1
|
Yu H, Deng T, Liu H. Immunotherapy-induced microsatellite instability status shift in recurrent perihilar cholangiocarcinoma: A case report. Hum Vaccin Immunother 2025; 21:2471226. [PMID: 39996476 PMCID: PMC11864312 DOI: 10.1080/21645515.2025.2471226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025] Open
Abstract
Immunotherapy revolutionized the treatment of biliary tract tumors and tumors with high microsatellite instability (MSI-H). This paper reports a 52-year-old woman with recurrent perihilar cholangiocarcinoma. The tumor was initially microsatellite stable (MSS) and proficient mismatch repair (pMMR) but shifted to MSI-H and deficient mismatch repair (dMMR) after combined immunotherapy. Following laparoscopic radical resection for jaundice, stage IV recurrence was diagnosed. Genetic testing revealed the MSS status. Subsequent treatment with camrelizumab and lenvatinib led to a partial response. Ovarian metastases, removed due to abdominal symptoms, exhibited dMMR and MSI-H. The mismatch in MSI status between the primary tumor and metastases suggests tumor heterogeneity and the influence of spatial or temporal factors. This shift can have important clinical significance since MSI-H is associated with significant responses to immune checkpoint inhibitors. MSI-H should be systematically tested in tumors and metastases to personalize treatments. MSI heterogeneity is not only rare but potentially has implications for treatment personalization and prognosis in patients with cholangiocarcinoma. This case highlights the dynamic changes in tumor characteristics during immunotherapy.
Collapse
Affiliation(s)
- Hailing Yu
- Department of Oncology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Tan Deng
- Department of Oncology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Hongbing Liu
- Department of Oncology, Xiangtan First People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
2
|
Cannarozzi AL, Biscaglia G, Parente P, Latiano TP, Gentile A, Ciardiello D, Massimino L, Di Brina ALP, Guerra M, Tavano F, Ungaro F, Bossa F, Perri F, Latiano A, Palmieri O. Artificial intelligence and whole slide imaging, a new tool for the microsatellite instability prediction in colorectal cancer: Friend or foe? Crit Rev Oncol Hematol 2025; 210:104694. [PMID: 40064251 DOI: 10.1016/j.critrevonc.2025.104694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common and second most deadly cancer worldwide. Despite advances in screening and treatment, CRC is heterogeneous and the response to therapy varies significantly, limiting personalized treatment options. Certain molecular biomarkers, including microsatellite instability (MSI), are critical in planning personalized treatment, although only a subset of patients may benefit. Currently, the primary methods for assessing MSI status include immunohistochemistry (IHC) for DNA mismatch repair proteins (MMRs), polymerase chain reaction (PCR)-based molecular testing, or next-generation sequencing (NGS). However, these techniques have limitations, are expensive and time-consuming, and often result in inter-method inconsistencies. Deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H) are critical predictive biomarkers of response to immune checkpoint inhibitor (ICI) therapy and MSI testing is recommended to identify patients who may benefit. There is a pressing need for a more robust, reliable, and cost-effective approach that accurately assesses MSI status. Recent advances in computational pathology, in particular the development of technologies that digitally scan whole slide images (WSI) at high resolution, as well as new approaches to artificial intelligence (AI) in medicine, are increasingly gaining ground. This review aims to provide an overview of the latest findings on WSI and advances in AI methods for predicting MSI status, summarize their applications in CRC, and discuss their strengths and limitations in daily clinical practice.
Collapse
Affiliation(s)
- Anna Lucia Cannarozzi
- Division of Gastroenterology, Fondazione IRCCS - Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Giuseppe Biscaglia
- Division of Gastroenterology, Fondazione IRCCS - Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy.
| | - Tiziana Pia Latiano
- Oncology Unit, Fondazione Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo 71013, Italy.
| | - Annamaria Gentile
- Division of Gastroenterology, Fondazione IRCCS - Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Davide Ciardiello
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, IRCCS, Milan.
| | - Luca Massimino
- Gastroenterology and Digestive Endoscopy Department, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Anna Laura Pia Di Brina
- Division of Gastroenterology, Fondazione IRCCS - Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Maria Guerra
- Division of Gastroenterology, Fondazione IRCCS - Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Francesca Tavano
- Division of Gastroenterology, Fondazione IRCCS - Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Federica Ungaro
- Gastroenterology and Digestive Endoscopy Department, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Fabrizio Bossa
- Division of Gastroenterology, Fondazione IRCCS - Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS - Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Anna Latiano
- Division of Gastroenterology, Fondazione IRCCS - Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Orazio Palmieri
- Division of Gastroenterology, Fondazione IRCCS - Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
3
|
Yap J, Pattison S. Deficient Mismatch Repair and BRAF Mutations in Metastatic Colorectal Cancer in the South Island of New Zealand. Asia Pac J Clin Oncol 2025; 21:311-318. [PMID: 39807600 DOI: 10.1111/ajco.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
AIM Manatū Hauora, the Ministry of Health of New Zealand (NZ), published minimum standards for molecular testing of colorectal cancers (CRCs) in June 2018. These included mismatch repair (MMR) testing at diagnosis and BRAFV600E mutation analysis on newly diagnosed stage IV CRCs. This study aimed to determine the proportion of patients with CRC in the South Island of NZ with metastatic deficient mismatch repair (dMMR) CRC, the proportion of metastatic CRCs and dMMR CRCs that have a BRAFV600E mutation, and audit testing for BRAF mutations and appropriate referral to genetics services. METHODS People from the South Island with histologically diagnosed colorectal adenocarcinoma between July 1, 2018, and June 30, 2019, were identified by the National Cancer Registry. Data points extracted from the electronic medical record included staging, MMR status, BRAF mutation testing, and genetics referral. RESULTS A total of 845 patients met the inclusion criteria; 166 of 845 (19.6%) had dMMR CRC, and of these 130 (78%) had BRAF mutation, 256 patients developed metastatic disease by data cut-off, 20 (7.8%) had dMMR, and 41 (22.2%) had BRAF mutation. When indicated, 275 of 330 (83.3%) were tested for BRAF mutation and 32 of 45 (71.1%) referred to genetics. Compared with other populations, South Island CRC patients had higher rates of dMMR and BRAF mutation. CONCLUSION Less than 10% of patients (n = 20) had metastatic dMMR CRC. These patients could be considered candidates for immune checkpoint inhibitor therapy, a small number that would not significantly burden the NZ health system if funded. The vast majority of dMMR CRC was sporadic. Rates of testing could be improved.
Collapse
Affiliation(s)
- Jeremy Yap
- Southern Blood and Cancer Service, Health New Zealand/Te Whatu Ora - Southern, Dunedin, New Zealand
| | - Sharon Pattison
- Wellington Blood and Cancer Centre, Health New Zealand/Te Whatu Ora - Capital, Coast and Hutt Valley, Wellington, New Zealand
- Department of Pathology, Otago Medical School - Dunedin Campus, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Nomikos IN, Kosmas C, Gkretsi V. Tumor molecular signatures: bridging the bench and the operating room. Am J Surg 2025; 246:116393. [PMID: 40378496 DOI: 10.1016/j.amjsurg.2025.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
Contemporary diagnostic and therapeutic strategies for many solid tumors rely on understanding the Mismatch Repair (MMR) system, a fundamental DNA repair mechanism responsible for correcting errors introduced during DNA replication. Pathology reports written for tumors excised in surgery, often indicate the expression status of MMR proteins. This is of significant clinical value, as loss of MMR protein expression is associated with the accumulation of DNA replication errors. The MMR system recognizes and replaces mismatched nucleotides, particularly in microsatellite regions. These are short, repetitive non-coding DNA sequences prone to replication errors. When MMR proteins are inactivated by genetic or epigenetic alterations, MMR deficiency (dMMR) occurs, preventing repair and leading to microsatellite instability (MSI). MSI is a hallmark of Lynch syndrome, which is commonly associated with colorectal cancer (CRC) and endometrial cancer. This work highlights the clinical utility of MMR protein and MSI status as molecular signatures and discusses diagnostic, prognostic, and therapeutic implications. Understanding these molecular changes supports clinicians in making informed therapeutic decisions and may improve patient outcomes by providing personalized treatments to fit individual tumor profiles.
Collapse
Affiliation(s)
- Iakovos N Nomikos
- Rea Maternity Hospital, Athens, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus.
| | | | - Vasiliki Gkretsi
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| |
Collapse
|
5
|
Offermans K, Jenniskens JCA, Simons CCJM, Samarska I, Fazzi GE, Smits KM, Schouten LJ, Weijenberg MP, Grabsch HI, van den Brandt PA. Association between individual Warburg-related proteins and prognosis in colorectal cancer. J Pathol Clin Res 2025; 11:e70016. [PMID: 40017054 PMCID: PMC11868443 DOI: 10.1002/2056-4538.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 03/01/2025]
Abstract
We previously showed that Warburg subtyping (low/moderate/high), based on the expression of six glycolytic proteins and transcriptional regulators [glucose transporter 1 (GLUT1), pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDHA), monocarboxylate transporter 4 (MCT4), p53, and PTEN], holds independent prognostic value in colorectal cancer (CRC) patients. The present study aimed to investigate whether the expression level of one of the proteins (GLUT1, PKM2, LDHA, MCT4, p53, and PTEN) can act as a proxy for our previously identified six protein-based Warburg subtypes. Protein expression levels for individual Warburg-related proteins were available for 2,251 CRC patients from the Netherlands Cohort Study. Kaplan-Meier curves and Cox regression were used to explore associations between individual Warburg-related proteins and CRC-specific and overall survival. Previously identified associations between Warburg subtypes and CRC-specific and overall survival were adjusted for individual proteins, showing a significant association with survival in the current study. Multivariable-adjusted analyses showed that the expression of GLUT1, LDHA, MCT4, PKM2, or p53 was associated with neither CRC-specific nor overall survival. Decreasing PTEN expression was associated with significantly poorer overall survival (p-trendcategories = 0.026). Additional adjustment for PTEN expression had minimal impact on the previously identified association between Warburg subtypes and survival, and the six protein-based Warburg-high subtype remained a statistically significant predictor of overall survival (hazard ratio 1.15; 95% CI 1.01-1.32). In conclusion, our results emphasise that individual Warburg-related proteins cannot serve as a proxy or surrogate marker for Warburg subtyping, thereby highlighting the importance of combining the expression levels of multiple Warburg-related proteins when examining the prognostic significance of a complex biological pathway such as the Warburg effect.
Collapse
Affiliation(s)
- Kelly Offermans
- Department of EpidemiologyGROW – Research Institute for Oncology and Reproduction, Maastricht University Medical Center+MaastrichtThe Netherlands
| | - Josien CA Jenniskens
- Department of EpidemiologyGROW – Research Institute for Oncology and Reproduction, Maastricht University Medical Center+MaastrichtThe Netherlands
| | - Colinda CJM Simons
- Department of EpidemiologyGROW – Research Institute for Oncology and Reproduction, Maastricht University Medical Center+MaastrichtThe Netherlands
| | - Iryna Samarska
- Department of PathologyGROW – Research Institute for Oncology and Reproduction, Maastricht University Medical Center+MaastrichtThe Netherlands
| | - Gregorio E Fazzi
- Department of PathologyGROW – Research Institute for Oncology and Reproduction, Maastricht University Medical Center+MaastrichtThe Netherlands
| | - Kim M Smits
- Department of PathologyGROW – Research Institute for Oncology and Reproduction, Maastricht University Medical Center+MaastrichtThe Netherlands
| | - Leo J Schouten
- Department of EpidemiologyGROW – Research Institute for Oncology and Reproduction, Maastricht University Medical Center+MaastrichtThe Netherlands
| | - Matty P Weijenberg
- Department of EpidemiologyGROW – Research Institute for Oncology and Reproduction, Maastricht University Medical Center+MaastrichtThe Netherlands
| | - Heike I Grabsch
- Department of PathologyGROW – Research Institute for Oncology and Reproduction, Maastricht University Medical Center+MaastrichtThe Netherlands
- Pathology and Data AnalyticsLeeds Institute of Medical Research at St James's, University of LeedsLeedsUK
| | - Piet A van den Brandt
- Department of EpidemiologyGROW – Research Institute for Oncology and Reproduction, Maastricht University Medical Center+MaastrichtThe Netherlands
- Department of EpidemiologyCare and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+MaastrichtThe Netherlands
| |
Collapse
|
6
|
Wu H, Yu Y, Wang Z, Wu S, Shao L, Hong L, Qiu J, Zhang X, Wu J. Investigating the Impact of B Cell-Related Genes on Colorectal Cancer Immunosuppressive Environment and Immunotherapy Evasion. Drug Dev Res 2025; 86:e70053. [PMID: 39868510 DOI: 10.1002/ddr.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
We aimed to elucidate the prognostic and immunological roles of B cell-related genes in colorectal cancer (CRC). This study comprehensively integrated data from single-cell RNA-sequencing, TCGA, GEO, IMvigor210, GDSC, CancerSEA, HPA, and TISIDB databases to explore prognostic implications and immunological significance of B cell-related gene signature in CRC. We identified seven prognostically significant B cell-related genes for constructing a risk score. Clinical relevance analysis indicated that this risk score served as an independent prognostic factor, with the model accurately predicting patient outcomes. GSEA results implicated the risk score in immune function, cell cycle, and DNA replication. Immune infiltration analysis revealing lower levels of B cells, CD4+ cells, and CD8+ cells in the high-risk group, correlating with decreased immune activity and function. IMvigor210 and TIDE analysis indicated poorer prognosis among high-risk group patients receiving immune therapy. Additionally, the high-risk group exhibited lower sensitivity to immune therapy. Further analysis of drug sensitivity suggested higher resistance to common chemotherapy drugs among high-risk groups. Finally, we identified HSPA1A as the gene with the strongest association with immune and inflammatory responses. Validation of HSPA1A protein expression and prognosis demonstrated elevated expression in CRC compared to normal colorectal tissue, further reinforcing its association with poorer prognosis and higher tumor stage. The risk score exhibited substantial variations in clinical characteristics, functional mechanism, TMB, drug sensitivity, immune cell infiltration, and immune subtype. Our findings may aid in clinical decision-making by shedding light on novel and promising biomarkers for CRC prognosis and immunotherapy response prediction.
Collapse
Grants
- This work was supported by the Joint Funds for the National Clinical Key Specialty Construction Program (Grant No. 2021), the Fujian Provincial Clinical Research Center for Cancer Radiotherapy and Immunotherapy (Grant No. 2020Y2012), Fujian Province Natural Science Foundation (Grant No. 2023J011288), Fujian provincial health and family planning research talent training program (Grant No. 2020QNA013), the Innovation of Science and Technology, Fujian province (Grant No. 2023Y9422), Fujian Provincial Clinical Medical Research Center for Tumor Precision Radiotherapy (Grant No. 2020Y20101), Fujian Province Science and Technology Innovation Joint Funding Project (Grant No. 2021Y9216), Fujian Province Natural Science Foundation (Grant No. 2021J01438 and 2022J01433), Fujian Cancer Hospital In-Hospital Funding Program (Grant No. 2022YNG06 and 2023YNPT005), and Fujian Clinical Research Center for Radiation and Therapy of Digestive, Respiratory and Genitourinary Malignancies (Grant No. 2021Y2014).
Collapse
Affiliation(s)
- Haixia Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yilin Yu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zhiping Wang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Shiji Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Lingdong Shao
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Liang Hong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jianjian Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xueqing Zhang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Junxin Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Lou P, Luo D, Huang Y, Chen C, Yuan S, Wang K. Establishment and Validation of a Prognostic Nomogram for Predicting Postoperative Overall Survival in Advanced Stage III-IV Colorectal Cancer Patients. Cancer Med 2024; 13:e70385. [PMID: 39546402 PMCID: PMC11566917 DOI: 10.1002/cam4.70385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/05/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Most colorectal cancer (CRC) patients are at an advanced stage when they are first diagnosed. Risk factors for predicting overall survival (OS) in advanced stage CRC patients are crucial, and constructing a prognostic nomogram model is a scientific method for survival analysis. METHODS A total of 2956 advanced stage CRC patients were randomised into training and validation groups at a 7:3 ratio. Univariate and multivariate Cox proportional hazards regression analyses were used to screen risk factors for OS and subsequently construct a prognostic nomogram model for predicting 1-, 3-, 5-, 8- and 10-year OS of advanced stage CRC patients. The performance of the model was demonstrated by the area under the curve (AUC) values, calibration curves and decision curve analysis (DCA). Kaplan-Meier curves were used to plot the survival probabilities for different strata of each risk factor. RESULTS There was no statistically significant difference (p > 0.05) in the 32 clinical variables between patients in the training and validation groups. Univariate and multivariate Cox proportional hazards regression analyses demonstrated that age, location, TNM, chemotherapy, liver metastasis, lung metastasis, MSH6, CEA, CA199, CA125 and CA724 were risk factors for OS. We estimated the AUC values for the nomogram model to predict 1-, 3-, 5-, 8- and 10-year OS, which in the training group were 0.826 (95% CI: 0.807-0.845), 0.836 (0.819-0.853), 0.839 (0.820-0.859), 0.835 (0.809-0.862) and 0.825 (0.779-0.870) respectively; in the validation group, the corresponding AUC values were 0.819 (0.786-0.852), 0.831 (0.804-0.858), 0.830 (0.799-0.861), 0.815 (0.774-0.857) and 0.802 (0.723-0.882) respectively. Finally, the 1-, 3-, 5-, 8- and 10-year OS rates for advanced stage CRC patients were 73.4 (71.8-75.0), 49.5 (47.8-51.4), 43.3 (41.5-45.2), 40.1 (38.1-41.9) and 38.6 (36.6-40.8) respectively. CONCLUSION We constructed and validated an original nomogram for predicting the postoperative OS of advanced stage CRC patients, which can help facilitates physicians to accurately assess the individual survival of postoperative patients and identify high-risk patients.
Collapse
Affiliation(s)
- Pengwei Lou
- Department of Big Data, College of Information EngineeringXinjiang Institute of EngineeringUrumqiXinjiang Uygur Autonomous RegionPeople's Republic of China
| | - Dongmei Luo
- Department of Medical AdministrationCancer Hospital Affiliated With Xinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous RegionPeople's Republic of China
| | - Yuting Huang
- Department of Medical AdministrationTraditional Chinese Medicine Hospital Affiliated With Xinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous RegionPeople's Republic of China
| | - Chen Chen
- College of Public HealthXinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous RegionPeople's Republic of China
| | - Shuai Yuan
- Department of UrologyCancer Hospital Affiliated With Xinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous RegionPeople's Republic of China
| | - Kai Wang
- College of Public HealthXinjiang Medical UniversityUrumqiXinjiang Uygur Autonomous RegionPeople's Republic of China
| |
Collapse
|
8
|
Rong J, Deng W. Survival Benefits of Postoperative Chemotherapy in Patients With Colorectal Mucinous Adenocarcinoma: An Analysis Utilizing Propensity Score Matching From the Surveillance, Epidemiology, and End Results Database. Am Surg 2024; 90:2969-2984. [PMID: 38849300 DOI: 10.1177/00031348241257469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
OBJECTIVE This study aimed to investigate the characteristics of patients with colorectal mucinous adenocarcinoma (MAC) who benefit from postoperative chemotherapy (POCT) and to develop effective postoperative survival nomograms for predicting overall survival (OS) in colorectal MAC patients. METHODS Data of colorectal MAC patients who underwent surgery from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2020 were collected. Patients were grouped based on POCT, and intergroup analysis was performed using 1:1 propensity score matching (PSM). Kaplan-Meier (K-M) curves were used to compare the prognosis between the 2 groups. Cox analysis was employed to identify factors associated with OS in patients with colorectal MAC who underwent POCT. The variance inflation factor (VIF) and bilateral stepwise regression were used to determine factors included in the model. Additionally, a nomogram was constructed to predict postoperative survival outcomes for patients. The discriminative ability of the nomograms was evaluated using the C-index and calibration curve analysis, the decision curve analysis (DCA) assessed the clinical utility of the nomogram, and the receiver operating characteristic (ROC) curve evaluated the nomograms' performance. RESULTS This study encompassed 6829 patients with colorectal MAC, among whom 2258 received POCT, and 4571 did not. Whether pre or post PSM, patients in the POCT group consistently exhibited a superior median OS compared to those in the postoperative non-chemotherapy group (P < .0001). For colorectal MAC patients undergoing POCT, OS was correlated with factors such as patient age, carcinoembryonic antigen levels, tumor deposits, perineural invasion (PNI), lymph node examination count, T staging, and Grade staging. Notably, a significant chemotherapy advantage was observed in patients without perineural invasion, those with lymph node examination counts exceeding 12, and patients with moderately differentiated tumors. The overall colorectal MAC patient postoperative OS predictive nomogram demonstrated a C-index of .74, with a calibration curve near the diagonal and a DCA curve indicating positive net benefits. In comparison to TNM staging, the ROC curves of the nomogram at 1 year, 3 years, and 5 years demonstrated superior predictive capabilities (AUC: .80 vs .71, .78 vs .71, .77 vs .70). CONCLUSION This study revealed the characteristics of colorectal MAC patients who benefit from POCT and established effective prognostic nomograms, which can aid clinicians in designing personalized treatment plans for individual patients and promote precision medicine.
Collapse
Affiliation(s)
- Jun Rong
- Department of Gastrointestinal Surgery, Pingxiang People's Hospital, Pingxiang, China
| | - Wensheng Deng
- Department of Gastrointestinal Surgery, Pingxiang People's Hospital, Pingxiang, China
| |
Collapse
|
9
|
González A, Badiola I, Fullaondo A, Rodríguez J, Odriozola A. Personalised medicine based on host genetics and microbiota applied to colorectal cancer. ADVANCES IN GENETICS 2024; 112:411-485. [PMID: 39396842 DOI: 10.1016/bs.adgen.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) ranks second in incidence and third in cancer mortality worldwide. This situation, together with the understanding of the heterogeneity of the disease, has highlighted the need to develop a more individualised approach to its prevention, diagnosis and treatment through personalised medicine. This approach aims to stratify patients according to risk, predict disease progression and determine the most appropriate treatment. It is essential to identify patients who may respond adequately to treatment and those who may be resistant to treatment to avoid unnecessary therapies and minimise adverse side effects. Current research is focused on identifying biomarkers such as specific mutated genes, the type of mutations and molecular profiles critical for the individualisation of CRC diagnosis, prognosis and treatment guidance. In addition, the study of the intestinal microbiota as biomarkers is being incorporated due to the growing scientific evidence supporting its influence on this disease. This article comprehensively addresses the use of current and emerging diagnostic, prognostic and predictive biomarkers in precision medicine against CRC. The effects of host genetics and gut microbiota composition on new approaches to treating this disease are discussed. How the gut microbiota could mitigate the side effects of treatment is reviewed. In addition, strategies to modulate the gut microbiota, such as dietary interventions, antibiotics, and transplantation of faecal microbiota and phages, are discussed to improve CRC prevention and treatment. These findings provide a solid foundation for future research and improving the care of CRC patients.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | | | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
10
|
Petterson AT, Garbarini J, Baker MJ. Universal screening of colorectal tumors for lynch syndrome: a survey of patient experiences and opinions. Hered Cancer Clin Pract 2024; 22:18. [PMID: 39238026 PMCID: PMC11378365 DOI: 10.1186/s13053-024-00290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Lynch syndrome represents the most common hereditary cause of both colorectal and endometrial cancer. It is caused by defects in mismatch repair genes, as well as EPCAM. Universal screening of colon tumors for Lynch syndrome via microsatellite instability (MSI) and/or immunohistochemistry (IHC) can identify patients and families at risk to develop further cancers and potentially impact surveillance and treatment options. The approach to implementation of universal screening, taking ethical considerations into account, is critical to its effectiveness, with patient perspectives providing valuable insight. METHODS Patients whose colon tumors underwent universal screening at Penn State Hershey Medical Center over a period of 2.5 years were mailed a survey on universal screening in 2017. Along with the survey, they received a recruitment letter and a summary explanation of research. The survey included both multiple choice and free-response questions that covered topics including respondent knowledge of Lynch syndrome, attitudes toward universal screening and experiences with the screening protocol as implemented. RESULTS Sixty-six of 297 possible patients (22.2%) responded to the survey, including 13 whose screening results raised concern for Lynch syndrome. 75.8% of respondents supported universal tumor screening without informed consent. 92.4% preferred receiving screening results regardless of outcome. Respondents described benefits to screening for themselves and their families. CONCLUSIONS While broadly supporting universal tumor screening without informed consent, respondents also wanted more information shared about the screening policy, as well as their results. These patient preferences should be one of many factors considered when implementing universal screening and can also inform practices regarding both tumor profiling and universal genetic testing, which is becoming more prevalent.
Collapse
Affiliation(s)
- Alexander T Petterson
- Genetic Counseling Program, Arcadia University, Glenside, PA, USA
- Penn State Hershey Medical Center, Hershey, PA, USA
| | | | - Maria J Baker
- Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
11
|
Liu T, Ho CL, Chen YJ, Chen PJ, Chen WL, Lee CT, Chow NH, Huang W, Chen YL. A pilot study on the detection of microsatellite instability using long mononucleotide repeats in solid tumors. Oncol Lett 2024; 28:445. [PMID: 39099584 PMCID: PMC11294907 DOI: 10.3892/ol.2024.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Microsatellite instability (MSI) status is a prognostic biomarker for immunotherapy in certain types of cancers, such as colorectal cancers (CRCs) and endometrial cancers (ECs). Tumors that are categorized as having high MSI (MSI-H) express high levels of neoantigens for immune recognition. The typical MSI test measures the length of short mononucleotide repeats (SMR) poly(A) 21-27; however, a limitation of this test is the difficulty in determining the shift size, particularly in endometrial cancer. To investigate an MSI detection assay with improved performance, the present study analyzed the use of poly(A) 40-44 mononucleotide repeats to detect the MSI status of 100 patients with either CRC (n=50) or EC (n=50). Capillary electrophoresis was used to evaluate five long mononucleotide repeat (LMR) markers, including poly(A) 40-A, 40-B, 40-C, 40-D and 44. The concordance rate of the LMR-MSI assay compared with an immunohistochemistry MSI detection assay was 96.0 and 95.1% for CRCs and ECs respectively, with the detection limit of the LMR-MSI assay demonstrated to be 2.5% MSI-H in HCT116 colorectal carcinoma cell lines. The LMR-MSI assay yielded a 95.1% concordance rate in ECs compared with that in the SMR-MSI test (87.8%). The LMR-MSI test identified a significantly higher mean shift size (13 bp) in MSI-H tumors compared with the SMR-MSI test (10 bp), in both EC and CRC tissue samples. Together, the present study suggested that the LMR-MSI test could potentially be a sensitive and practical technology for molecular laboratory testing, particularly in the use of immunotherapy for patients with CRCs and ECs.
Collapse
Affiliation(s)
- Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Chung-Liang Ho
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Department of Laboratory Medicine, Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Yan-Jhen Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
| | - Pin-Jun Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Wan-Li Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
| | - Chung-Ta Lee
- Department of Laboratory Medicine, Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Nan-Haw Chow
- Department of Laboratory Medicine, Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Wenya Huang
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Yi-Lin Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
12
|
Tian S, Chen M. The mechanisms and drug therapies of colorectal cancer and epigenetics: bibliometrics and visualized analysis. Front Pharmacol 2024; 15:1466156. [PMID: 39268463 PMCID: PMC11391208 DOI: 10.3389/fphar.2024.1466156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Numerous studies have demonstrated a link between epigenetics and CRC. However, there has been no systematic analysis or visualization of relevant publications using bibliometrics. METHODS 839 publications obtained from the Web of Science Core (WoSCC) were systematically analyzed using CiteSpace and VOSviewer software. RESULTS The results show that the countries, institutions, and authors with the most published articles are the United States, Harvard University, and Ogino and Shuji, respectively. SEPT9 is a blood test for the early detection of colorectal cancer. Vitamin D and gut microbiota mediate colorectal cancer and epigenetics, and probiotics may reduce colorectal cancer-related symptoms. We summarize the specific epigenetic mechanisms of CRC and the current existence and potential epigenetic drugs associated with these mechanisms. It is closely integrated with clinical practice, and the possible research directions and challenges in the future are proposed. CONCLUSION This study reviews the current research trends and hotspots in CRC and epigenetics, which can promote the development of this field and provide references for researchers in this field.
Collapse
Affiliation(s)
- Siyu Tian
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Min Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Xiao G, Li J, Deng L, Gao S, Tan C, He G, Du R. Microsatellite instability evaluation by a novel PCR-based 8-loci test kit in colorectal cancer. Biotechnol Appl Biochem 2024; 71:860-867. [PMID: 38556769 DOI: 10.1002/bab.2582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Microsatellite instability (MSI) assessment is strongly recommended for colorectal cancer patients, as MSI status is crucial in determining optimal treatment and predicting prognosis. This study evaluated the reliability and accuracy of a novel polymerase chain reaction (PCR)-based 8-loci MSI test kit, a rapid test kit designed to detect MSI, by comparing its performance with immunohistochemistry (IHC) and the National Cancer Institute (NCI) 2B3D Panel. MSI status was determined in 186 formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissue samples with known mismatch repair (MMR) status by IHC using the novel PCR-based 8-loci MSI test kit. Additionally, the consistency between the NCI 2B3D Panel and the novel PCR-based 8-loci panel was compared using 69 FFPE tumor tissues paired with adjacent non-cancerous tissue. The novel PCR-based 8-loci MSI test kit and IHC demonstrated high concordance (overall agreement: 97.8%). However, four samples displayed discordant results, exhibiting MMR deficiency using IHC and microsatellite stability using the novel PCR-based 8-loci MSI test kit. Of the 69 samples reanalyzed using the NCI 2B3D Panel, high concordance with the novel PCR-based 8-loci MSI test kit was observed in 67 of 69 cases (overall agreement: 97.1%). The novel PCR-based 8-loci MSI test kit is a rapid and reliable tool for accurately detecting MSI status in colorectal cancer.
Collapse
Affiliation(s)
- Gaofang Xiao
- Department of Pathology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Jing Li
- Department of Pathology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Lijun Deng
- Department of Medical Engineering, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Shuangquan Gao
- Department of Pathology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Caiyun Tan
- Department of Pathology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Guiqing He
- Department of Pathology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Richang Du
- Department of Pathology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| |
Collapse
|
14
|
Chang Z, Liu B, He H, Li X, Shi H. High expression of RUNX1 in colorectal cancer subtype accelerates malignancy by inhibiting HMGCR. Pharmacol Res 2024; 206:107293. [PMID: 38971271 DOI: 10.1016/j.phrs.2024.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Colorectal cancer (CRC) presents a complex landscape, characterized by both inter-tumor and intra-tumor heterogeneity. RUNX1, a gene implicated in modulating tumor cell growth, survival, and differentiation, remains incompletely understood regarding its impact on CRC prognosis. In our investigation, we discerned a positive correlation between elevated RUNX1 expression and aggressive phenotypes across various CRC subtypes. Notably, knockdown of RUNX1 demonstrated efficacy in restraining CRC proliferation both in vitro and in vivo, primarily through inducing apoptosis and impeding cell proliferation. Mechanistically, we unveiled a direct regulatory link between RUNX1 and cholesterol synthesis, mediated by its control over HMGCR expression. Knockdown of RUNX1 in CRC cells triggered HMGCR transcriptional activation, culminating in elevated cholesterol levels that subsequently hindered cancer progression. Clinically, heightened RUNX1 expression emerged as a prognostic marker for adverse outcomes in CRC patients. Our findings underscore the pivotal involvement of RUNX1 in CRC advancement and its potential as a therapeutic target. The unique influence of RUNX1 on cholesterol synthesis and HMGCR transcriptional regulation uncovers a novel pathway contributing to CRC progression.
Collapse
Affiliation(s)
- Zhilin Chang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Bing Liu
- Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Han He
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Xiaoyan Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Hui Shi
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Faa G, Coghe F, Pretta A, Castagnola M, Van Eyken P, Saba L, Scartozzi M, Fraschini M. Artificial Intelligence Models for the Detection of Microsatellite Instability from Whole-Slide Imaging of Colorectal Cancer. Diagnostics (Basel) 2024; 14:1605. [PMID: 39125481 PMCID: PMC11311951 DOI: 10.3390/diagnostics14151605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
With the advent of whole-slide imaging (WSI), a technology that can digitally scan whole slides in high resolution, pathology is undergoing a digital revolution. Detecting microsatellite instability (MSI) in colorectal cancer is crucial for proper treatment, as it identifies patients responsible for immunotherapy. Even though universal testing for MSI is recommended, particularly in patients affected by colorectal cancer (CRC), many patients remain untested, and they reside mainly in low-income countries. A critical need exists for accessible, low-cost tools to perform MSI pre-screening. Here, the potential predictive role of the most relevant artificial intelligence-driven models in predicting microsatellite instability directly from histology alone is discussed, focusing on CRC. The role of deep learning (DL) models in identifying the MSI status is here analyzed in the most relevant studies reporting the development of algorithms trained to this end. The most important performance and the most relevant deficiencies are discussed for every AI method. The models proposed for algorithm sharing among multiple research and clinical centers, including federal learning (FL) and swarm learning (SL), are reported. According to all the studies reported here, AI models are valuable tools for predicting MSI status on WSI alone in CRC. The use of digitized H&E-stained sections and a trained algorithm allow the extraction of relevant molecular information, such as MSI status, in a short time and at a low cost. The possible advantages related to introducing DL methods in routine surgical pathology are underlined here, and the acceleration of the digital transformation of pathology departments and services is recommended.
Collapse
Affiliation(s)
- Gavino Faa
- Dipartimento di Scienze Mediche e Sanità Pubblica, University of Cagliari, 09123 Cagliari, Italy;
| | - Ferdinando Coghe
- UOC Laboratorio Analisi, AOU of Cagliari, 09123 Cagliari, Italy;
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (A.P.); (M.S.)
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Peter Van Eyken
- Division of Pathology, Genk Regional Hospital, 3600 Genk, Belgium;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, University of Cagliari, 40138 Cagliari, Italy;
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy; (A.P.); (M.S.)
| | - Matteo Fraschini
- Dipartimento di Ingegneria Elettrica ed Elettronica, University of Cagliari, 09123 Cagliari, Italy
| |
Collapse
|
16
|
Cheng Q, Ji W, Lv Z, Wang W, Xu Z, Chen S, Zhang W, Shao Y, Liu J, Yang Y. Comprehensive analysis of PHF5A as a potential prognostic biomarker and therapeutic target across cancers and in hepatocellular carcinoma. BMC Cancer 2024; 24:868. [PMID: 39030507 PMCID: PMC11264801 DOI: 10.1186/s12885-024-12620-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVE Cancer is a predominant cause of death globally. PHD-finger domain protein 5 A (PHF5A) has been reported to participate in various cancers; however, there has been no pan-cancer analysis of PHF5A. This study aims to present a novel prognostic biomarker and therapeutic target for cancer treatment. METHODS This study explored PHF5A expression and its impact on prognosis, tumor mutation burden (TMB), microsatellite instability (MSI), functional status and tumor immunity across cancers using various public databases, and validated PHF5A expression and its correlation with survival, immune evasion, angiogenesis, and treatment response in hepatocellular carcinoma (HCC) using bioinformatics tools, qRT-PCR and immunohistochemistry (IHC). RESULTS PHF5A was differentially expressed between tumor and corresponding normal tissues and was correlated with prognosis in diverse cancers. Its expression was also associated with TMB, MSI, functional status, tumor microenvironment, immune infiltration, immune checkpoint genes and tumor immune dysfunction and exclusion (TIDE) score in diverse malignancies. In HCC, PHF5A was confirmed to be upregulated by qRT-PCR and IHC, and elevated PHF5A expression may promote immune evasion and angiogenesis in HCC. Additionally, multiple canonical pathways were revealed to be involved in the biological activity of PHF5A in HCC. Moreover, immunotherapy and transcatheter arterial chemoembolization (TACE) worked better in the low PHF5A expression group, while sorafenib, chemotherapy and AKT inhibitor were more effective in the high expression group. CONCLUSIONS This study provides a comprehensive understanding of the biological function of PHF5A in the carcinogenesis and progression of various cancers. PHF5A could serve as a tumor biomarker related to prognosis across cancers, especially HCC, and shed new light on the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Qianqian Cheng
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Wenbin Ji
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Zhenyu Lv
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Wei Wang
- Department of Gastroenterology, The Third People's Hospital of Bengbu, 233004, Bengbu, China
| | - Zhaiyue Xu
- School of Medical, Southeast University, 210000, Nanjing, China
| | - Shaohua Chen
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Wenting Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Yu Shao
- National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Jing Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China
| | - Yan Yang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, 233004, Bengbu, China.
| |
Collapse
|
17
|
Kirthiga Devi SS, Singh S, Joga R, Patil SY, Meghana Devi V, Chetan Dushantrao S, Dwivedi F, Kumar G, Kumar Jindal D, Singh C, Dhamija I, Grover P, Kumar S. Enhancing cancer immunotherapy: Exploring strategies to target the PD-1/PD-L1 axis and analyzing the associated patent, regulatory, and clinical trial landscape. Eur J Pharm Biopharm 2024; 200:114323. [PMID: 38754524 DOI: 10.1016/j.ejpb.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Cancer treatment modalities and their progression is guided by the specifics of cancer, including its type and site of localization. Surgery, radiation, and chemotherapy are the most often used conventional treatments. Conversely, emerging treatment techniques include immunotherapy, hormone therapy, anti-angiogenic therapy, dendritic cell-based immunotherapy, and stem cell therapy. Immune checkpoint inhibitors' anticancer properties have drawn considerable attention in recent studies in the cancer research domain. Programmed Cell Death Protein-1 (PD-1) and its ligand (PD-L1) checkpoint pathway are key regulators of the interactions between activated T-cells and cancer cells, protecting the latter from immune destruction. When the ligand PD-L1 attaches to the receptor PD-1, T-cells are prevented from destroying cells that contain PD-L1, including cancer cells. The PD-1/PD-L1 checkpoint inhibitors block them, boosting the immune response and strengthening the body's defenses against tumors. Recent years have seen incredible progress and tremendous advancement in developing anticancer therapies using PD-1/PD-L1 targeting antibodies. While immune-related adverse effects and low response rates significantly limit these therapies, there is a need for research on methods that raise their efficacy and lower their toxicity. This review discusses various recent innovative nanomedicine strategies such as PLGA nanoparticles, carbon nanotubes and drug loaded liposomes to treat cancer targeting PD-1/PD-L1 axis. The biological implications of PD-1/PD-L1 in cancer treatment and the fundamentals of nanotechnology, focusing on the novel strategies used in nanomedicine, are widely discussed along with the corresponding guidelines, clinical trial status, and the patent landscape of such formulations.
Collapse
Affiliation(s)
- S S Kirthiga Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sidhartha Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sharvari Y Patil
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Vakalapudi Meghana Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sabnis Chetan Dushantrao
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Falguni Dwivedi
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India
| | - Gautam Kumar
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani campus, Rajasthan 333031, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand 246174, India
| | - Isha Dhamija
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India.
| |
Collapse
|
18
|
Chen H, Jiang RY, Hua Z, Wang XW, Shi XL, Wang Y, Feng QQ, Luo J, Ning W, Shi YF, Zhang DK, Wang B, Jie JZ, Zhong DR. Comprehensive analysis of gene mutations and mismatch repair in Chinese colorectal cancer patients. World J Gastrointest Oncol 2024; 16:2673-2682. [PMID: 38994136 PMCID: PMC11236251 DOI: 10.4251/wjgo.v16.i6.2673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 04/12/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND RAS, BRAF, and mismatch repair (MMR)/microsatellite instability (MSI) are crucial biomarkers recommended by clinical practice guidelines for colorectal cancer (CRC). However, their characteristics and influencing factors in Chinese patients have not been thoroughly described. AIM To analyze the clinicopathological features of KRAS, NRAS, BRAF, and PIK3CA mutations and the DNA MMR status in CRC. METHODS We enrolled 2271 Chinese CRC patients at the China-Japan Friendship Hospital. MMR proteins were tested using immunohistochemical analysis, and the KRAS/NRAS/BRAF/PIK3CA mutations were determined using quantitative polymerase chain reaction. Microsatellite status was determined using an MSI detection kit. Statistical analyses were conducted using SPSS software and logistic regression. RESULTS The KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 44.6%, 3.4%, 3.7%, and 3.9% of CRC patients, respectively. KRAS mutations were more likely to occur in patients with moderate-to-high differentiation. BRAF mutations were more likely to occur in patients with right-sided CRC, poorly differentiated, or no perineural invasion. Deficient MMR (dMMR) was detected in 7.9% of all patients and 16.8% of those with mucinous adenocarcinomas. KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 29.6%, 1.1%, 8.1%, and 22.3% of patients with dMMR, respectively. The dMMR was more likely to occur in patients with a family history of CRC, aged < 50 years, right-sided CRC, poorly differentiated histology, no perineural invasion, and with carcinoma in situ, stage I, or stage II tumors. CONCLUSION This study analyzed the molecular profiles of KRAS, NRAS, BRAF, PIK3CA, and MMR/MSI in CRC, identifying key influencing factors, with implications for clinical management of CRC.
Collapse
Affiliation(s)
- Huang Chen
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Rui-Ying Jiang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zhan Hua
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Wei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Li Shi
- Department of Scientific Research, Geneis, Beijing 100012, China
| | - Ye Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qian-Qian Feng
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Luo
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wu Ning
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Da-Kui Zhang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jian-Zheng Jie
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ding-Rong Zhong
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
19
|
Chen H, Jiang RY, Hua Z, Wang XW, Shi XL, Wang Y, Feng QQ, Luo J, Ning W, Shi YF, Zhang DK, Wang B, Jie JZ, Zhong DR. Comprehensive analysis of gene mutations and mismatch repair in Chinese colorectal cancer patients. World J Gastrointest Oncol 2024; 16:2661-2670. [DOI: 10.4251/wjgo.v16.i6.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 04/12/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND RAS, BRAF, and mismatch repair (MMR)/microsatellite instability (MSI) are crucial biomarkers recommended by clinical practice guidelines for colorectal cancer (CRC). However, their characteristics and influencing factors in Chinese patients have not been thoroughly described.
AIM To analyze the clinicopathological features of KRAS, NRAS, BRAF, and PIK3CA mutations and the DNA MMR status in CRC.
METHODS We enrolled 2271 Chinese CRC patients at the China-Japan Friendship Hospital. MMR proteins were tested using immunohistochemical analysis, and the KRAS/NRAS/BRAF/PIK3CA mutations were determined using quantitative polymerase chain reaction. Microsatellite status was determined using an MSI detection kit. Statistical analyses were conducted using SPSS software and logistic regression.
RESULTS The KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 44.6%, 3.4%, 3.7%, and 3.9% of CRC patients, respectively. KRAS mutations were more likely to occur in patients with moderate-to-high differentiation. BRAF mutations were more likely to occur in patients with right-sided CRC, poorly differentiated, or no perineural invasion. Deficient MMR (dMMR) was detected in 7.9% of all patients and 16.8% of those with mucinous adenocarcinomas. KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 29.6%, 1.1%, 8.1%, and 22.3% of patients with dMMR, respectively. The dMMR was more likely to occur in patients with a family history of CRC, aged < 50 years, right-sided CRC, poorly differentiated histology, no perineural invasion, and with carcinoma in situ, stage I, or stage II tumors.
CONCLUSION This study analyzed the molecular profiles of KRAS, NRAS, BRAF, PIK3CA, and MMR/MSI in CRC, identifying key influencing factors, with implications for clinical management of CRC.
Collapse
Affiliation(s)
- Huang Chen
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Rui-Ying Jiang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zhan Hua
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Wei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Li Shi
- Department of Scientific Research, Geneis, Beijing 100012, China
| | - Ye Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qian-Qian Feng
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Luo
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wu Ning
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Da-Kui Zhang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jian-Zheng Jie
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ding-Rong Zhong
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
20
|
Horn V, Sonnenberg GF. Group 3 innate lymphoid cells in intestinal health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:428-443. [PMID: 38467885 PMCID: PMC11144103 DOI: 10.1038/s41575-024-00906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
The gastrointestinal tract is an immunologically rich organ, containing complex cell networks and dense lymphoid structures that safeguard this large absorptive barrier from pathogens, contribute to tissue physiology and support mucosal healing. Simultaneously, the immune system must remain tolerant to innocuous dietary antigens and trillions of normally beneficial microorganisms colonizing the intestine. Indeed, a dysfunctional immune response in the intestine underlies the pathogenesis of numerous local and systemic diseases, including inflammatory bowel disease, food allergy, chronic enteric infections or cancers. Here, we discuss group 3 innate lymphoid cells (ILC3s), which have emerged as orchestrators of tissue physiology, immunity, inflammation, tolerance and malignancy in the gastrointestinal tract. ILC3s are abundant in the developing and healthy intestine but their numbers or function are altered during chronic disease and cancer. The latest studies provide new insights into the mechanisms by which ILC3s fundamentally shape intestinal homeostasis or disease pathophysiology, and often this functional dichotomy depends on context and complex interactions with other cell types or microorganisms. Finally, we consider how this knowledge could be harnessed to improve current treatments or provoke new opportunities for therapeutic intervention to promote gut health.
Collapse
Affiliation(s)
- Veronika Horn
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
21
|
Wang H, Qian YW, Dong H, Cong WM. Pathologic assessment of hepatocellular carcinoma in the era of immunotherapy: a narrative review. Hepatobiliary Surg Nutr 2024; 13:472-493. [PMID: 38911201 PMCID: PMC11190517 DOI: 10.21037/hbsn-22-527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/23/2023] [Indexed: 06/25/2024]
Abstract
Background and Objective Immune checkpoint inhibitor (ICI)-based therapy has achieved impressive success in various cancer types. Several ICIs have been unprecedentedly approved as the treatment regimens for advanced hepatocellular carcinoma (HCC) in recent decade. Meanwhile, numerous clinical trials are being performed to exploit more ICIs into initially unresectable HCC and postoperative HCC to expectantly induce adequate tumor downstaging for further resection or implement adjuvant treatment for relapse-free survival, respectively. In this review, we aim to summarize some pragmatic histomorphologic, immunohistochemical, and molecular pathologic parameters which promisingly indicate the response of neoadjuvant/conversion ICI-related therapy and predict the efficacy of adjuvant/therapeutic ICI-related therapy for HCC. Methods We searched PubMed using the terms hepatocellular carcinoma, immunotherapy, immune checkpoint inhibitor, immune checkpoint blockade, conversion therapy, neoadjuvant therapy, adjuvant therapy, biomarker, pathologic evaluation, pathologic assessment till February 2023. Key Content and Findings Although there is no consensus regarding the pathologic evaluation of relevant HCC specimens, it is encouraging that a few of studies have concentrated on this field, and moreover, the methods and parameters noted on other cancer types are also worthy of reference. For the pathologic assessment of HCC specimens underwent immunotherapy, a suitable sampling scheme, identifying immunotherapy-related pathologic response, and quantification of pathologic response rate should be emphasized. For the patients of HCC who are scheduled to receive immunotherapy, tumor-infiltrating lymphocyte, intratumoral tertiary lymphoid structure, programmed cell death ligand 1, Wnt/β-catenin, microsatellite instability and mismatch repair, tumor mutational burden and tumor neoantigen, as well as some other signaling pathways are the potential predictive biomarkers of treatment response of ICI. Conclusions The management of HCC in the era of immunotherapy arises a brand-new pathological challenge that is to provide an immunotherapy-related diagnostic report. Albeit many related researches are preclinical or insufficient, they may tremendously alter the immunotherapy strategy of HCC in future.
Collapse
Affiliation(s)
- Han Wang
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - You-Wen Qian
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hui Dong
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Wen-Ming Cong
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
22
|
Kim R, Tehfe M, Kavan P, Chaves J, Kortmansky JS, Chen EX, Lieu CH, Wong L, Fakih M, Spencer K, Zhao Q, Predoiu R, Li C, Leconte P, Adelberg D, Chiorean EG. Pembrolizumab Plus mFOLFOX7 or FOLFIRI for Microsatellite Stable/Mismatch Repair-Proficient Metastatic Colorectal Cancer: KEYNOTE-651 Cohorts B and D. Clin Colorectal Cancer 2024; 23:118-127.e6. [PMID: 38762348 DOI: 10.1016/j.clcc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The phase 1b KEYNOTE-651 study evaluated pembrolizumab plus chemotherapy in microsatellite stable or mismatch repair-proficient metastatic colorectal cancer. PATIENTS AND METHODS Patients with microsatellite stable or mismatch repair-proficient metastatic colorectal cancer received pembrolizumab 200 mg every 3 weeks plus 5-fluorouracil, leucovorin, oxaliplatin (previously untreated; cohort B) or 5-fluorouracil, leucovorin, irinotecan (previously treated with fluoropyrimidine plus oxaliplatin; cohort D) every 2 weeks. Primary end point was safety; investigator-assessed objective response rate per RECIST v1.1 was secondary and biomarker analysis was exploratory. RESULTS Thirty-one patients were enrolled in cohort B and 32 in cohort D; median follow-up was 30.2 and 33.5 months, respectively. One dose-limiting toxicity (grade 3 small intestine obstruction) occurred in cohort D. In cohort B, grade 3 or 4 treatment-related adverse events (AEs) occurred in 18 patients (58%), most commonly neutropenia and decreased neutrophil count (n = 5 each). In cohort D, grade 3 or 4 treatment-related AEs occurred in 17 patients (53%), most commonly neutropenia (n = 7). No grade 5 treatment-related AEs occurred. Objective response rate was 61% in cohort B (KRAS wildtype: 71%; KRAS mutant: 53%) and 25% in cohort D (KRAS wildtype: 47%; KRAS mutant: 6%). In both cohorts, PD-L1 combined positive score and T-cell-inflamed gene expression profiles were higher and HER2 expression was lower in responders than nonresponders. No association between tumor mutational burden and response was observed. CONCLUSION Pembrolizumab plus 5-fluorouracil, leucovorin, oxaliplatin/5-fluorouracil, leucovorin, irinotecan demonstrated an acceptable AE profile. Efficacy data appeared comparable with current standard of care (including by KRAS mutation status). Biomarker analyses were hypothesis-generating, warranting further exploration. CLINICALTRIALS GOV IDENTIFIER ClinicalTrials.gov; NCT03374254.
Collapse
Affiliation(s)
- Richard Kim
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL.
| | - Mustapha Tehfe
- Hematology and Medical Oncology Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Petr Kavan
- Department of Medicine and Oncology, Sir Mortimer B. Davis Jewish General Hospital, Segal Cancer Centre, McGill University, Montreal, Canada
| | - Jorge Chaves
- Medical Oncology, Northwest Medical Specialties, Tacoma, WA
| | | | - Eric X Chen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Christopher H Lieu
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Lucas Wong
- Division of Hematology and Oncology, Baylor Scott and White, Temple, TX
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Kristen Spencer
- Department of Medicine, Perlmutter Cancer Center of NYU Langone Health and Department of Internal Medicine NYU Grossman School of Medicine, New York, NY
| | - Qing Zhao
- Department of Medical Oncology, BARDS, Merck & Co., Inc., Rahway, NJ
| | - Raluca Predoiu
- Department of Medical Oncology, BARDS, Merck & Co., Inc., Rahway, NJ
| | - Chenxiang Li
- Department of Medical Oncology, BARDS, Merck & Co., Inc., Rahway, NJ
| | - Pierre Leconte
- Department of Medical Oncology, MSD France, Puteaux, France
| | - David Adelberg
- Department of Medical Oncology, Merck & Co., Inc., Rahway, NJ
| | - E Gabriela Chiorean
- Division of Medical Oncology, Department of Medicine, University of Washington and Fred Hutchinson Cancer Center, Clinical Research Division, Seattle, WA
| |
Collapse
|
23
|
Chen Z, Zou Z, Qian M, Xu Q, Xue G, Yang J, Luo T, Hu L, Wang B. A retrospective cohort study of neoadjuvant chemoradiotherapy combined with immune checkpoint inhibitors in locally advanced rectal cancer. Transl Oncol 2024; 44:101955. [PMID: 38583351 PMCID: PMC11004196 DOI: 10.1016/j.tranon.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
INTRODUCTION This study aimed to investigate the safety and efficacy of neoadjuvant chemoradiotherapy combined with immune checkpoint inhibitors (ICIs) in patients with locally advanced rectal cancer (LARC). Patients diagnosed with LARC and treated with programmed cell death protein-1 (PD-1) inhibitors were recruited. METHODS Four different treatment strategies were employed in this study: plan A [long-course radiotherapy + PD-1 inhibitor/capecitabine + PD-1 inhibitor/XELOX+ total mesorectal excision (TME)], plan B (long-course radiotherapy + capecitabine + PD-1 inhibitor/XELOX + TME), plan C (short-course radiotherapy + PD-1 inhibitor/XELOX + TME), and plan D (PD-1 inhibitor/XELOX + short-course radiotherapy + TME). The basic information about patients, pathological indicators, adverse events, and efficacy indexes of treatment plans were analyzed. RESULTS 96.8 % of patients were mismatch repair proficient (pMMR) and only 2 patients belonged to mismatch repair deficient (dMMR). The 2 patients with dMMR showed a pathological complete response (pCR) rate of 100 %, while the pCR rate of pMMR patients was 43.3 %. The overall tumor descending rate reached 79 %, and the anus-retained rate was 88.7 % in all LARC patients. Plan A exhibited the highest pCR rate of 60 %, and plan C had the highest tumor descending rate and anal preservation rate. Radiation enteritis was the most common adverse event in LARC patients after neoadjuvant therapy, and its incidence was the highest in Plan A. CONCLUSION Neoadjuvant chemoradiotherapy combined with ICIs demonstrated favorable efficacy and safety in treating LARC patients.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhuoling Zou
- Queen Mary School, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Min Qian
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China
| | - Qin Xu
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China
| | - Guojuan Xue
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China
| | - Juan Yang
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China
| | - Tinglan Luo
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China
| | - Lianjie Hu
- Gastrocolorectoanal surgery, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China.
| | - Bin Wang
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China.
| |
Collapse
|
24
|
Xing X, Li D, Peng J, Shu Z, Zhang Y, Song Q. A combinatorial MRI sequence-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer. Sci Rep 2024; 14:11760. [PMID: 38783014 PMCID: PMC11116457 DOI: 10.1038/s41598-024-62584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
This study aimed to develop an optimal radiomics model for preoperatively predicting microsatellite instability (MSI) in patients with rectal cancer (RC) based on multiparametric magnetic resonance imaging. The retrospective study included 308 RC patients who did not receive preoperative antitumor therapy, among whom 51 had MSI. Radiomics features were extracted and dimensionally reduced from T2-weighted imaging (T2WI), T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI), and T1-weighted contrast enhanced (T1CE) images for each patient, and the features of each sequence were combined. Multifactor logistic regression was used to screen the optimal feature set for each combination. Different machine learning methods were applied to construct predictive MSI status models. Relative standard deviation values were determined to evaluate model performance and select the optimal model. Receiver operating characteristic (ROC) curve, calibration curve, and decision curve analyses were performed to evaluate model performance. The model constructed using the k-nearest neighbor (KNN) method combined with T2WI and T1CE images performed best. The area under the curve values for prediction of MSI with this model were 0.849 (0.804-0.887), with a sensitivity of 0.784 and specificity of 0.805. The Delong test showed no significant difference in diagnostic efficacy between the KNN-derived model and the traditional logistic regression model constructed using T1WI + DWI + T1CE and T2WI + T1WI + DWI + T1CE data (P > 0.05) and the diagnostic efficiency of the KNN-derived model was slightly better than that of the traditional model. From ROC curve analysis, the KNN-derived model significantly distinguished patients at low- and high-risk of MSI with the optimal threshold of 0.2, supporting the clinical applicability of the model. The model constructed using the KNN method can be applied to noninvasively predict MSI status in RC patients before surgery based on radiomics features from T2WI and T1CE images. Thus, this method may provide a convenient and practical tool for formulating treatment strategies and optimizing individual clinical decision-making for patients with RC.
Collapse
Affiliation(s)
- Xiaowei Xing
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dongxue Li
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaxuan Peng
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhenyu Shu
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiaowei Song
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Messaritakis I, Koulouris A, Boukla E, Vogiatzoglou K, Lagkouvardos I, Intze E, Sfakianaki M, Chondrozoumaki M, Karagianni M, Athanasakis E, Xynos E, Tsiaoussis J, Christodoulakis M, Flamourakis ME, Tsagkataki ES, Giannikaki L, Chliara E, Mavroudis D, Tzardi M, Souglakos J. Exploring Gut Microbiome Composition and Circulating Microbial DNA Fragments in Patients with Stage II/III Colorectal Cancer: A Comprehensive Analysis. Cancers (Basel) 2024; 16:1923. [PMID: 38792001 PMCID: PMC11119035 DOI: 10.3390/cancers16101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) significantly contributes to cancer-related mortality, necessitating the exploration of prognostic factors beyond TNM staging. This study investigates the composition of the gut microbiome and microbial DNA fragments in stage II/III CRC. METHODS A cohort of 142 patients with stage II/III CRC and 91 healthy controls underwent comprehensive microbiome analysis. Fecal samples were collected for 16S rRNA sequencing, and blood samples were tested for the presence of microbial DNA fragments. De novo clustering analysis categorized individuals based on their microbial profiles. Alpha and beta diversity metrics were calculated, and taxonomic profiling was conducted. RESULTS Patients with CRC exhibited distinct microbial composition compared to controls. Beta diversity analysis confirmed CRC-specific microbial profiles. Taxonomic profiling revealed unique taxonomies in the patient cohort. De novo clustering separated individuals into distinct groups, with specific microbial DNA fragment detection associated with certain patient clusters. CONCLUSIONS The gut microbiota can differentiate patients with CRC from healthy individuals. Detecting microbial DNA fragments in the bloodstream may be linked to CRC prognosis. These findings suggest that the gut microbiome could serve as a prognostic factor in stage II/III CRC. Identifying specific microbial markers associated with CRC prognosis has potential clinical implications, including personalized treatment strategies and reduced healthcare costs. Further research is needed to validate these findings and uncover underlying mechanisms.
Collapse
Affiliation(s)
- Ippokratis Messaritakis
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Andreas Koulouris
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Eleni Boukla
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Konstantinos Vogiatzoglou
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Ilias Lagkouvardos
- Department of Clinical Microbiology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (I.L.); (E.I.)
| | - Evangelia Intze
- Department of Clinical Microbiology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (I.L.); (E.I.)
| | - Maria Sfakianaki
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Maria Chondrozoumaki
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Michaela Karagianni
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Elias Athanasakis
- Department of General Surgery, Heraklion University Hospital, 71100 Heraklion, Greece;
| | - Evangelos Xynos
- Department of Surgery, Creta Interclinic Hospital of Heraklion, 71305 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | | | | | - Eleni S. Tsagkataki
- Department of General Surgery, Venizeleio General Hospital, 71409 Heraklion, Greece (M.E.F.)
| | - Linda Giannikaki
- Histopathology, Venizeleio General Hospital, 71409 Heraklion, Greece
| | - Evdoxia Chliara
- Histopathology, Venizeleio General Hospital, 71409 Heraklion, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Maria Tzardi
- Laboratory of Pathology, University General Hospital of Heraklion, 70013 Heraklion, Greece;
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
26
|
Wang M, Peng M, Yang X, Zhang Y, Wu T, Wang Z, Wang K. Preoperative prediction of microsatellite instability status: development and validation of a pan-cancer PET/CT-based radiomics model. Nucl Med Commun 2024; 45:372-380. [PMID: 38312051 DOI: 10.1097/mnm.0000000000001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
OBJECTIVE The purpose of this study is to verify the feasibility of preoperative prediction of patients' microsatellite instability status by applying a PET/CT-based radiation model. METHODS This retrospective study ultimately included 142 patients. Three prediction models have been developed. The predictive performance of all models was evaluated by the receiver operating characteristic curve and area under the curve values. The PET/CT radiological histology score (Radscore) was calculated to evaluate the microsatellite instability status, and the corresponding nomogram was established. The correlation between clinical factors and radiological characteristics was analyzed to verify the value of radiological characteristics in predicting microsatellite instability status. RESULTS Twelve features were retained to establish a comprehensive prediction model of radiological and clinical features. M phase of the tumor has been proven to be an independent predictor of microsatellite instability status. The receiver operating characteristic results showed that the area under the curve values of the training set and the validation set of the radiomics model were 0.82 and 0.75, respectively. The sensitivity, specificity, positive predictive value and negative predictive value of the training set were 0.72, 0.78, 0.83 and 0.66, respectively. The sensitivity, specificity, positive predictive value and negative predictive value of the validation set were 1.00, 0.50, 0.76 and 1.00, respectively. The risk of patients with microsatellite instability was calculated by Radscore and nomograph, and the cutoff value was -0.4385. The validity of the results was confirmed by the decision and calibration curves. CONCLUSION Radiological models based on PET/CT can provide clinical and practical noninvasive prediction of microsatellite instability status of several different cancer types, reducing or avoiding unnecessary biopsy to a certain extent.
Collapse
Affiliation(s)
- Menglu Wang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Mengye Peng
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Xinyue Yang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Ying Zhang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Tingting Wu
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| | - Zeyu Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kezheng Wang
- Department of PET-CT, Harbin Medical University Cancer Hospital, Harbin and
| |
Collapse
|
27
|
Baltgalvis KA, Lamb KN, Symons KT, Wu CC, Hoffman MA, Snead AN, Song X, Glaza T, Kikuchi S, Green JC, Rogness DC, Lam B, Rodriguez-Aguirre ME, Woody DR, Eissler CL, Rodiles S, Negron SM, Bernard SM, Tran E, Pollock J, Tabatabaei A, Contreras V, Williams HN, Pastuszka MK, Sigler JJ, Pettazzoni P, Rudolph MG, Classen M, Brugger D, Claiborne C, Plancher JM, Cuartas I, Seoane J, Burgess LE, Abraham RT, Weinstein DS, Simon GM, Patricelli MP, Kinsella TM. Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase. Nature 2024; 629:435-442. [PMID: 38658751 DOI: 10.1038/s41586-024-07318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
WRN helicase is a promising target for treatment of cancers with microsatellite instability (MSI) due to its essential role in resolving deleterious non-canonical DNA structures that accumulate in cells with faulty mismatch repair mechanisms1-5. Currently there are no approved drugs directly targeting human DNA or RNA helicases, in part owing to the challenging nature of developing potent and selective compounds to this class of proteins. Here we describe the chemoproteomics-enabled discovery of a clinical-stage, covalent allosteric inhibitor of WRN, VVD-133214. This compound selectively engages a cysteine (C727) located in a region of the helicase domain subject to interdomain movement during DNA unwinding. VVD-133214 binds WRN protein cooperatively with nucleotide and stabilizes compact conformations lacking the dynamic flexibility necessary for proper helicase function, resulting in widespread double-stranded DNA breaks, nuclear swelling and cell death in MSI-high (MSI-H), but not in microsatellite-stable, cells. The compound was well tolerated in mice and led to robust tumour regression in multiple MSI-H colorectal cancer cell lines and patient-derived xenograft models. Our work shows an allosteric approach for inhibition of WRN function that circumvents competition from an endogenous ATP cofactor in cancer cells, and designates VVD-133214 as a promising drug candidate for patients with MSI-H cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Betty Lam
- Vividion Therapeutics, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Piergiorgio Pettazzoni
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Markus G Rudolph
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Moritz Classen
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Doris Brugger
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Christopher Claiborne
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Jean-Marc Plancher
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Isabel Cuartas
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | | | - Robert T Abraham
- Vividion Therapeutics, San Diego, CA, USA
- Odyssey Therapeutics, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
28
|
Pei J, Gao Y, Wu A. An inflammation-related subtype classification for analyzing tumor microenvironment and clinical prognosis in colorectal cancer. Front Immunol 2024; 15:1369726. [PMID: 38742117 PMCID: PMC11089903 DOI: 10.3389/fimmu.2024.1369726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Background The inflammatory response plays an essential role in the tumor microenvironment (TME) of colorectal cancer (CRC) by modulating tumor growth, progression, and response to therapy through the recruitment of immune cells, production of cytokines, and activation of signaling pathways. However, the molecular subtypes and risk score prognostic model based on inflammatory response remain to be further explored. Methods Inflammation-related genes were collected from the molecular signature database and molecular subtypes were identified using nonnegative matrix factorization based on the TCGA cohort. We compared the clinicopathological features, immune infiltration, somatic mutation profile, survival prognosis, and drug sensitivity between the subtypes. The risk score model was developed using LASSO and multivariate Cox regression in the TCGA cohort. The above results were independently validated in the GEO cohort. Moreover, we explored the biological functions of the hub gene, receptor interacting protein kinase 2 (RIPK2), leveraging proteomics data, in vivo, and in vitro experiments. Results We identified two inflammation-related subtypes (inflammation-low and inflammation-high) and have excellent internal consistency and stability. Inflammation-high subtype showed higher immune cell infiltration and increased sensitivity to common chemotherapeutic drugs, while inflammation-low subtype may be more suitable for immunotherapy. Besides, the two subtypes differ significantly in pathway enrichment and biological functions. In addition, the 11-gene signature prognostic model constructed from inflammation-related genes showed strong prognostic assessment power and could serve as a novel prognostic marker to predict the survival of CRC patients. Finally, RIPK2 plays a crucial role in promoting malignant proliferation of CRC cell validated by experiment. Conclusions This study provides new insights into the heterogeneity of CRC and provides novel opportunities for treatment development and clinical decision making.
Collapse
Affiliation(s)
| | | | - Aiwen Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
29
|
Bian X, Sun Q, Wang M, Dong H, Dai X, Zhang L, Fan G, Chen G. Preoperative prediction of microsatellite instability status in colorectal cancer based on a multiphasic enhanced CT radiomics nomogram model. BMC Med Imaging 2024; 24:77. [PMID: 38566000 PMCID: PMC10988858 DOI: 10.1186/s12880-024-01252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND To investigate the value of a nomogram model based on the combination of clinical-CT features and multiphasic enhanced CT radiomics for the preoperative prediction of the microsatellite instability (MSI) status in colorectal cancer (CRC) patients. METHODS A total of 347 patients with a pathological diagnosis of colorectal adenocarcinoma, including 276 microsatellite stabilized (MSS) patients and 71 MSI patients (243 training and 104 testing), were included. Univariate and multivariate regression analyses were used to identify the clinical-CT features of CRC patients linked with MSI status to build a clinical model. Radiomics features were extracted from arterial phase (AP), venous phase (VP), and delayed phase (DP) CT images. Different radiomics models for the single phase and multiphase (three-phase combination) were developed to determine the optimal phase. A nomogram model that combines clinical-CT features and the optimal phasic radscore was also created. RESULTS Platelet (PLT), systemic immune inflammation index (SII), tumour location, enhancement pattern, and AP contrast ratio (ACR) were independent predictors of MSI status in CRC patients. Among the AP, VP, DP, and three-phase combination models, the three-phase combination model was selected as the best radiomics model. The best MSI prediction efficacy was demonstrated by the nomogram model built from the combination of clinical-CT features and the three-phase combination model, with AUCs of 0.894 and 0.839 in the training and testing datasets, respectively. CONCLUSION The nomogram model based on the combination of clinical-CT features and three-phase combination radiomics features can be used as an auxiliary tool for the preoperative prediction of the MSI status in CRC patients.
Collapse
Affiliation(s)
- Xuelian Bian
- Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Qi Sun
- Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Mi Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Hanyun Dong
- Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Xiaoxiao Dai
- Department of Pathlogy, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Liyuan Zhang
- Department of Radiotherapy, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Guangqiang Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China.
| |
Collapse
|
30
|
Fan C, Fang C, Wang W, Lv Z, Zhang X, Long F, Jiang Z, Li Y, Zhang H, Zhou Z, Wang C, Sun X. Mismatch repair protein deficiency and its implications on distant metastasis in colorectal cancer: A comprehensive analysis. Cancer Med 2024; 13:e6994. [PMID: 38545852 PMCID: PMC10974709 DOI: 10.1002/cam4.6994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/24/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND While previous studies have indicated variability in distant metastatic potential among different mismatch repair (MMR) states in colorectal cancer (CRC), their findings remain inconclusive, especially considering potential differences across various ethnic backgrounds. Furthermore, the gene regulatory networks and the underlying mechanisms responsible for these variances in metastatic potential across MMR states have yet to be elucidated. METHODS We collected 2058 consecutive primary CRC samples from the South West of China and assessed the expression of MMR proteins (MLH1, MSH2, MSH6, and PMS2) using immunohistochemistry. To explore the inconsistencies between different MMR statuses and recurrence, we performed a meta-analysis. To delve deeper, we employed Weighted Gene Co-expression Network Analysis (WGCNA), ClueGo, and iRegulon, pinpointing gene expression networks and key regulatory molecules linked to metastasis and recurrence in CRC. Lastly, both univariate and multivariate Cox regression analyses were applied to determine the impact of core regulatory molecules on metastasis. RESULTS Of the samples, 8.2% displayed deficient MMR (dMMR), with losses of MLH1 and PSM2 observed in 40.8% and 63.9%, respectively. A unique 24.3% isolated loss of PMS2 without concurrent metastasis was identified, a result that diverges from established literature. Additionally, our meta-analysis further solidifies the reduced recurrence likelihood in dMMR CRC samples compared to proficient MMR (pMMR). Two gene expression networks tied to distant metastasis and recurrence were identified, with a majority of metastasis-related genes located on chromosomes 8 and 18. An IRF1 positive feedback loop was discerned in the metastasis-related network, and IRF1 was identified as a predictive marker for both recurrence-free and distant metastasis-free survival across multiple datasets. CONCLUSION Geographical and ethnic factors might influence peculiarities in MMR protein loss. Our findings also highlight new gene expression networks and crucial regulatory molecules in CRC metastasis, enhancing our comprehension of the mechanisms driving distant metastasis.
Collapse
Affiliation(s)
- Chuanwen Fan
- Institute of Digestive Surgery, Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduChina
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food SafetyWest China‐PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
- Department of Oncology and Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | - Chao Fang
- Institute of Digestive Surgery, Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduChina
- Colorectal Cancer Center, Department of General Surgery, West China HospitalSichuan UniversityChengduChina
| | - Wei Wang
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food SafetyWest China‐PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Zhaoying Lv
- Institute of Digestive Surgery, Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduChina
| | - Xueli Zhang
- Department of Medical SciencesÖrebro UniversityÖrebroSweden
| | - Feiwu Long
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food SafetyWest China‐PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Zongze Jiang
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food SafetyWest China‐PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yuan Li
- Institute of Digestive Surgery, Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduChina
| | - Hong Zhang
- Department of Medical SciencesÖrebro UniversityÖrebroSweden
| | - Zong‐Guang Zhou
- Institute of Digestive Surgery, Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduChina
- Colorectal Cancer Center, Department of General Surgery, West China HospitalSichuan UniversityChengduChina
| | - Cun Wang
- Colorectal Cancer Center, Department of General Surgery, West China HospitalSichuan UniversityChengduChina
| | - Xiao‐Feng Sun
- Department of Oncology and Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| |
Collapse
|
31
|
Ma Y, Xu X, Lin Y, Li J, Yuan H. An integrative clinical and CT-based tumoral/peritumoral radiomics nomogram to predict the microsatellite instability in rectal carcinoma. Abdom Radiol (NY) 2024; 49:783-790. [PMID: 38001326 DOI: 10.1007/s00261-023-04099-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Microsatellite instability (MSI) is detected in approximately 15% of colorectal carcinoma (CRC) patients, which has emerged as a predictor of patient response to adjuvant chemotherapy. Rectal carcinoma (RC) is the most common type of CRC. Therefore, prediction of MSI status of RC is significant for personalized medication. The purpose of this article was to develop an integrative model that combines clinical characteristics and computed tomography-based (CT-based) tumoral/peritumoral radiomics to predict the MSI status in RC. METHODS A cohort of 788 RCs with 97 high-MSI status (MSI-H) and 691 microsatellite stable status (MSS) were enrolled between January 2015 and January 2021 in this retrospective study. Clinical characteristics were recorded, and CT-based tumoral/peritumoral radiomic features were calculated after segmenting volume of interests. The patients were randomly divided into training and validation sets in a 7:3 proportion. Logistic models of single tumoral radiomics (LM-tRadio), peritumoral radiomics (LM-ptRadio), and combined tumoral/peritumoral radiomics (LM-Radio) were constructed to distinguish MSI-H from MSS, and a relevant radiomic score was calculated. An integrative nomogram (LM-Nomo) was developed, including significant clinical characteristics and CT-based tumoral/peritumoral radiomics. The area under receiver operator curve (AUC) was calculated to evaluate the efficacy of prediction. RESULTS The AUCs of LM-Radio were 0.785 (95%CI 0.732-0.837) in the training set and were 0.628 (95%CI 0.528-0.723) in the validation set, which were higher than those of LM-tRadio and LM-ptRadio. The AUCs of single LM-ptRadio were slightly higher than those of LM-tRadio (0.724 vs. 0.708 in the training set, 0.613 vs. 0.602 in the validation set). The LM-Nomo containing carcinoembryonic antigen (CEA), hypertension, and CT-based tumoral/peritumoral radiomic score showed the highest AUCs of 0.796 (95%CI 0.748-0.843) in the training set and 0.679 (95%CI 0.588-0.771) in the validation set in predicting the MSI-H status of RC. CONCLUSION The AUCs of LM-ptRadio were slightly higher than LM-tRadio to evaluate the MSI-H status of RC. The LM-Nomo, which includes significant clinical characteristics and CT-based tumoral/peritumoral radiomics score, demonstrated the best performance in predicting MSI-H status of RC.
Collapse
Affiliation(s)
- Yanqing Ma
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Xiren Xu
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Yi Lin
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Jie Li
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Hang Yuan
- Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
32
|
Kim SR, Oldfield L, Tone A, Pollett A, Pedersen S, Wellum J, Cesari M, Lajkosz K, Pugh TJ, Ferguson SE. Comprehensive molecular assessment of mismatch repair deficiency in Lynch associated ovarian cancers using next generation sequencing panel. Int J Gynecol Cancer 2024; 34:267-276. [PMID: 37940339 DOI: 10.1136/ijgc-2023-004815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVES Abnormalities in mismatch repair have been described in ovarian cancer, but few studies have examined the causes of mismatch repair deficiency (MMRd). To address this, we completed targeted mutational and methylation sequencing on MMRd ovarian cancer cases. The objective of this study was to explore the molecular mechanism of MMRd using our targeted next generation sequencing panel. METHODS Newly diagnosed non-serous/mucinous ovarian cancers (n=215) were prospectively recruited from three cancer centers in Ontario, Canada, between 2015 and 2018. Tumors were reflexively assessed for mismatch repair protein by immunohistochemistry. Matched tumor-normal MMRd cases were analyzed on a custom next generation sequencing panel to identify germline and somatic mutations, copy number variants, rearrangements, and promoter methylation in mismatch repair and associated genes. RESULTS Of 215 cases, 28 (13%) were MMRd. The MMRd cohort had a median age of 52.3 years (range 33.6-62.2), with mostly stage I (50%) and grade 1 or 2 endometrioid histotype (57%). Of the 28 cases, 22 were available for molecular analysis, and Lynch syndrome was detected in 50% of MMRd cases (11/22; seven ovarian cancer and four synchronous ovarian and endometrial cancer: seven MSH6, two MLH1, one PMS2, and one MSH2). An explanation for the observed mismatch repair phenotype was available for 22/22 deficient cases, including 12 MLH1/PMS2 deficient (nine somatic methylation, one bi-allelic somatic deletion, and two pathogenic germline variant), one PMS2 deficient (one pathogenic germline variant), seven MSH6 deficient (seven pathogenic germline variant), and two MSH2/MSH6 deficient (one pathogenic germline variant and one bi-allelic somatic mutation). Concordance between clinical germline testing and panel sequencing results was 100%. CONCLUSIONS Use of our custom next generation sequencing panel allowed for the streamlined assessment of hereditary and somatic causes of MMRd in ovarian cancers.
Collapse
Affiliation(s)
- Soyoun Rachel Kim
- Princess Margaret Cancer Center/University Health Network/Sinai Health Systems, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Gynecologic Oncology, Princess Margaret Hospital Cancer Center, Toronto, Ontario, Canada
| | - Leslie Oldfield
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alicia Tone
- Gynecologic Oncology, Princess Margaret Hospital Cancer Center, Toronto, Ontario, Canada
| | - Aaron Pollett
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Stephanie Pedersen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Johanna Wellum
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Matthew Cesari
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Lajkosz
- Department of Biostatistics, University of Toronto, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - Sarah Elizabeth Ferguson
- Princess Margaret Cancer Center/University Health Network/Sinai Health Systems, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Gynecologic Oncology, Princess Margaret Hospital Cancer Center, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Kim M, Park T, Oh BY, Kim MJ, Cho BJ, Son IT. Performance reporting design in artificial intelligence studies using image-based TNM staging and prognostic parameters in rectal cancer: a systematic review. Ann Coloproctol 2024; 40:13-26. [PMID: 38414120 PMCID: PMC10915525 DOI: 10.3393/ac.2023.00892.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
PURPOSE The integration of artificial intelligence (AI) and magnetic resonance imaging in rectal cancer has the potential to enhance diagnostic accuracy by identifying subtle patterns and aiding tumor delineation and lymph node assessment. According to our systematic review focusing on convolutional neural networks, AI-driven tumor staging and the prediction of treatment response facilitate tailored treat-ment strategies for patients with rectal cancer. METHODS This paper summarizes the current landscape of AI in the imaging field of rectal cancer, emphasizing the performance reporting design based on the quality of the dataset, model performance, and external validation. RESULTS AI-driven tumor segmentation has demonstrated promising results using various convolutional neural network models. AI-based predictions of staging and treatment response have exhibited potential as auxiliary tools for personalized treatment strategies. Some studies have indicated superior performance than conventional models in predicting microsatellite instability and KRAS status, offer-ing noninvasive and cost-effective alternatives for identifying genetic mutations. CONCLUSION Image-based AI studies for rectal can-cer have shown acceptable diagnostic performance but face several challenges, including limited dataset sizes with standardized data, the need for multicenter studies, and the absence of oncologic relevance and external validation for clinical implantation. Overcoming these pitfalls and hurdles is essential for the feasible integration of AI models in clinical settings for rectal cancer, warranting further research.
Collapse
Affiliation(s)
- Minsung Kim
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Taeyong Park
- Medical Artificial Intelligence Center, Hallym University Medical Center, Anyang, Korea
| | - Bo Young Oh
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Min Jeong Kim
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Bum-Joo Cho
- Medical Artificial Intelligence Center, Hallym University Medical Center, Anyang, Korea
| | - Il Tae Son
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
34
|
Gülşen T, Ergenç M, Şenol Z, Emirzeoğlu L, Güleç B. Clinicopathological outcomes of microsatellite instability in colorectal cancer. J Cancer Res Ther 2024; 20:103-111. [PMID: 38554306 DOI: 10.4103/jcrt.jcrt_1560_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/04/2022] [Indexed: 04/01/2024]
Abstract
AIMS This study aims to evaluate the histopathological features and prognostic parameters of tumors with microsatellite instability (MSI) compared with those without MSI in patients who underwent surgery for colorectal cancer (CRC). SETTING AND DESIGN Follow-up for CRC at Istanbul Sultan 2. Abdulhamid Han Training and Research Hospital was retrospectively evaluated between March 2017 and March 2021. METHODS AND MATERIAL The patients were divided into two groups: those with and without MSI. Groups were compared in survival parameters. As a secondary result, groups were compared in pathological parameters such as stage, tumor diameter, degree of differentiation, and lymphovascular, and perineural invasion. STATISTICAL ANALYSIS USED Survival calculations were performed using the Kaplan-Meier analysis method. The effects of various prognostic factors related to tumor and patient characteristics on disease-free and overall survival (OS) were investigated by log-rank test. RESULTS Two hundred fourteen patients were analyzed. The median age of the patients was 66 (30-89), and 59.3% (n = 127) were male. There were 25 patients in the MSI group and 189 patients in the non-MSI group. We found that MSI tumors had a significantly higher differentiation degree than non-MSI tumors and larger tumor diameters. MSI tumors frequently settled in the proximal colon, and more lymph nodes were removed in the resection material. MSI tumors had longer disease-free survival, cancer-specific survival, and overall survival. CONCLUSIONS By diagnosing microsatellite instability, CRCs can be divided into two groups. The histopathological features of the tumor and the prognosis of the disease differ between these groups. MSI can be a predictive marker in the patient's follow-up and treatment.
Collapse
Affiliation(s)
- Taygun Gülşen
- Department of General Surgery, Istanbul Sultanbeyli State Hospital, Istanbul, Turkey
| | - Muhammer Ergenç
- Department of General Surgery, Istanbul Sultanbeyli State Hospital, Istanbul, Turkey
| | - Zafer Şenol
- Department of General Surgery, Istanbul Sultan 2, Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Levent Emirzeoğlu
- Department of Oncology, Istanbul Sultan 2, Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Bülent Güleç
- Department of General Surgery, Istanbul Sultan 2, Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
35
|
Ling S, Luque Fernandez MA, Quaresma M, Belot A, Rachet B. Inequalities in treatment among patients with colon and rectal cancer: a multistate survival model using data from England national cancer registry 2012-2016. Br J Cancer 2024; 130:88-98. [PMID: 37741899 PMCID: PMC10781675 DOI: 10.1038/s41416-023-02440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Individual and tumour factors only explain part of observed inequalities in colorectal cancer survival in England. This study aims to investigate inequalities in treatment in patients with colorectal cancer. METHODS All patients diagnosed with colorectal cancer in England between 2012 and 2016 were followed up from the date of diagnosis (state 1), to treatment (state 2), death (state 3) or censored at 1 year after the diagnosis. A multistate approach with flexible parametric model was used to investigate the effect of income deprivation on the probability of remaining alive and treated in colorectal cancer. RESULTS Compared to the least deprived quintile, the most deprived with stage I-IV colorectal cancer had a lower probability of being alive and treated at all the time during follow-up, and a higher probability of being untreated and of dying. The probability differences (most vs. least deprived) of being alive and treated at 6 months ranged between -2.4% (95% CI: -4.3, -1.1) and -7.4% (-9.4, -5.3) for colon; between -2.0% (-3.5, -0.4) and -6.2% (-8.9, -3.5) for rectal cancer. CONCLUSION Persistent inequalities in treatment were observed in patients with colorectal cancer at every stage, due to delayed access to treatment and premature death.
Collapse
Affiliation(s)
- Suping Ling
- Inequalities in Cancer Outcome Network (ICON) group, Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, United Kingdom.
| | - Miguel-Angel Luque Fernandez
- Inequalities in Cancer Outcome Network (ICON) group, Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, United Kingdom
| | - Manuela Quaresma
- Inequalities in Cancer Outcome Network (ICON) group, Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, United Kingdom
| | - Aurelien Belot
- Inequalities in Cancer Outcome Network (ICON) group, Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, United Kingdom
| | - Bernard Rachet
- Inequalities in Cancer Outcome Network (ICON) group, Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, United Kingdom
| |
Collapse
|
36
|
Nemtsova MV, Kuznetsova EB, Bure IV. Chromosomal Instability in Gastric Cancer: Role in Tumor Development, Progression, and Therapy. Int J Mol Sci 2023; 24:16961. [PMID: 38069284 PMCID: PMC10707305 DOI: 10.3390/ijms242316961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
According to the Cancer Genome Atlas (TCGA), gastric cancers are classified into four molecular subtypes: Epstein-Barr virus-positive (EBV+), tumors with microsatellite instability (MSI), tumors with chromosomal instability (CIN), and genomically stable (GS) tumors. However, the gastric cancer (GC) with chromosomal instability remains insufficiently described and does not have effective markers for molecular and histological verification and diagnosis. The CIN subtype of GC is characterized by chromosomal instability, which is manifested by an increased frequency of aneuploidies and/or structural chromosomal rearrangements in tumor cells. Structural rearrangements in the CIN subtype of GC are not accidental and are commonly detected in chromosomal loci, being abnormal because of specific structural organization. The causes of CIN are still being discussed; however, according to recent data, aberrations in the TP53 gene may cause CIN development or worsen its phenotype. Clinically, patients with the CIN subtype of GC demonstrate poor survival, but receive the maximum benefit from adjuvant chemotherapy. In the review, we consider the molecular mechanisms and possible causes of chromosomal instability in GC, the common rearrangements of chromosomal loci and their impact on the development and clinical course of the disease, as well as the driver genes, their functions, and perspectives on their targeting in the CIN subtype of GC.
Collapse
Affiliation(s)
- Marina V. Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (E.B.K.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Ekaterina B. Kuznetsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (E.B.K.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Irina V. Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (E.B.K.)
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| |
Collapse
|
37
|
Sugimura N, Kubota E, Mori Y, Aoyama M, Tanaka M, Shimura T, Tanida S, Johnston RN, Kataoka H. Reovirus combined with a STING agonist enhances anti-tumor immunity in a mouse model of colorectal cancer. Cancer Immunol Immunother 2023; 72:3593-3608. [PMID: 37526659 PMCID: PMC10992117 DOI: 10.1007/s00262-023-03509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Reovirus, a naturally occurring oncolytic virus, initiates the lysis of tumor cells while simultaneously releasing tumor antigens or proapoptotic cytokines in the tumor microenvironment to augment anticancer immunity. However, reovirus has developed a strategy to evade antiviral immunity via its inhibitory effect on interferon production, which negatively affects the induction of antitumor immune responses. The mammalian adaptor protein Stimulator of Interferon Genes (STING) was identified as a key regulator that orchestrates immune responses by sensing cytosolic DNA derived from pathogens or tumors, resulting in the production of type I interferon. Recent studies reported the role of STING in innate immune responses to RNA viruses leading to the restriction of RNA virus replication. In the current study, we found that reovirus had a reciprocal reaction with a STING agonist regarding type I interferon responses in vitro; however, we found that the combination of reovirus and STING agonist enhanced anti-tumor immunity by enhancing cytotoxic T cell trafficking into tumors, leading to significant tumor regression and survival benefit in a syngeneic colorectal cancer model. Our data indicate the combination of reovirus and a STING agonist to enhance inflammation in the tumor microenvironment might be a strategy to improve oncolytic reovirus immunotherapy.
Collapse
Affiliation(s)
- Naomi Sugimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Yoshinori Mori
- Department of Gastroenterology, Nagoya City University West Medical Center, Kita-Ku, Nagoya, 462-8508, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Mizuho-Ku, Nagoya, 467-8603, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Satoshi Tanida
- Department of Gastroenterology, Gamagori Municipal Hospital, Hirata-Cho, Gamagori, 443-8501, Japan
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| |
Collapse
|
38
|
Das S, Acharya D. Immunological Assessment of Recent Immunotherapy for Colorectal Cancer. Immunol Invest 2023; 52:1065-1095. [PMID: 37812224 DOI: 10.1080/08820139.2023.2264906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy with increased incidence and mortality rates worldwide. Traditional treatment approaches have attempted to efficiently target CRC; however, they have failed in most cases, owing to the cytotoxicity and non-specificity of these therapies. Therefore, it is essential to develop an effective alternative therapy to improve the clinical outcomes in heterogeneous CRC cases. Immunotherapy has transformed cancer treatment with remarkable efficacy and overcomes the limitations of traditional treatments. With an understanding of the cancer-immunity cycle and tumor microenvironment evolution, current immunotherapy approaches have elicited enhanced antitumor immune responses. In this comprehensive review, we outline the latest advances in immunotherapy targeting CRC and provide insights into antitumor immune responses reported in landmark clinical studies. We focused on highlighting the combination approaches that synergistically induce immune responses and eliminate immunosuppression. This review aimed to understand the limitations and potential of recent immunotherapy clinical studies conducted in the last five years (2019-2023) and to transform this knowledge into a rational design of clinical trials intended for effective antitumor immune responses in CRC.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biotechnology, GIET University, Gunupur, India
| | | |
Collapse
|
39
|
Wang Y, Chen S, Wang C, Guo F. Nanocarrier-based targeting of metabolic pathways for endometrial cancer: Status and future perspectives. Biomed Pharmacother 2023; 166:115348. [PMID: 37639743 DOI: 10.1016/j.biopha.2023.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer is the second-most lethal global disease, as per health reports, and is responsible for around 70% of deaths in low- and middle-income countries. Endometrial cancer is one of the emerging malignancies and has been predicted as a public health challenge for the future. Insulin resistance, obesity, and diabetes mellitus are the key metabolic factors that promote risks for the development of endometrial cancer. Various signaling pathways and associated genes are involved in the genesis of endometrial cancer, and any mutation or deletion in such related factors leads to the induction of endometrial cancer. The conventional way of drug delivery has been used for ages but is associated with poor management of cancer due to non-targeting of the endometrial cancer cells, low efficacy of the therapy, and toxicity issues as well. In this context, nanocarrier-based therapy for the management of endometrial cancer is an effective alternate choice that overcomes the problems associated with conventional therapy. In this review article, we highlighted the nanocarrier-based targeting of endometrial cancer, with a special focus on targeting various metabolic signaling pathways. Furthermore, the future perspectives of nanocarrier-based targeting of metabolic pathways in endometrial cancer were also underpinned. It is concluded that targeting metabolic signaling pathways in endometrial cancer via nanocarrier scaffolds is the future of pharmaceutical design for the significant management and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Siyao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun 130000, China
| | - Fengjun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
40
|
Sun X, He L, Liu H, Thorne RF, Zeng T, Liu L, Zhang B, He M, Huang Y, Li M, Gao E, Ma M, Cheng C, Meng F, Lang C, Li H, Xiong W, Pan S, Ren D, Dang B, Yang Y, Wu M, Liu L. The diapause-like colorectal cancer cells induced by SMC4 attenuation are characterized by low proliferation and chemotherapy insensitivity. Cell Metab 2023; 35:1563-1579.e8. [PMID: 37543034 DOI: 10.1016/j.cmet.2023.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
In response to adverse environmental conditions, embryonic development may reversibly cease, a process termed diapause. Recent reports connect this phenomenon with the non-genetic responses of tumors to chemotherapy, but the mechanisms involved are poorly understood. Here, we establish a multifarious role for SMC4 in the switching of colorectal cancer cells to a diapause-like state. SMC4 attenuation promotes the expression of three investment phase glycolysis enzymes increasing lactate production while also suppressing PGAM1. Resultant high lactate levels increase ABC transporter expression via histone lactylation, rendering tumor cells insensitive to chemotherapy. SMC4 acts as co-activator of PGAM1 transcription, and the coordinate loss of SMC4 and PGAM1 affects F-actin assembly, inducing cytokinesis failure and polyploidy, thereby inhibiting cell proliferation. These insights into the mechanisms underlying non-genetic chemotherapy resistance may have significant implications for the field, advancing our understanding of aerobic glycolysis functions in tumor and potentially informing future therapeutic strategies.
Collapse
Affiliation(s)
- Xuedan Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Lifang He
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Hong Liu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Rick Francis Thorne
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, 450003 Henan, China
| | - Taofei Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Liu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Bo Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Miao He
- Anhui Huaheng Biotechnology Co., Ltd., Hefei, 230001 Anhui, China
| | - Yabin Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Mingyue Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Enyi Gao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan, China
| | - Mengyao Ma
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, 450003 Henan, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Fanzheng Meng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Chuandong Lang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Hairui Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Wanxiang Xiong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Shixiang Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Delong Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China
| | - Bingyi Dang
- Henan Wild Animals Rescue Center, Henan Forestry Administration, Zhengzhou, 450040 Henan, China
| | - Yi Yang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China
| | - Mian Wu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, 450003 Henan, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui, China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001 Anhui, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001 Anhui, China.
| |
Collapse
|
41
|
Offermans K, Jenniskens JCA, Simons CCJM, Samarska I, Fazzi GE, Smits KM, Schouten LJ, Weijenberg MP, Grabsch HI, van den Brandt PA. Association between adjuvant therapy and survival in colorectal cancer patients according to metabolic Warburg-subtypes. J Cancer Res Clin Oncol 2023; 149:6271-6282. [PMID: 36723668 PMCID: PMC10356897 DOI: 10.1007/s00432-023-04581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023]
Abstract
PURPOSE Tumor location and tumor node metastasis (TNM) stage guide treatment decisions in colorectal cancer (CRC) patients. However, patients with the same disease stage do not benefit equally from adjuvant therapy. Hence, there remains an urgent clinical need to identify prognostic and/or predictive biomarker(s) to personalize treatment decisions. In this exploratory study, we investigated whether our previously defined metabolic Warburg-subtypes can predict which CRC patients might derive survival benefit from adjuvant therapy. METHODS Information regarding treatment (surgery only: n = 1451; adjuvant radiotherapy: n = 82; or adjuvant chemotherapy: n = 260) and Warburg-subtype (Warburg-low: n = 485, -moderate: n = 641, or -high: n = 667) was available for 1793 CRC patients from the Netherlands Cohort Study (NLCS). Kaplan-Meier curves and Cox regression models were used to investigate survival benefit from adjuvant therapy compared to surgery-only for the different Warburg-subtypes. RESULTS Patients with Warburg-moderate CRC (HRCRC-specific 0.64; 95% CI 0.47-0.86, HRoverall 0.61; 95% CI 0.47-0.80), and possibly Warburg-high CRC (HRCRC-specific 0.86; 95% CI 0.65-1.14, HRoverall 0.82; 95% CI 0.64-1.05), had survival benefit from adjuvant therapy. No survival benefit was observed for patients with Warburg-low CRC (HRCRC-specific 1.07; 95% CI 0.76-1.52, HRoverall 0.95; 95% CI 0.70-1.30). There was a significant interaction between Warburg-subtype and adjuvant therapy for CRC-specific survival (p = 0.049) and overall survival (p = 0.035). CONCLUSION Our results suggest that Warburg-subtypes may predict survival benefit from adjuvant therapy in CRC patients. A survival benefit from adjuvant therapy was observed for patients with Warburg-moderate and possibly Warburg-high CRC, but not for patients with Warburg-low CRC. Future prospective studies are necessary to validate our findings.
Collapse
Affiliation(s)
- Kelly Offermans
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Josien C A Jenniskens
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Colinda C J M Simons
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Iryna Samarska
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gregorio E Fazzi
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kim M Smits
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Leo J Schouten
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Heike I Grabsch
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
| | - Piet A van den Brandt
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
- Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
42
|
Sato C, Kawakami H, Tanaka R, Satake H, Inoue K, Kimura Y, Fujita J, Kawabata R, Chiba Y, Satoh T, Nakagawa K. Survival impact of microsatellite instability in stage II gastric cancer patients who received S-1 adjuvant monotherapy after curative resection. Sci Rep 2023; 13:10826. [PMID: 37402831 DOI: 10.1038/s41598-023-37870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
Adjuvant S-1 monotherapy is the standard of care for stage II gastric cancer (GC) after curative resection in Japan, but its efficacy for microsatellite instability-high (MSI-H) tumors has remained unknown. Among a multi-institutional cohort of patients with stage II GC who underwent R0 resection followed by S-1 adjuvant chemotherapy between February 2008 and December 2018, we assessed MSI status with an MSI-IVD Kit (Falco). MSI status was assessable for 184 (88.5%) of the 208 enrolled patients, with MSI-H being identified in 24 (13.0%) individuals. Although neither relapse-free survival (RFS) (hazard ratio [HR] = 1.00, p = 0.997) nor overall survival (OS) (HR = 0.66, p = 0.488) differed between MSI-H versus microsatellite-stable (MSS) patients, MSI-H patients showed a nonsignificant but better RFS (HR = 0.34, p = 0.064) and OS (HR = 0.22, p = 0.057) than did MSS patients after adjustment for background characteristics by propensity score (PS) analysis. Gene expression analysis in the PS-matched cohort suggested that recurrence was associated with the immunosuppressive microenvironment in MSI-H tumors but with expression of cancer/testis antigen genes in MSS tumors. Our data reveal a better adjusted survival for MSI-H versus MSS stage II GC treated with S-1 adjuvant therapy, and they suggest that mechanisms of recurrence differ between MSI-H and MSS tumors.
Collapse
Affiliation(s)
- Chihiro Sato
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Japan
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Japan.
| | - Ryo Tanaka
- Department of General and Gastrointestinal Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hironaga Satake
- Cancer Center, Kansai Medical University Hospital, Hirakata, Japan
- Department of Medical Oncology, Kochi Medical School, Kochi, Japan
| | - Kentaro Inoue
- Department of Surgery, Kansai Medical University Hospital, Hirakata, Japan
| | - Yutaka Kimura
- Department of Surgery, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
- Department of Surgery, Kindai University Nara Hospital, Ikoma, Japan
| | - Junya Fujita
- Department of Surgery, Yao Municipal Hospital, Yao, Japan
- Department of Surgery, Sakai City Medical Center, Sakai, Japan
| | - Ryohei Kawabata
- Department of Surgery, Sakai City Medical Center, Sakai, Japan
- Department of Surgery, Osaka Rosai Hospital, Sakai, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Taroh Satoh
- Center for Cancer Genomics and Precision Medicine, Osaka University Hospital, Suita, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Japan
| |
Collapse
|
43
|
Hashmi AA, Aslam M, Rashid K, Ali AH, Dowlah TU, Malik UA, Zia S, Sham S, Zia F, Irfan M. Early-Onset/Young-Onset Colorectal Carcinoma: A Comparative Analysis of Morphological Features and Biomarker Profile. Cureus 2023; 15:e42340. [PMID: 37621838 PMCID: PMC10445772 DOI: 10.7759/cureus.42340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Colorectal carcinoma (CRC) is one of the most common cancers that involve the human body. Young-onset CRC (YO-CRC) or early-onset CRC (EO-CRC) is defined as CRC that develops before the age of 50 years, as opposed to CRC that is diagnosed after the age of 50, referred to as late-onset CRC (LO-CRC). EO-CRC is sparsely studied in our population. Therefore, in this study, we evaluated the clinicopathological parameters and biomarker profile of EO-CRC and compared them with those of LO-CRC. Methods This was a retrospective study conducted at the Department of Histopathology, Liaquat National Hospital, Karachi, Pakistan. A total of 254 biopsy-proven cases of CRC, reported over a period of nine years, were enrolled in the study. The specimens collected during surgery were sent to the laboratory for histopathological and immunohistochemical (IHC) status examinations. IHC staining of the specimens was performed using antibodies, namely, MutL protein homolog 1 (MLH1), postmeiotic segregation increased 2 (PMS2), MutS homolog 2 (MSH2), MutS homolog 6 (MSH6), and human epidermal growth factor receptor 2 (HER2/neu), on representative tissue blocks. A comparison of morphological and biomarker profiles between EO-CRC and LO-CRC was performed. Results The mean age at diagnosis was 46.27±17.75 years, with female predominance (59.8%). A significant difference between the two groups (EO-CRC and LO-CRC) was noted with respect to laterality, tumor site, tumor grade, tumor type, presence of pre-existing polyps, perineural invasion (PNI), lymphovascular invasion (LVI), and IHC markers. EO-CRC (as opposed to LO-CRC) significantly affected the left colon (92.6% vs. 72.9%, p<0.001), with the rectosigmoid being the most common site in the majority of cases (72.1% in EO-CRC vs. 61% in LO-CRC). EO-CRC showed a higher frequency of PNI and LVI than LO-CRC (42.6% vs. 23.7%, p=0.001; 29.4% vs. 18.6%, p=0.046, respectively). A significantly higher proportion of EO-CRCs were mucinous (42.6%) and medullary carcinoma (11.8%). Although the majority (54.4%) of cases of EO-CRC were grade 2 tumors at the time of diagnosis, a significantly higher proportion of them were grade 3 (44.1%) compared with LO-CRC. IHC comparisons between the two age groups showed that a significantly higher proportion of cases of EO-CRC showed positive HER2/neu expression (27.1%) compared with LO-CRC (13.2%). Conversely, the loss of expression of microsatellite instability (MSI) markers was more commonly seen in LO-CRS compared with EO-CRC. Conclusions We found a relatively higher frequency of EO-CRC in our population. Moreover, compared with LO-CRCs, EO-CRCs were associated with prognostically poor histological parameters, such as mucinous and medullary carcinoma, high-grade, PNI, and LVI. Similarly, EO-CRC had a higher positive expression of HER2/neu with intact MSI markers compared with AO-CRC; all these characteristics indicate poor biological behavior in EO-CRC.
Collapse
Affiliation(s)
- Atif A Hashmi
- Pathology, Liaquat National Hospital and Medical College, Karachi, PAK
| | - Mahnoor Aslam
- Public Health Sciences, University of Alberta, Edmonton, CAN
- Internal Medicine, Baqai Medical University, Karachi, PAK
| | - Khushbakht Rashid
- Internal Medicine, Liaquat National Hospital and Medical College, Karachi, PAK
| | - Abrahim H Ali
- Internal Medicine, Bangladesh Medical College, Dhaka, BGD
| | | | | | - Shamail Zia
- Pathology, Jinnah Sindh Medical University, Karachi, PAK
| | - Sunder Sham
- Pathology, Lenox Hill Hospital, New York, USA
| | - Fazail Zia
- Pathology, Jinnah Sindh Medical University, Karachi, PAK
| | - Muhammad Irfan
- Statistics, Liaquat National Hospital and Medical College, Karachi, PAK
| |
Collapse
|
44
|
El Hejjioui B, Lamrabet S, Amrani Joutei S, Senhaji N, Bouhafa T, Malhouf MA, Bennis S, Bouguenouch L. New Biomarkers and Treatment Advances in Triple-Negative Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13111949. [PMID: 37296801 DOI: 10.3390/diagnostics13111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer lacking hormone receptor expression and HER2 gene amplification. TNBC represents a heterogeneous subtype of breast cancer, characterized by poor prognosis, high invasiveness, high metastatic potential, and a tendency to relapse. In this review, the specific molecular subtypes and pathological aspects of triple-negative breast cancer are illustrated, with particular attention to the biomarker characteristics of TNBC, namely: regulators of cell proliferation and migration and angiogenesis, apoptosis-regulating proteins, regulators of DNA damage response, immune checkpoints, and epigenetic modifications. This paper also focuses on omics approaches to exploring TNBC, such as genomics to identify cancer-specific mutations, epigenomics to identify altered epigenetic landscapes in cancer cells, and transcriptomics to explore differential mRNA and protein expression. Moreover, updated neoadjuvant treatments for TNBC are also mentioned, underlining the role of immunotherapy and novel and targeted agents in the treatment of TNBC.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Salma Lamrabet
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Sarah Amrani Joutei
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | - Nadia Senhaji
- Faculty of Sciences, Moulay Ismail University, Meknès 50000, Morocco
| | - Touria Bouhafa
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| |
Collapse
|
45
|
Yakushina V, Kavun A, Veselovsky E, Grigoreva T, Belova E, Lebedeva A, Mileyko V, Ivanov M. Microsatellite Instability Detection: The Current Standards, Limitations, and Misinterpretations. JCO Precis Oncol 2023; 7:e2300010. [PMID: 37315263 DOI: 10.1200/po.23.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Affiliation(s)
- Valentina Yakushina
- OncoAtlas LLC, Moscow, Russian Federation
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russian Federation
| | | | - Egor Veselovsky
- OncoAtlas LLC, Moscow, Russian Federation
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatiana Grigoreva
- OncoAtlas LLC, Moscow, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ekaterina Belova
- OncoAtlas LLC, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | - Maxim Ivanov
- OncoAtlas LLC, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
| |
Collapse
|
46
|
Manzi J, Hoff CO, Ferreira R, Pimentel A, Datta J, Livingstone AS, Vianna R, Abreu P. Targeted Therapies in Colorectal Cancer: Recent Advances in Biomarkers, Landmark Trials, and Future Perspectives. Cancers (Basel) 2023; 15:cancers15113023. [PMID: 37296986 DOI: 10.3390/cancers15113023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In 2022, approximately 600,000 cancer deaths were expected; more than 50,000 of those deaths would be from colorectal cancer (CRC). The CRC mortality rate in the US has decreased in recent decades, with a 51% drop between 1976 and 2014. This drop is attributed, in part, to the tremendous therapeutic improvements, especially after the 2000s, in addition to increased social awareness regarding risk factors and diagnostic improvement. Five-fluorouracil, irinotecan, capecitabine, and later oxaliplatin were the mainstays of mCRC treatment from the 1960s to 2002. Since then, more than a dozen drugs have been approved for the disease, betting on a new chapter in medicine, precision oncology, which uses patient and tumor characteristics to guide the therapeutic choice. Thus, this review will summarize the current literature on targeted therapies, highlighting the molecular biomarkers involved and their pathways.
Collapse
Affiliation(s)
- Joao Manzi
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Camilla O Hoff
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Raphaella Ferreira
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Agustin Pimentel
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Jashodeep Datta
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Alan S Livingstone
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Rodrigo Vianna
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Phillipe Abreu
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
47
|
Kim S, Lee JH, Park EJ, Lee HS, Baik SH, Jeon TJ, Lee KY, Ryu YH, Kang J. Prediction of Microsatellite Instability in Colorectal Cancer Using a Machine Learning Model Based on PET/CT Radiomics. Yonsei Med J 2023; 64:320-326. [PMID: 37114635 PMCID: PMC10151228 DOI: 10.3349/ymj.2022.0548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
PURPOSE We investigated the feasibility of preoperative 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) radiomics with machine learning to predict microsatellite instability (MSI) status in colorectal cancer (CRC) patients. MATERIALS AND METHODS Altogether, 233 patients with CRC who underwent preoperative FDG PET/CT were enrolled and divided into training (n=139) and test (n=94) sets. A PET-based radiomics signature (rad_score) was established to predict the MSI status in patients with CRC. The predictive ability of the rad_score was evaluated using the area under the receiver operating characteristic curve (AUROC) in the test set. A logistic regression model was used to determine whether the rad_score was an independent predictor of MSI status in CRC. The predictive performance of rad_score was compared with conventional PET parameters. RESULTS The incidence of MSI-high was 15 (10.8%) and 10 (10.6%) in the training and test sets, respectively. The rad_score was constructed based on the two radiomic features and showed similar AUROC values for predicting MSI status in the training and test sets (0.815 and 0.867, respectively; p=0.490). Logistic regression analysis revealed that the rad_score was an independent predictor of MSI status in the training set. The rad_score performed better than metabolic tumor volume when assessed using the AUROC (0.867 vs. 0.794, p=0.015). CONCLUSION Our predictive model incorporating PET radiomic features successfully identified the MSI status of CRC, and it also showed better performance than the conventional PET image parameters.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Eun Jung Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hyuk Baik
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Joo Jeon
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kang Young Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeonghyun Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
48
|
Zhang L, Liu Y, Ding Y, Deng Y, Chen H, Hu F, Fan J, Lan X, Cao W. Predictive value of intratumoral-metabolic heterogeneity derived from 18F-FDG PET/CT in distinguishing microsatellite instability status of colorectal carcinoma. Front Oncol 2023; 13:1065744. [PMID: 37182124 PMCID: PMC10173881 DOI: 10.3389/fonc.2023.1065744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/30/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose/background Microsatellite instability (MSI) status is a significant biomarker for the response to immune checkpoint inhibitors, response to 5-fluorouracil-based adjuvant chemotherapy, and prognosis in colorectal carcinoma (CRC). This study investigated the predictive value of intratumoral-metabolic heterogeneity (IMH) and conventional metabolic parameters derived from 18F-FDG PET/CT for MSI in patients with stage I-III CRC. Methods This study was a retrospective analysis of 152 CRC patients with pathologically proven MSI who underwent 18F-FDG PET/CT examination from January 2016 to May 2022. Intratumoral-metabolic heterogeneity (including heterogeneity index [HI] and heterogeneity factor [HF]) and conventional metabolic parameters (standardized uptake value [SUV], metabolic tumor volume [MTV], and total lesion glycolysis [TLG]) of the primary lesions were determined. MTV and SUVmean were calculated on the basis of the percentage threshold of SUVs at 30%-70%. TLG, HI, and HF were obtained on the basis of the above corresponding thresholds. MSI was determined by immunohistochemical evaluation. Differences in clinicopathologic and various metabolic parameters between MSI-High (MSI-H) and microsatellite stability (MSS) groups were assessed. Potential risk factors for MSI were assessed by logistic regression analyses and used for construction of the mathematical model. Area under the curve (AUC) were used to evaluate the predictive ability of factors for MSI. Results This study included 88 patients with CRC in stages I-III, including 19 (21.6%) patients with MSI-H and 69 (78.4%) patients with MSS. Poor differentiation, mucinous component, and various metabolic parameters including MTV30%, MTV40%, MTV50%, and MTV60%, as well as HI50%, HI60%, HI70%, and HF in the MSI-H group were significantly higher than those in the MSS group (all P < 0.05). In multivariate logistic regression analyses, post-standardized HI60% by Z-score (P = 0.037, OR: 2.107) and mucinous component (P < 0.001, OR:11.394) were independently correlated with MSI. AUC of HI60% and our model of the HI60% + mucinous component was 0.685 and 0.850, respectively (P = 0.019), and the AUC of HI30% in predicting the mucinous component was 0.663. Conclusions Intratumoral-metabolic heterogeneity derived from 18F-FDG PET/CT was higher in MSI-H CRC and predicted MSI in stage I-III CRC patients preoperatively. HI60% and mucinous component were independent risk factors for MSI. These findings provide new methods to predict the MSI and mucinous component for patients with CRC.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yu Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ying Ding
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yinqian Deng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Huanyu Chen
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wei Cao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
49
|
Kumar S, Sherman MY. Resistance to TOP-1 Inhibitors: Good Old Drugs Still Can Surprise Us. Int J Mol Sci 2023; 24:ijms24087233. [PMID: 37108395 PMCID: PMC10138578 DOI: 10.3390/ijms24087233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Irinotecan (SN-38) is a potent and broad-spectrum anticancer drug that targets DNA topoisomerase I (Top1). It exerts its cytotoxic effects by binding to the Top1-DNA complex and preventing the re-ligation of the DNA strand, leading to the formation of lethal DNA breaks. Following the initial response to irinotecan, secondary resistance is acquired relatively rapidly, compromising its efficacy. There are several mechanisms contributing to the resistance, which affect the irinotecan metabolism or the target protein. In addition, we have demonstrated a major resistance mechanism associated with the elimination of hundreds of thousands of Top1 binding sites on DNA that can arise from the repair of prior Top1-dependent DNA cleavages. Here, we outline the major mechanisms of irinotecan resistance and highlight recent advancements in the field. We discuss the impact of resistance mechanisms on clinical outcomes and the potential strategies to overcome resistance to irinotecan. The elucidation of the underlying mechanisms of irinotecan resistance can provide valuable insights for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Michael Y Sherman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| |
Collapse
|
50
|
Keshinro A, Ganesh K, Vanderbilt C, Firat C, Kim JK, Chen CT, Yaeger R, Segal NH, Gonen M, Shia J, Stadler ZK, Weiser MR. Characteristics of Mismatch Repair-Deficient Colon Cancer in Relation to Mismatch Repair Protein Loss, Hypermethylation Silencing, and Constitutional and Biallelic Somatic Mismatch Repair Gene Pathogenic Variants. Dis Colon Rectum 2023; 66:549-558. [PMID: 35724254 PMCID: PMC9763548 DOI: 10.1097/dcr.0000000000002452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Mismatch repair-deficient colon cancer is heterogeneous. Differentiating inherited constitutional variants from somatic genetic alterations and gene silencing is important for surveillance and genetic counseling. OBJECTIVE This study aimed to determine the extent to which the underlying mechanism of loss of mismatch repair influences molecular and clinicopathologic features of microsatellite instability-high colon cancer. DESIGN This is a retrospective analysis. SETTINGS This study was conducted at a comprehensive cancer center. PATIENTS Patients with microsatellite instability-high colon cancer of stage I, II, or III were included. INTERVENTION Patients underwent a curative surgical resection. MAIN OUTCOME MEASURES The main outcome measures were hypermethylation of the MLH1 promoter, biallelic inactivation, constitutional pathogenic variants, and loss of specific mismatch repair proteins. RESULTS Of the 157 identified tumors with complete genetic analysis, 66% had hypermethylation of the MLH1 promoter, 18% had constitutional pathogenic variants, (Lynch syndrome), 11% had biallelic somatic mismatch repair gene pathogenic variants, and 6% had unexplained high microsatellite instability. The distribution of mismatch repair loss was as follows: MLH1 and PMS2 co-loss, 79% of the tumors; MSH2 and MSH6 co-loss, 10%; MSH6 alone, 3%; PMS2 alone, 2%; other combinations, 2%; no loss, 2%. Tumor mutational burden was lowest in MLH1- and PMS2-deficient tumors. MSH6-deficient tumors had the lowest levels of tumor-infiltrating lymphocytes, lowest MSI scores, and fewest frameshift deletions. Patients with MLH1 promoter hypermethylation were significantly more likely to be older and female and to have right-sided colon lesions than patients with biallelic inactivation. Mutation was the most prevalent second hit in tumors with biallelic inactivation and tumors of patients with Lynch syndrome. LIMITATIONS This study was limited by potential selection or referral bias, missing data for some patients, and relatively small sizes of some subgroups. CONCLUSIONS Clinical characteristics of mismatch repair-deficient colon cancer vary with the etiology of microsatellite instability, and its molecular characteristics vary with the affected mismatch repair protein. See Video Abstract at http://links.lww.com/DCR/B984 . CARACTERSTICAS DEL CNCER DE COLON CON DEFICIENCIA EN LA REPARACIN DE ERRORES DE EMPAREJAMIENTO EN RELACIN CON LA PRDIDA DE PROTENAS MMR, SILENCIAMIENTO DE LA HIPERMETILACIN Y LAS VARIANTES PATGENAS SOMTICAS DE GENES MMR CONSTITUCIONAL Y BIALLICO ANTECEDENTES:El cáncer de colon deficiente en la reparación de errores de emparejamiento es heterogéneo. La diferenciación de las variantes constitucionales heredadas de las alteraciones genéticas somáticas y el silenciamiento de genes es importante para la vigilancia y el asesoramiento genético.OBJETIVO:Determinar hasta qué punto el mecanismo subyacente de pérdida de reparación de desajustes influye en las características moleculares y clinicopatológicas del cáncer de colon con alta inestabilidad de microsatélites.DISEÑO:Análisis retrospectivo.ESCENARIO:Centro integral de cáncer.PACIENTES:Pacientes con cáncer de colon con inestabilidad de microsatélites alta en estadio I, II, o III.INTERVENCIÓN:Resección quirúrgica con intención curativa.PRINCIPALES RESULTADOS Y MEDIDAS:Hipermetilación del promotor MLH1, inactivación bialélica, variante patógena constitucional y pérdida de proteínas específicas reparadoras de desajustes.RESULTADOS:De los 157 tumores identificados con un análisis genético completo, el 66 % tenía hipermetilación del promotor MLH1, el 18 % tenía una variante patogénica constitucional (síndrome de Lynch), el 11 % tenía variantes patogénicas somáticas bialélicas de algún gen MMR y el 6 % tenía una alta inestabilidad de microsatélites sin explicación. La distribución de la pérdida según la proteína de reparación del desajuste fue la siguiente: pérdida conjunta de MLH1 y PMS2, 79 % de los tumores; co-pérdida de MSH2 y MSH6, 10%; MSH6 solo, 3%; PMS2 solo, 2%; otras combinaciones, 2%; sin pérdida, 2%. La carga mutacional del tumor fue más baja en los tumores deficientes en MLH1 y PMS2. Los tumores con deficiencia de MSH6 tenían los niveles más bajos de linfocitos infiltrantes de tumores, las puntuaciones más bajas del sensor de IMS y la menor cantidad de deleciones por cambio de marco. Los pacientes con hipermetilación del promotor MLH1 tenían significativamente más probabilidades de ser mayores y mujeres y de tener lesiones en el colon derecho que los pacientes con inactivación bialélica. La mutación fue el segundo golpe más frecuente en tumores con inactivación bialélica y tumores de pacientes con síndrome de Lynch.LIMITACIONES:Sesgo potencial de selección o referencia, datos faltantes para algunos pacientes y tamaños relativamente pequeños de algunos subgrupos.CONCLUSIONES:Las características clínicas del cáncer de colon deficiente en reparación de desajustes varían con la etiología de la inestabilidad de microsatélites, y sus características moleculares varían con la proteína de reparación de desajustes afectada. Vea Resumen de video en http://links.lww.com/DCR/B984 . (Traducción-Dr. Felipe Bellolio ).
Collapse
Affiliation(s)
- Ajaratu Keshinro
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York
| | - Karuna Ganesh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - Canan Firat
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - Jin K. Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York
| | - Chin-Tung Chen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Neil H. Segal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Mithat Gonen
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - Zsofia K. Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Martin R. Weiser
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York
| |
Collapse
|