and 8-HOME. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:390-396, 2017.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Min-Ju Seo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
11
|
Production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing 10S-dioxygenase from Nostoc punctiforme PCC 73102 with the aid of a chaperone. Biotechnol Lett 2016; 39:133-139. [DOI: 10.1007/s10529-016-2225-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|