1
|
Ospina OE, Manjarres-Betancur R, Gonzalez-Calderon G, Soupir AC, Smalley I, Tsai KY, Markowitz J, Khaled ML, Vallebuona E, Berglund AE, Eschrich SA, Yu X, Fridley BL. spatialGE Is a User-Friendly Web Application That Facilitates Spatial Transcriptomics Data Analysis. Cancer Res 2025; 85:848-858. [PMID: 39636739 PMCID: PMC11873723 DOI: 10.1158/0008-5472.can-24-2346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Spatial transcriptomics (ST) is a powerful tool for understanding tissue biology and disease mechanisms. However, the advanced data analysis and programming skills required can hinder researchers from realizing the full potential of ST. To address this, we developed spatialGE, a web application that simplifies the analysis of ST data. The application spatialGE provided a user-friendly interface that guides users without programming expertise through various analysis pipelines, including quality control, normalization, domain detection, phenotyping, and multiple spatial analyses. It also enabled comparative analysis among samples and supported various ST technologies. The utility of spatialGE was demonstrated through its application in studying the tumor microenvironment of two data sets: 10× Visium samples from a cohort of melanoma metastasis and NanoString CosMx fields of vision from a cohort of Merkel cell carcinoma samples. These results support the ability of spatialGE to identify spatial gene expression patterns that provide valuable insights into the tumor microenvironment and highlight its utility in democratizing ST data analysis for the wider scientific community. Significance: The spatialGE web application enables user-friendly exploratory analysis of spatial transcriptomics data by using a point-and-click interface to guide users from data input to discovery of spatial patterns, facilitating hypothesis generation.
Collapse
Affiliation(s)
- Oscar E. Ospina
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | | | | | - Alex C. Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Inna Smalley
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, Florida
| | - Kenneth Y. Tsai
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida
| | - Joseph Markowitz
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Mariam L. Khaled
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, Florida
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ethan Vallebuona
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, Florida
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Steven A. Eschrich
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Brooke L. Fridley
- Division of Health Services and Outcomes Research, Children's Mercy, Kansas City, Missouri
| |
Collapse
|
2
|
Glitza Oliva IC, Palaia J, Sakkal LA, Patel D, Moshyk A, Han N, Odak S, Schmier JK, Ning N, Chandra S. Real-world outcomes in patients with melanoma brain metastasis: a US multisite retrospective chart review study of systemic treatments. BMJ Open 2025; 15:e091098. [PMID: 39890146 PMCID: PMC11795373 DOI: 10.1136/bmjopen-2024-091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/28/2024] [Indexed: 02/03/2025] Open
Abstract
OBJECTIVE This study examined real-world treatment patterns and outcomes in patients with melanoma brain metastasis (MBM) treated with first-line immunotherapy consisting of nivolumab plus ipilimumab or anti-programmed death-1 (PD-1) monotherapy (nivolumab or pembrolizumab) or targeted therapy consisting of BRAF/MEK inhibitors. DESIGN Retrospective chart review study. SETTING Academic medical centres, community hospitals and private practice offices. PARTICIPANTS Included patients diagnosed with melanoma with brain metastasis in the USA. OUTCOME MEASURES The statistical analysis was descriptive in nature. Overall survival (OS) and progression-free survival (PFS) were estimated using the Kaplan-Meier method and compared between treatments in a univariate Cox proportional hazards model. RESULTS In total, 472 patients with MBM who received first-line nivolumab plus ipilimumab (n=246), anti-PD-1 monotherapy (n=112) or BRAF/MEK inhibitors (n=114) were identified. Patients receiving nivolumab plus ipilimumab, compared with patients receiving anti-PD-1 monotherapy or BRAF/MEK inhibitors, had favourable baseline prognostic factors, such as younger age, fewer or smaller brain metastases, better Eastern Cooperative Oncology Group performance status and less frequently elevated lactate dehydrogenase. Median follow-up times were 15.4 months (range 0.1 to 37.0), 13.3 months (range 0.3 to 36.6) and 13.9 months (range 1.9 to 36.5), respectively. Numerically longer OS was observed with nivolumab plus ipilimumab versus anti-PD-1 monotherapy (HR 0.47, 95% CI 0.34 to 0.67) or BRAF/MEK inhibitors (HR 0.72, 95% CI 0.50 to 1.04) and numerically longer PFS was observed with nivolumab plus ipilimumab versus anti-PD-1 monotherapy (HR 0.74, 95% CI 0.53 to 1.02) or BRAF/MEK inhibitors (HR 0.82, 95% CI 0.60 to 1.12). With nivolumab plus ipilimumab, anti-PD-1 monotherapy and BRAF/MEK inhibitors, 1-year OS rates were 79%, 60% and 72%, respectively; 1-year PFS rates were 68%, 58% and 59%. CONCLUSIONS In this real-world study, first-line nivolumab plus ipilimumab appeared to provide benefit versus anti-PD-1 monotherapy and BRAF/MEK inhibitors in patients with MBM, consistent with pivotal trial data. However, the observed benefit may have been due to confounding and selection bias, given that patients receiving nivolumab plus ipilimumab had favourable baseline prognostic factors compared with patients receiving anti-PD-1 monotherapy or BRAF/MEK inhibitors.
Collapse
Affiliation(s)
| | | | | | - Divya Patel
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - Natalia Han
- RTI Health Solutions, Research Triangle Park, North Carolina, USA
| | - Shardul Odak
- RTI Health Solutions, Research Triangle Park, North Carolina, USA
| | | | - Ning Ning
- Open Health, Bethesda, Maryland, USA
| | - Sunandana Chandra
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Hicks WH, Gattie LC, Shami ME, Traylor JI, Davar D, Najjar YG, Richardson TE, McBrayer SK, Abdullah KG. Matched three-dimensional organoids and two-dimensional cell lines of melanoma brain metastases mirror response to targeted molecular therapy. Sci Rep 2024; 14:24843. [PMID: 39438602 PMCID: PMC11496643 DOI: 10.1038/s41598-024-76583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Despite advances in the treatment paradigm for patients with metastatic melanoma, melanoma brain metastasis (MBM) continues to represent a significant treatment challenge. The study of MBM is limited, in part, by shortcomings in existing preclinical models. Surgically eXplanted Organoids (SXOs) are ex vivo, three-dimensional cultures prepared from primary tissue samples with minimal processing that recapitulate genotypic and phenotypic features of parent tumors without an artificial extracellular scaffold. MBM SXOs were created by a novel protocol incorporating techniques for establishing glioma and cutaneous melanoma organoids. A BRAFV600K-mutant and BRAF-wildtype MBM sample were collected directly from the operating room. Organoids were cultured in an optimized culture medium without an artificial extracellular scaffold. Concurrently, matched patient-derived cell lines were created. Organoid growth was observed within 3-4 weeks, and MBM SXOs retained histological features of the parent tissue, including pleomorphic epithelioid cells with abundant cytoplasm, large nuclei, focal melanin accumulation, and strong SOX10 positivity. After sufficient growth, organoids could be manually parcellated to increase the number of replicates. Matched SXOs and cell lines demonstrated sensitivity to BRAF and MEK inhibitors. Further study using SXOs may improve the translational relevance of preclinical studies and enable the study of the metastatic melanoma tumor microenvironment.
Collapse
Affiliation(s)
- William H Hicks
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Lauren C Gattie
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Mohamad El Shami
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Jeffrey I Traylor
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75235, USA
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 5303 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Diwakar Davar
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Yana G Najjar
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY, 10029, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75235, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15213, USA.
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA.
- Department of Neurological Surgery, University of Pittsburgh Medical Center Hillman Cancer Center, 5150 Centre Avenue, Suite 430, Pittsburgh, PA, 15232, USA.
| |
Collapse
|
4
|
Ospina OE, Manjarres-Betancur R, Gonzalez-Calderon G, Soupir AC, Smalley I, Tsai K, Markowitz J, Vallebuona E, Berglund A, Eschrich S, Yu X, Fridley BL. spatialGE: A user-friendly web application to democratize spatial transcriptomics analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601050. [PMID: 39005315 PMCID: PMC11244876 DOI: 10.1101/2024.06.27.601050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Spatial transcriptomics (ST) is a powerful tool for understanding tissue biology and disease mechanisms. However, its potential is often underutilized due to the advanced data analysis and programming skills required. To address this, we present spatialGE, a web application that simplifies the analysis of ST data. The application spatialGE provides a user-friendly interface that guides users without programming expertise through various analysis pipelines, including quality control, normalization, domain detection, phenotyping, and multiple spatial analyses. It also enables comparative analysis among samples and supports various ST technologies. We demonstrate the utility of spatialGE through its application in studying the tumor microenvironment of melanoma brain metastasis and Merkel cell carcinoma. Our results highlight the ability of spatialGE to identify spatial gene expression patterns and enrichments, providing valuable insights into the tumor microenvironment and its utility in democratizing ST data analysis for the wider scientific community.
Collapse
Affiliation(s)
- Oscar E. Ospina
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | - Alex C. Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Inna Smalley
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth Tsai
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Joseph Markowitz
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ethan Vallebuona
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Steven Eschrich
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Brooke L. Fridley
- Division of Health Services and Outcomes Research, Children’s Mercy, Kansas City, MO, USA
| |
Collapse
|
5
|
Fabre M, Lamoureux A, Meunier L, Samaran Q, Lesage C, Girard C, Du Thanh A, Moulis L, Dereure O. Efficiency and tolerance of second-line triple BRAF inhibitor/MEK inhibitor/anti-PD1 combined therapy in BRAF mutated melanoma patients with central nervous system metastases occurring during first-line combined targeted therapy: a real-life survey. Melanoma Res 2024; 34:241-247. [PMID: 38546723 DOI: 10.1097/cmr.0000000000000963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although current systemic therapies significantly improved the outcome of advanced melanoma, the prognosis of patient with central nervous system (CNS) metastases remains poor especially when clinically symptomatic. We aimed to investigate the efficiency of CNS targets and tolerance of second-line combined anti-PD1/dual-targeted anti-BRAF/anti-MEK therapy implemented in patients with CNS progression after initially efficient first-line combined targeted therapy in patients with BRAF-mutated melanoma in a real-life setting. A monocentric retrospective analysis including all such patients treated from January 2017 to January 2022 was conducted in our tertiary referral center. The response of CNS lesions to second-line triple therapy was assessed through monthly clinical and at least quarterly morphological (according to RECIST criteria) evaluation. Tolerance data were also collected. Seventeen patients were included with a mean follow-up of 2.59 (±2.43) months. Only 1 patient displayed a significant clinical and morphological response. No statistically significant difference was observed between patients receiving or not additional local therapy (mainly radiotherapy) as to response achievement. Immunotherapy was permanently discontinued in 1 patient owing to grade 4 toxicity. Mean PFS and OS after CNS progression were 2.59 and 4.12 months, respectively. In this real-life survey, the subsequent addition of anti-PD1 to combined targeted therapy in melanoma patients with upfront CNS metastases did not result in significant response of CNS targets in most BRAF mutated melanoma patients with secondary CNS progression after initially successful first-line combined targeted therapy.
Collapse
Affiliation(s)
- Marie Fabre
- Department of Dermatology, University of Montpellier
| | | | | | | | | | - Céline Girard
- Department of Dermatology, University of Montpellier
| | - Aurélie Du Thanh
- Department of Dermatology, University of Montpellier
- INSERM U1058 'Pathogenesis and Control of Chronic and Emerging Infections' University of Montpellier, Montpellier, France
| | - Lionel Moulis
- Department of Dermatology, University of Montpellier
| | - Olivier Dereure
- Department of Dermatology, University of Montpellier
- INSERM U1058 'Pathogenesis and Control of Chronic and Emerging Infections' University of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Avino A, Ion DE, Gheoca-Mutu DE, Abu-Baker A, Țigăran AE, Peligrad T, Hariga CS, Balcangiu-Stroescu AE, Jecan CR, Tudor A, Răducu L. Diagnostic and Therapeutic Particularities of Symptomatic Melanoma Brain Metastases from Case Report to Literature Review. Diagnostics (Basel) 2024; 14:688. [PMID: 38611601 PMCID: PMC11011469 DOI: 10.3390/diagnostics14070688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The recent introduction of immunotherapy and targeted therapy has substantially enriched the therapeutic landscape of metastatic melanoma. However, cerebral metastases remain unrelenting entities with atypical metabolic and genetic profiles compared to extracranial metastases, requiring combined approaches with local ablative treatment to alleviate symptoms, prevent recurrence and restore patients' biological and psychological resources for fighting malignancy. This paper aims to provide the latest scientific evidence about the rationale and timing of treatment, emphasizing the complementary roles of surgery, radiotherapy, and systemic therapy in eradicating brain metastases, with a special focus on the distinct response of intracranial and extracranial disease, which are regarded as separate molecular entities. To illustrate the complexity of designing individualized therapeutic schemes, we report a case of delayed BRAF-mutant diagnosis, an aggressive forearm melanoma, in a presumed psychiatric patient whose symptoms were caused by cerebral melanoma metastases. The decision to administer molecularly targeted therapy was dictated by the urgency of diminishing the tumor burden for symptom control, due to potentially life-threatening complications caused by the flourishing of extracranial disease in locations rarely reported in living patients, further proving the necessity of multidisciplinary management.
Collapse
Affiliation(s)
- Adelaida Avino
- Discipline of Plastic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.A.); (C.-R.J.); (L.R.)
- Doctoral School, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Daniela-Elena Ion
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Daniela-Elena Gheoca-Mutu
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
- Discipline of Anatomy, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Abdalah Abu-Baker
- Doctoral School, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Andrada-Elena Țigăran
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Teodora Peligrad
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Cristian-Sorin Hariga
- Discipline of Plastic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.A.); (C.-R.J.); (L.R.)
- Department of Plastic and Reconstructive Surgery, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Andra-Elena Balcangiu-Stroescu
- Discipline of Physiology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristian-Radu Jecan
- Discipline of Plastic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.A.); (C.-R.J.); (L.R.)
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| | - Adrian Tudor
- Discipline of Anatomy and Embriology, University of Medicine, Sciences and Technology “George Emil Palade”, 540139 Targu Mures, Romania;
- Department of General Surgery I, Targu Mures Emergency Clinical Hospital, 540136 Targu Mures, Romania
| | - Laura Răducu
- Discipline of Plastic Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.A.); (C.-R.J.); (L.R.)
- Department of Plastic and Reconstructive Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania; (D.-E.G.-M.); (A.-E.Ț.); (T.P.)
| |
Collapse
|
7
|
Feng Y, Hu X, Zhang Y, Wang Y. The Role of Microglia in Brain Metastases: Mechanisms and Strategies. Aging Dis 2024; 15:169-185. [PMID: 37307835 PMCID: PMC10796095 DOI: 10.14336/ad.2023.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/14/2023] [Indexed: 06/14/2023] Open
Abstract
Brain metastases and related complications are one of the major fatal factors in cancer. Patients with breast cancer, lung cancer, and melanoma are at a high risk of developing brain metastases. However, the mechanisms underlying the brain metastatic cascade remain poorly understood. Microglia, one of the major resident macrophages in the brain parenchyma, are involved in multiple processes associated with brain metastasis, including inflammation, angiogenesis, and immune modulation. They also closely interact with metastatic cancer cells, astrocytes, and other immune cells. Current therapeutic approaches against metastatic brain cancers, including small-molecule drugs, antibody-coupled drugs (ADCs), and immune-checkpoint inhibitors (ICIs), have compromised efficacy owing to the impermeability of the blood-brain barrier (BBB) and complex brain microenvironment. Targeting microglia is one of the strategies for treating metastatic brain cancer. In this review, we summarize the multifaceted roles of microglia in brain metastases and highlight them as potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Ying Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
8
|
Hicks WH, Gattie LC, Traylor JI, Davar D, Najjar YG, Richardson DO TE, McBrayer SK, Abdullah KG. Matched three-dimensional organoids and two-dimensional cell lines of melanoma brain metastases mirror response to targeted molecular therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576318. [PMID: 38328251 PMCID: PMC10849477 DOI: 10.1101/2024.01.18.576318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Purpose Despite significant advances in the treatment paradigm for patients with metastatic melanoma, melanoma brain metastasis (MBM) continues to represent a significant treatment challenge. The study of MBM is limited, in part, by shortcomings in existing preclinical models. Surgically eXplanted Organoids (SXOs) are ex vivo, three-dimensional cultures prepared from primary tissue samples with minimal processing that recapitulate genotypic and phenotypic features of parent tumors and are grown without artificial extracellular scaffolding. We aimed to develop the first matched patient-derived SXO and cell line models of MBM to investigate responses to targeted therapy. Methods MBM SXOs were created by a novel protocol incorporating techniques for establishing glioma and cutaneous melanoma organoids. A BRAFV600K-mutant and BRAF-wildtype MBM sample were collected directly from the operating room for downstream experiments. Organoids were cultured in an optimized culture medium without an artificial extracellular scaffold. Concurrently, matched patient-derived cell lines were created. Drug screens were conducted to assess treatment response in SXOs and cell lines. Results Organoid growth was observed within 3-4 weeks, and MBM SXOs retained histological features of the parent tissue, including pleomorphic epithelioid cells with abundant cytoplasm, large nuclei, focal melanin accumulation, and strong SOX10 positivity. After sufficient growth, organoids could be manually parcellated to increase the number of replicates. Matched SXOs and cell lines demonstrated sensitivity to BRAF and MEK inhibitors. Conclusion Here, we describe the creation of a scaffold-free organoid model of MBM. Further study using SXOs may improve the translational relevance of preclinical studies and enable the study of the metastatic melanoma tumor microenvironment.
Collapse
Affiliation(s)
- William H. Hicks
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Lauren C. Gattie
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Jeffrey I Traylor
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75235, USA
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Diwakar Davar
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Yana G. Najjar
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Timothy E. Richardson DO
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 11029, USA
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75235, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G. Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| |
Collapse
|
9
|
Zhang J, Wei Z, Chen J. The effectiveness of combined resection and radiotherapy for primary pineal malignant melanoma: a systematic review. Front Neurol 2024; 14:1344672. [PMID: 38375353 PMCID: PMC10875993 DOI: 10.3389/fneur.2023.1344672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
Objective To evaluate the effectiveness of combined resection and radiotherapy (CRAR) for the treatment of primary pineal malignant melanoma (PPMM). Methods Relevant studies were identified through a literature search in PubMed, Embase, and Web of Science from 1899 to September 1, 2023. Then we further screened the literature according to the updated PRISMA 2020 guidelines. The article information, patient information, treatment, and survival rate were analyzed. The primary outcome measures the survival rate of CRAR compared with the overall patients and the patients without treatment. Secondary outcome measures operation methods, radiotherapy methods, and dose. Results In total, 28 published articles were recorded. Among them, 35.71% (10/28) articles were on CRAR. The median overall survival, CRAR, and no treatment survival were 65, 88, and 12 weeks, respectively. The median overall survival of CRAR was demonstrably better than that of no treatment (p < 0.0001) and overall survival, even with p = 0.1177. Most of the operations adopted a supracerebellar infratentorial approach, and stereotactic radiation to tumor bed usually ranged between 50 and 60 Gy. Small dose and multiple fractions was the most popular radiotherapy method. Conclusion Currently, CRAR, compared with other treatments, is more beneficial to prolonging the survival of PPMM patients. However, many more clinical cases are needed to verify it as the best treatment approach.
Collapse
Affiliation(s)
| | | | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Menzies AM, Long GV, Kohn A, Tawbi H, Weber J, Flaherty K, McArthur GA, Ascierto PA, Pfluger Y, Lewis K, Tsai KK, Hamid O, Prenen H, Fein L, Wang E, Guenzel C, Zhang F, Kleha JF, di Pietro A, Davies MA. POLARIS: A phase 2 trial of encorafenib plus binimetinib evaluating high-dose and standard-dose regimens in patients with BRAF V600-mutant melanoma with brain metastasis. Neurooncol Adv 2024; 6:vdae033. [PMID: 38725995 PMCID: PMC11079948 DOI: 10.1093/noajnl/vdae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Background POLARIS (phase 2 [ph2]; NCT03911869) evaluated encorafenib (BRAF inhibitor) in combination with binimetinib (MEK1/2 inhibitor) in BRAF/MEK inhibitor-naïve patients with BRAF V600-mutant melanoma with asymptomatic brain metastases. Methods The safety lead-in (SLI) assessed tolerability for high-dose encorafenib 300 mg twice daily (BID) plus binimetinib 45 mg BID. If the high dose was tolerable in ph2, patients would be randomized to receive high or standard dose (encorafenib 450 mg once daily [QD] plus binimetinib 45 mg BID). Otherwise, standard dose was evaluated as the recommended ph2 dose (RP2D). Patients who tolerated standard dosing during Cycle 1 could be dose escalated to encorafenib 600 mg QD plus binimetinib 45 mg BID in Cycle 2. Safety, efficacy, and pharmacokinetics were examined. Results RP2D was standard encorafenib dosing, as >33% of evaluable SLI patients (3/9) had dose-limiting toxicities. Overall, of 13 safety-evaluable patients (10 SLI, 3 ph2), 9 had prior immunotherapy. There were 9 treatment-related adverse events in the SLI and 3 in ph2. Of the SLI efficacy-evaluable patients (n = 10), 1 achieved complete response and 5 achieved partial responses (PR); the brain metastasis response rate (BMRR) was 60% (95% CI: 26.2, 87.8). In ph2, 2 of 3 patients achieved PR (BMRR, 67% [95% CI: 9.4, 99.2]). Repeated encorafenib 300 mg BID dosing did not increase steady-state exposure compared with historical 450 mg QD data. Conclusions Despite small patient numbers due to early trial termination, BMRR appeared similar between the SLI and ph2, and the ph2 safety profile appeared consistent with previous reports of standard-dose encorafenib in combination with binimetinib.
Collapse
Affiliation(s)
- Alexander M Menzies
- Melanoma Institute Australia, NSW, Australia, and The University of Sydney, Sydney, Australia
- Royal North Shore and Mater Hospitals, The University of Sydney, Sydney, Australia
| | - Georgina V Long
- Melanoma Institute Australia, NSW, Australia, and The University of Sydney, Sydney, Australia
- Royal North Shore and Mater Hospitals, The University of Sydney, Sydney, Australia
| | - Amiee Kohn
- Division of Hematology/Medical Oncology, School of Medicine, Oregon Health Sciences University, Portland, Oregon, USA
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Keith Flaherty
- Massachusetts General Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Grant A McArthur
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Paolo A Ascierto
- Unit of Melanoma Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | | | - Karl Lewis
- Medical Oncology, University of Colorado, Health Center, Denver, Colorado, USA
| | - Katy K Tsai
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate Los Angeles, California, USA
| | - Hans Prenen
- Oncology Department, University Hospital Antwerp, Antwerp, Belgium
| | - Luis Fein
- Alexander Fleming Institute, Buenos Aires, Argentina
| | | | | | - Fan Zhang
- Formerly Pfizer, New York, New York, USA
| | | | | | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
11
|
Bellur S, Khosla AA, Ozair A, Kotecha R, McDermott MW, Ahluwalia MS. Management of Brain Metastases: A Review of Novel Therapies. Semin Neurol 2023; 43:845-858. [PMID: 38011864 DOI: 10.1055/s-0043-1776782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Brain metastases (BMs) represent the most common intracranial tumors in adults, and most commonly originate from lung, followed by breast, melanoma, kidney, and colorectal cancer. Management of BM is individualized based on the size and number of brain metastases, the extent of extracranial disease, the primary tumor subtype, neurological symptoms, and prior lines of therapy. Until recently, treatment strategies were limited to local therapies, like surgical resection and radiotherapy, the latter in the form of whole-brain radiotherapy or stereotactic radiosurgery. The next generation of local strategies includes laser interstitial thermal therapy, magnetic hyperthermic therapy, post-resection brachytherapy, and focused ultrasound. New targeted therapies and immunotherapies with documented intracranial activity have transformed clinical outcomes. Novel systemic therapies with intracranial utility include new anaplastic lymphoma kinase inhibitors like brigatinib and ensartinib; selective "rearranged during transfection" inhibitors like selpercatinib and pralsetinib; B-raf proto-oncogene inhibitors like encorafenib and vemurafenib; Kirsten rat sarcoma viral oncogene inhibitors like sotorasib and adagrasib; ROS1 gene rearrangement (ROS1) inhibitors, anti-neurotrophic tyrosine receptor kinase agents like larotrectinib and entrectinib; anti-human epidermal growth factor receptor 2/epidermal growth factor receptor exon 20 agent like poziotinib; and antibody-drug conjugates like trastuzumab-emtansine and trastuzumab-deruxtecan. This review highlights the modern multidisciplinary management of BM, emphasizing the integration of systemic and local therapies.
Collapse
Affiliation(s)
- Shreyas Bellur
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | | | - Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Rupesh Kotecha
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Michael W McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, Florida
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
12
|
Rigg E, Wang J, Xue Z, Lunavat TR, Liu G, Hoang T, Parajuli H, Han M, Bjerkvig R, Nazarov PV, Nicot N, Kreis S, Margue C, Nomigni MT, Utikal J, Miletic H, Sundstrøm T, Ystaas LAR, Li X, Thorsen F. Inhibition of extracellular vesicle-derived miR-146a-5p decreases progression of melanoma brain metastasis via Notch pathway dysregulation in astrocytes. J Extracell Vesicles 2023; 12:e12363. [PMID: 37759347 PMCID: PMC10533779 DOI: 10.1002/jev2.12363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Melanoma has the highest propensity of all cancers to metastasize to the brain with a large percentage of late-stage patients developing metastases in the central nervous system (CNS). It is well known that metastasis establishment, cell survival, and progression are affected by tumour-host cell interactions where changes in the host cellular compartments likely play an important role. In this context, miRNAs transferred by tumour derived extracellular vesicles (EVs) have previously been shown to create a favourable tumour microenvironment. Here, we show that miR-146a-5p is highly expressed in human melanoma brain metastasis (MBM) EVs, both in MBM cell lines as well as in biopsies, thereby modulating the brain metastatic niche. Mechanistically, miR-146a-5p was transferred to astrocytes via EV delivery and inhibited NUMB in the Notch signalling pathway. This resulted in activation of tumour-promoting cytokines (IL-6, IL-8, MCP-1 and CXCL1). Brain metastases were significantly reduced following miR-146a-5p knockdown. Corroborating these findings, miR-146a-5p inhibition led to a reduction of IL-6, IL-8, MCP-1 and CXCL1 in astrocytes. Following molecular docking analysis, deserpidine was identified as a functional miR-146a-5p inhibitor, both in vitro and in vivo. Our results highlight the pro-metastatic function of miR-146a-5p in EVs and identifies deserpidine for targeted adjuvant treatment.
Collapse
Affiliation(s)
- Emma Rigg
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Zhiwei Xue
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Taral R. Lunavat
- Department of BiomedicineUniversity of BergenBergenNorway
- Department of Neurology, Molecular Neurogenetics Unit‐West, Massachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Guowei Liu
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Tuyen Hoang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Himalaya Parajuli
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Rolf Bjerkvig
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Petr V. Nazarov
- Bioinformatics Platform and Multiomics Data Science Research Group, Department of Cancer ResearchLuxembourg Institute of HealthLuxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of HealthLaboratoire National de SantéDudelangeLuxembourg
| | - Stephanie Kreis
- Department of Life Sciences and MedicineUniversity of LuxembourgLuxembourg
| | - Christiane Margue
- Department of Life Sciences and MedicineUniversity of LuxembourgLuxembourg
| | | | - Jochen Utikal
- Skin Cancer UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center Mannheim, Ruprecht‐Karl University of HeidelbergMannheimGermany
- DKFZ Hector Cancer Institute at the University Medical Center MannheimMannheimGermany
| | - Hrvoje Miletic
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Terje Sundstrøm
- Department of NeurosurgeryHaukeland University HospitalBergenNorway
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | - Lars A. R. Ystaas
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xingang Li
- Department of BiomedicineUniversity of BergenBergenNorway
- Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Frits Thorsen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain‐Inspired Science, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
- Department of NeurosurgeryHaukeland University HospitalBergenNorway
- Molecular Imaging Center, Department of BiomedicineUniversity of BergenBergenNorway
| |
Collapse
|
13
|
Internò V, Sergi MC, Metta ME, Guida M, Trerotoli P, Strippoli S, Circelli S, Porta C, Tucci M. Melanoma Brain Metastases: A Retrospective Analysis of Prognostic Factors and Efficacy of Multimodal Therapies. Cancers (Basel) 2023; 15:1542. [PMID: 36900333 PMCID: PMC10001111 DOI: 10.3390/cancers15051542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Brain metastasis in cutaneous melanoma (CM) has historically been considered to be a dismal prognostic feature, although recent evidence has highlighted the intracranial activity of combined immunotherapy (IT). Herein, we completed a retrospective study to investigate the impact of clinical-pathological features and multimodal therapies on the overall survival (OS) of CM patients with brain metastases. A total of 105 patients were evaluated. Nearly half of the patients developed neurological symptoms leading to a negative prognosis (p = 0.0374). Both symptomatic and asymptomatic patients benefited from encephalic radiotherapy (eRT) (p = 0.0234 and p = 0.011). Lactate dehydrogenase (LDH) levels two times higher than the upper limit normal (ULN) at the time of brain metastasis onset was associated with poor prognosis (p = 0.0452) and identified those patients who did not benefit from eRT. Additionally, the poor prognostic role of LDH levels was confirmed in patients treated with targeted therapy (TT) (p = 0.0015) concerning those who received immunotherapy (IT) (p = 0.16). Based on these results, LDH levels higher than two times the ULN at the time of the encephalic progression identify those patients with a poor prognosis who did not benefit from eRT. The negative prognostic role of LDH levels on eRT observed in our study will require prospective evaluations.
Collapse
Affiliation(s)
- Valeria Internò
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70121 Bari, Italy
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Policlinico di Bari, 70124 Bari, Italy
| | - Maria Chiara Sergi
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Policlinico di Bari, 70124 Bari, Italy
| | - Maria Elvira Metta
- Medical Statistic and Biometry Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Michele Guida
- IRCCS, Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Paolo Trerotoli
- Medical Statistic and Biometry Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | | | - Salvatore Circelli
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Policlinico di Bari, 70124 Bari, Italy
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70121 Bari, Italy
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Policlinico di Bari, 70124 Bari, Italy
| | - Marco Tucci
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70121 Bari, Italy
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Policlinico di Bari, 70124 Bari, Italy
| |
Collapse
|
14
|
Yasuda M, Uehara A, Saito S, Kuriyama Y, Yamada K, Oka A, Miyagawa M, Ishikawa O, Motegi S. Malignant melanoma of inner canthus with long‐term survival after resection of brain metastasis and treatment with ipilimumab. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2022. [DOI: 10.1002/cia2.12268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Masahito Yasuda
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Akihito Uehara
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Shintaro Saito
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Yuko Kuriyama
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Kazuya Yamada
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Aina Oka
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Marie Miyagawa
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Osamu Ishikawa
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Sei‐Ichiro Motegi
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| |
Collapse
|
15
|
Kelly AM, Berry MR, Tasker SZ, McKee SA, Fan TM, Hergenrother PJ. Target-Agnostic P-Glycoprotein Assessment Yields Strategies to Evade Efflux, Leading to a BRAF Inhibitor with Intracranial Efficacy. J Am Chem Soc 2022; 144:12367-12380. [PMID: 35759775 DOI: 10.1021/jacs.2c03944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The blood-brain barrier (BBB) presents a major hurdle in the development of central nervous system (CNS) active therapeutics, and expression of the P-glycoprotein (P-gp) efflux transporter at the blood-brain interface further impedes BBB penetrance of most small molecules. Designing efflux liabilities out of compounds can be laborious, and there is currently no generalizable approach to directly transform periphery-limited agents to ones active in the CNS. Here, we describe a target-agnostic, prospective assessment of P-gp efflux using diverse compounds. Our results demonstrate that reducing the molecular size or appending a carboxylic acid in many cases enables evasion of P-gp efflux in cell-based experiments and in mice. These strategies were then applied to transform a periphery-limited V600EBRAF inhibitor, dabrafenib, into versions that possess potent and selective anti-cancer activity but now also evade P-gp-mediated efflux. When compared to dabrafenib, the compound developed herein (everafenib) has superior BBB penetrance and superior efficacy in an intracranial mouse model of metastatic melanoma, suggesting it as a lead candidate for the treatment of melanoma metastases to the brain and gliomas with BRAF mutation. More generally, the results described herein suggest the actionability of the trends observed in these target-agnostic efflux studies and provide guidance for the conversion of non-BBB-penetrant drugs into versions that are BBB-penetrant and efficacious.
Collapse
Affiliation(s)
- Aya M Kelly
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew R Berry
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarah Z Tasker
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sydney A McKee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Timothy M Fan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Wang J, Qu S, Xu Q, Jin Z, Li T, Zhang S, Sun X. Correlation Analysis between Retention of Gd-DTPA in the Cystic Area of Brain Metastasis and MRI Signs. JOURNAL OF ONCOLOGY 2022; 2022:2738892. [PMID: 35761903 PMCID: PMC9233588 DOI: 10.1155/2022/2738892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE The aim of this study is to investigate gadolinium-diethylenetriaminepentacetate (Gd-DTPA) retention in the cystic area of brain metastasis and its correlation with MRI signs. METHODS Clinical and MRI data of 76 patients with brain metastasis in the cystic area were collected. The contrast signal intensity (CSI) of the cystic area and edema area in the plain scan, enhanced scan, and plain scan after enhancement within 1 month (hereafter referred to as "enhanced plain scan") were analyzed to determine whether Gd-DTPA was retained in these areas. The lesions with higher CSI values on the enhanced plain scan were classified as the Gd-DTPA retention group and the remaining lesions as the Gd-DTPA-free group. The two groups were compared to determine significant differences in primary lesion type, tumor size, tumor location, capsule wall thickness and morphology, peritumoral edema, and renal function. RESULTS A total of 123 lesions were detected. The CSI of the enhanced plain scan exceeded that of the plain scan and enhanced scan in the cystic area (P < 0.05). There were 54 lesions (43.9%) with Gd-DTPA retention in the cystic area and 69 lesions (56.1%) without Gd-DTPA retention. Significant differences were observed in tumor size and cystic wall thickness between the two groups (P < 0.05), while no significant differences in primary lesion type, cystic wall shape, peritumoral edema, or function were observed. CONCLUSION The retention of Gd-DTPA was found in the cystic area of some brain metastases, which was correlated with tumor size and cystic wall thickness.
Collapse
Affiliation(s)
- Jili Wang
- Department of Medical Imaging, Weifang Medical University, Weifang 261653, China
- Imaging Department, Shouguang People's Hospital, Shouguang 262700, China
| | - Shanshan Qu
- Ultrasonic Department, Weifang People's Hospital, Weifang 261000, China
| | - Qinyan Xu
- Department of Medical Imaging, Weifang Medical University, Weifang 261653, China
- Imaging Department, Affiliated Hospital of Weifang Medical University, Weifang 261653, China
| | - Zhaofeng Jin
- Department of Clinical Psychology, Weifang Medical University, Weifang 261653, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Shuxian Zhang
- Department of Medical Imaging, Weifang Medical University, Weifang 261653, China
- Imaging Department, Affiliated Hospital of Weifang Medical University, Weifang 261653, China
| | - Xihe Sun
- Department of Medical Imaging, Weifang Medical University, Weifang 261653, China
- Imaging Department, Affiliated Hospital of Weifang Medical University, Weifang 261653, China
| |
Collapse
|
17
|
Salzmann M, Hess K, Lang K, Enk AH, Jordan B, Hassel JC. Long-term neurocognitive function after whole-brain radiotherapy in patients with melanoma brain metastases in the era of immunotherapy. Strahlenther Onkol 2022; 198:884-891. [PMID: 35546362 PMCID: PMC9515012 DOI: 10.1007/s00066-022-01950-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/13/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Whole-brain radiotherapy (WBRT) used to be standard of care for patients suffering from melanoma brain metastases (MBM) and may still be applicable in selected cases. Deterioration of neurocognitive function (NCF) is commonly seen during and after WBRT. Knowledge on long-term effects in melanoma patients is limited due to short survival rates. With the introduction of immune checkpoint inhibitors, patients may experience ongoing disease control, emphasizing the need for paying more attention to potential long-term adverse effects. METHODS In this single-center study, we identified in a period of 11 years all long-term survivors of MBM who received WBRT at least 1 year prior to inclusion. NCF was assessed by Neuropsychological Assessment Battery (NAB) screening and detailed neurological exam; confounders were documented. RESULTS Eight patients (median age 55 years) could be identified with a median follow-up of 5.4 years after WBRT. Six patients reported no subjective neurological impairment. NAB screening revealed an average-range score in 5/8 patients. In 3/8 patients a NAB score below average was obtained, correlating with subjective memory deficits in 2 patients. In these patients, limited performance shown in modalities like memory function, attention, and spatial abilities may be considerably attributed to metastasis localization itself. Six out of 8 patients were able to return to their previous work. CONCLUSION Five of 8 long-term survivors with MBM after WBRT experienced little to no restriction in everyday activities. In 3 out of 8 patients, cognitive decline was primarily explained by localization of the metastases in functionally relevant areas of the brain. The results of our small patient cohort do not support general avoidance of WBRT for treatment of brain metastases. However, long-term studies including pretreatment NCF tests are needed to fully analyze the long-term neurocognitive effects of WBRT.
Collapse
Affiliation(s)
- Martin Salzmann
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
| | - Klaus Hess
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexander H Enk
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Berit Jordan
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurology, Halle University Hospital, Halle (Saale), Germany
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| |
Collapse
|
18
|
Graziani G, Lisi L, Tentori L, Navarra P. Monoclonal Antibodies to CTLA-4 with Focus on Ipilimumab. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:295-350. [PMID: 35165868 DOI: 10.1007/978-3-030-91311-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The immune checkpoint cytotoxic T lymphocyte-associated antigen 4 (CTLA-4 or CD152) is a negative regulator of T-cell-mediated immune responses which plays a critical role in suppressing autoimmunity and maintaining immune homeostasis. Because of its inhibitory activity on T cells, CTLA-4 has been investigated as a drug target to induce immunostimulation, blocking the interaction with its ligands. The antitumor effects mediated by CTLA-4 blockade have been attributed to a sustained active immune response against cancer cells, due to the release of a brake on T cell activation. Ipilimumab (Yervoy, Bristol-Myers Squibb) is a fully human anti-CTLA-4 IgG1κ monoclonal antibody (mAb) that represents the first immune checkpoint inhibitor approved as monotherapy by FDA and EMA in 2011 for the treatment of unresectable/metastatic melanoma. In 2015, FDA also granted approval to ipilimumab monotherapy as adjuvant treatment of stage III melanoma to reduce the risk of tumour recurrence. The subsequent approved indications of ipilimumab for metastatic melanoma, regardless of BRAF mutational status, and other advanced/metastatic solid tumours always involve its use in association with the anti-programmed cell death protein 1 (PD-1) mAb nivolumab. Currently, ipilimumab is evaluated in ongoing clinical trials for refractory/advanced solid tumours mainly in combination with additional immunostimulating agents.
Collapse
Affiliation(s)
- Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Lucia Lisi
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Lucio Tentori
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Pierluigi Navarra
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
19
|
Zhou H, Wu T, Zhu X, Li Y. Re-irradiation of multiple brain metastases using CyberKnife stereotactic radiotherapy: Case report. Medicine (Baltimore) 2021; 100:e27543. [PMID: 34731155 PMCID: PMC8519193 DOI: 10.1097/md.0000000000027543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Brain metastasis (BM) is the commonest adult intracranial malignancy and many patients with brain metastases require two course radiotherapy. Re-irradiation is frequently performed in Radiotherapy (RT) departments for multiple brain metastases. PATIENT CONCERNS We present a case of a 55-year-old male patient suffering from brain metastases, who had previously received whole-brain radiotherapy (WBRT) and first CyberKnife Stereotactic Radiotherapy (CKSRT) for metastases, presented with a recurrence of metastasis and new lesions in the brain. DIAGNOSES An enhanced computed tomography (CT) scan of the brain revealed abnormalities with double-dosing of intravenous contrast that identified >10 lesions scattered in the whole brain. INTERVENTIONS Re-irradiation was performed using CKSRT. The patient was treated with 30 Gy in 5 fractions for new lesions and 25 Gy in 5 fractions for lesion that were locally recurrent and close to brainstem lesions. OUTCOME The lesions were well-controlled, and the headache of the patient was significantly relieved one month after radiotherapy. The total survival time of the patients was 17 months from the beginning of the Cyberknife treatment. CONCLUSION The present case report demonstrates that CyberKnife therapy plays a significant role in the repeated radiotherapy for multiple metastatic brain tumors. CKSRT can be used as a salvage method in recurrent multiple brain metastases.
Collapse
Affiliation(s)
- Han Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Department of Radiation Oncology The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tiancong Wu
- Department of Radiation Oncology, Jinling hospital, Jiangsu, China
| | - Xixu Zhu
- Department of Radiation Oncology, Jinling hospital, Jiangsu, China
| | - Yikun Li
- Department of Radiation Oncology, Jinling hospital, Jiangsu, China
| |
Collapse
|
20
|
Xiang M, Liang L, Kuang X, Xie Z, Liu J, Zhao S, Su J, Chen X, Liu H. Pharmacological inhibition of USP7 suppresses growth and metastasis of melanoma cells in vitro and in vivo. J Cell Mol Med 2021; 25:9228-9240. [PMID: 34469054 PMCID: PMC8500953 DOI: 10.1111/jcmm.16834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Melanoma is a highly aggressive type of skin cancer. The development of diverse resistance mechanisms and severe adverse effects significantly limit the efficiency of current therapeutic approaches. Identification of the new therapeutic targets involved in the pathogenesis will benefit the development of novel therapeutic strategies. The deubiquitinase ubiquitin-specific protease-7, a potential target for cancer treatment, is deregulated in types of cancer, but its role in melanoma is still unclear. We investigated the role and the inhibitor P22077 of ubiquitin-specific protease-7 in melanoma treatment. We found that ubiquitin-specific protease-7 was overexpressed and correlated with poor prognosis in melanoma. Further, pharmacological inhibition of ubiquitin-specific protease-7 by P22077 can effectively inhibit proliferation, and induce cell cycle arrest and apoptosis via ROS accumulation-induced DNA damage in melanoma cells. Inhibition of ubiquitin-specific protease-7 by P22077 also inhibits melanoma tumour growth in vivo. Moreover, inhibition of ubiquitin-specific protease-7 prevented migration and invasion of melanoma cells in vitro and in vivo by decreasing the Wnt/β-catenin signalling pathway. Taken together, our study revealed that ubiquitin-specific protease-7 acted as an oncogene involved in melanoma cell proliferation and metastasis. Therefore, ubiquitin-specific protease-7 may serve as potential candidates for the treatment of melanoma.
Collapse
Affiliation(s)
- Minmin Xiang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Long Liang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Xinwei Kuang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Zuozhong Xie
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Jing Liu
- Medical Genetics & School of Life SciencesCentral South UniversityChangshaChina
| | - Shuang Zhao
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Juan Su
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Xiang Chen
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| | - Hong Liu
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Skin Cancer and PsoriasisChangshaChina
- Hunan Engineering Research Center of Skin Health and DiseaseChangshaChina
- Xiangya Clinical Research Center for Cancer ImmunotherapyCentral South UniversityChangshaChina
| |
Collapse
|
21
|
Establishment and Validation of CyberKnife Irradiation in a Syngeneic Glioblastoma Mouse Model. Cancers (Basel) 2021; 13:cancers13143416. [PMID: 34298631 PMCID: PMC8303959 DOI: 10.3390/cancers13143416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Stereotactic radiosurgery (SRS) provides precise high-dose irradiation of intracranial tumors. However, its radiobiological mechanisms are not fully understood. This study aims to establish CyberKnife SRS on an intracranial glioblastoma tumor mouse model and assesses the early radiobiological effects of radiosurgery. Following exposure to a single dose of 20 Gy, the tumor volume was evaluated using MRI scans, whereas cellular proliferation and apoptosis, tumor vasculature, and immune response were evaluated using immunofluorescence staining. The mean tumor volume was significantly reduced by approximately 75% after SRS. The precision of irradiation was verified by the detection of DNA damage consistent with the planned dose distribution. Our study provides a suitable mouse model for reproducible and effective irradiation and further investigation of radiobiological effects and combination therapies of intracranial tumors using CyberKnife. Abstract CyberKnife stereotactic radiosurgery (CK-SRS) precisely delivers radiation to intracranial tumors. However, the underlying radiobiological mechanisms at high single doses are not yet fully understood. Here, we established and evaluated the early radiobiological effects of CK-SRS treatment at a single dose of 20 Gy after 15 days of tumor growth in a syngeneic glioblastoma-mouse model. Exact positioning was ensured using a custom-made, non-invasive, and trackable frame. One superimposed target volume for the CK-SRS planning was created from the fused tumor volumes obtained from MRIs prior to irradiation. Dose calculation and delivery were planned using a single-reference CT scan. Six days after irradiation, tumor volumes were measured using MRI scans, and radiobiological effects were assessed using immunofluorescence staining. We found that CK-SRS treatment reduced tumor volume by approximately 75%, impaired cell proliferation, diminished tumor vasculature, and increased immune response. The accuracy of the delivered dose was demonstrated by staining of DNA double-strand breaks in accordance with the planned dose distribution. Overall, we confirmed that our proposed setup enables the precise irradiation of intracranial tumors in mice using only one reference CT and superimposed MRI volumes. Thus, our proposed mouse model for reproducible CK-SRS can be used to investigate radiobiological effects and develop novel therapeutic approaches.
Collapse
|
22
|
Zhao Z, Liao N. Bergamottin Induces DNA Damage and Inhibits Malignant Progression in Melanoma by Modulating miR-145/Cyclin D1 Axis. Onco Targets Ther 2021; 14:3769-3781. [PMID: 34168462 PMCID: PMC8216741 DOI: 10.2147/ott.s275322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Melanoma is a prevalent skin cancer with the high rate of metastasis and mortality, affecting the increasing number of people worldwide. Bergamottin (BGM) is a natural furanocoumarin derived from grapefruits and presents the potential anti-cancer activity in several tumor models. However, the role of BGM in the development of melanoma remains unclear. Here, we aimed to explore the effect of BGM on the DNA damage and progression of melanoma. Methods The effect of BGM on the melanoma progression was analyzed by CCK-8 assays, colony formation assays, transwell assays, Annexin V-FITC Apoptosis Detection Kit, cell-cycle analysis, in vivo tumorigenicity analysis. The mechanism investigation was performed using luciferase reporter gene assays, qPCR assays, and Western blot analysis. Results We identified that BGM repressed cell proliferation, migration, and invasion of melanoma cells. BGM induced cell cycle arrest at the G0/G1 phase and enhanced apoptosis of melanoma cells. The DNA damage in the melanoma cells was stimulated by the BGM treatment. Meanwhile, BGM was able to up-regulate the expression of miR-145 and miR-145 targeted Cyclin D1 in the melanoma cells. Furthermore, BGM inhibited the progression of melanoma by targeting miR-145/Cyclin D1 axis in vitro. BGM attenuated the tumor growth of melanoma in vivo. Conclusion Thus, we conclude that BGM induces DNA damage and inhibits tumor progression in melanoma by modulating the miR-145/Cyclin D1 axis. Our finding provides new insights into the mechanism by which BGM modulates the development of melanoma. BGM may be applied as a potential anti-tumor candidate for the clinical treatment of melanoma.
Collapse
Affiliation(s)
- Zhongfang Zhao
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, 510150, People's Republic of China
| | - Nong Liao
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, 510150, People's Republic of China
| |
Collapse
|
23
|
Majem M, Manzano JL, Marquez-Rodas I, Mujika K, Muñoz-Couselo E, Pérez-Ruiz E, de la Cruz-Merino L, Espinosa E, Gonzalez-Cao M, Berrocal A. SEOM clinical guideline for the management of cutaneous melanoma (2020). Clin Transl Oncol 2021; 23:948-960. [PMID: 33651321 PMCID: PMC8057998 DOI: 10.1007/s12094-020-02539-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Melanoma affects about 6000 patients a year in Spain. A group of medical oncologists from Spanish Society of Medical Oncology (SEOM) and Spanish Multidisciplinary Melanoma Group (GEM) has designed these guidelines to homogenize the management of these patients. The diagnosis must be histological and determination of BRAF status has to be performed in patients with stage ≥ III. Stage I–III resectable melanomas will be treated surgically. In patients with stage III melanoma, adjuvant treatment with immunotherapy or targeted therapy is also recommended. Patients with unresectable or metastatic melanoma will receive treatment with immunotherapy or targeted therapy, the optimal sequence of these treatments remains unclear. Brain metastases require a separate consideration, since, in addition to systemic treatment, they may require local treatment. Patients must be followed up closely to receive or change treatment as soon as their previous clinical condition changes, since multiple therapeutic options are available.
Collapse
Affiliation(s)
- M Majem
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, c/Sant Antoni Maria Claret 167, 08025, Barcelona, Spain.
| | - J L Manzano
- Department of Medical Oncology, H. Germans Trias i Pujol, Catalan Institute of Oncology, ICO-Badalona, Badalona, Spain
| | - I Marquez-Rodas
- Department of Medical Oncology, Instituto de Investigación Sanitaria Gregorio Marañón and CIBERONC, Madrid, Spain
| | - K Mujika
- Department of Medical Oncology, UGC de Oncología de Gipuzkoa, OSI Donostialdea-Onkologikoa, Guipúzcoa, Spain
| | - E Muñoz-Couselo
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Vall d'Hebron Barcelona, Barcelona, Spain
| | - E Pérez-Ruiz
- Department of Medical Oncology, Hospital Costa del Sol and UGC Oncol, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional Virgen Victoria, Málaga, Spain
| | - L de la Cruz-Merino
- Department of Medical Oncology, Hospital Universitario Virgen Macarena, Seville, Spain.,Medicine Department, Universidad de Sevilla, Seville, Spain
| | - E Espinosa
- Department of Medical Oncology, Hospital Universitario La Paz, CIBERONC, Madrid, Spain
| | - M Gonzalez-Cao
- Oncology Department (IOR), Hospital Dexeus, Barcelona, Spain
| | - A Berrocal
- Department of Medical Oncology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| |
Collapse
|
24
|
Xie J, Zheng Y, Xu X, Sun C, Lv M. Long Noncoding RNA CAR10 Contributes to Melanoma Progression By Suppressing miR-125b-5p to Induce RAB3D Expression. Onco Targets Ther 2020; 13:6203-6211. [PMID: 32636644 PMCID: PMC7334016 DOI: 10.2147/ott.s249736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background Melanoma is a very malignant skin cancer with high mortality and unsatisfactory prognosis. Many long noncoding RNAs (lncRNAs) have been reported to be aberrantly expressed in melanoma. How lncRNA regulates melanoma progression is poorly defined. LncRNA CAR10 has been shown to regulate the progression of several cancers and its role in melanoma remains unclear. This study aims to determine the role and mechanism of lncRNA CAR10 in the regulation of melanoma progression. Methods qRT-PCR was utilized to analyze CAR10 in melanoma human tissues and cell lines while Kaplan–Meier curve was used to examine the survival rate. CCK8 assay and EdU assay were used to assess cell proliferation when Transwell assay was conducted to determine migration and invasion. And tumor xenograft assay was performed to evaluate tumor growth in vivo. Additionally, luciferase assay and RNA pulldown assay were performed to analyze the interactions among CAR10, miR-125b-5p and RAB3D. Results LncRNA CAR10 was upregulated in melanoma tissues and cell lines. Upregulation of CAR10 predicted a poor prognosis in patients with melanoma. CAR10 knockdown suppressed proliferation, migration and invasion of melanoma cells in vitro. CAR10 silencing attenuated tumor growth in vivo. CAR10 inhibited miR-125b-5p activity to upregulate RAB3D expression. And miR-125b-5p/RAB3D signaling is crucial for CAR10-dependent melanoma progression. Conclusion Our work suggests that lncRNA CAR10 promotes melanoma growth and metastasis through modulating miR-125b-5p/RAB3D axis.
Collapse
Affiliation(s)
- Jing Xie
- Department of Dermatology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Yanyan Zheng
- Department of Neurology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Xiaomin Xu
- Department of Reproduction and Genetics, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Congcong Sun
- Department of Reproduction and Genetics, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, People's Republic of China
| | - Mingfen Lv
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|