1
|
Jin L, Yang G, Liu Y, Rang Z, Cui F. Bioinformatics data combined with single-cell analysis reveals patterns of immunoinflammatory infiltration and cell death in melanoma. Int Immunopharmacol 2024; 143:113347. [PMID: 39418727 DOI: 10.1016/j.intimp.2024.113347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/10/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
BACKGRUOND Melanoma is a common cancer in dermatology, but its molecular mechanisms remain poorly explained. AIM Utilizing single-cell analytics and bioinformatics, the work sought to discover the immunological infiltration and cellular molecular mechanisms of melanoma. METHODS Melanoma genes databases were downloaded from GeneCards, and gene expression profiles were chosen from the Gene Expression Omnibus (GSE244889). Establishing and analyzing protein-protein interaction networks for functional enrichment made use of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases. The process assesses the immunological cell infiltration variations between normal and malignant samples by Immune Cell AI software program. Different cell type differences were clarified by cell quality control, filtration, removal of batch effects and cell clustering analysis using single cell analysis techniques. RESULTS Using a variety of machine learning techniques, 20 differentially expressed hub genes were found; among these, TP53, HSP90AB1, HSPA4, RHOA, CCND1, CYCS, PPARG, NFKBIA, CAV1, ANXA5, ENO1, ITGAM, YWHAZ, RELA, SOD1, and VDAC1 were found to be significantly significant. The results of enrichment analysis demonstrated that immune response and inflammatory response were strongly associated with melanoma. Animal mitophagy, ferroptosis, the PI3K-Akt signaling pathway, and the HIF-1 signaling pathway were the primary signaling pathways implicated. Cells of immunity, T-cells, lymphocytes, B-cells, NK-cells, monocytes, and macrophages were shown to be significantly infiltrated in melanoma patients, according to analysis. Single cell analysis also demonstrated that ferroptosis is a significant mechanism of cell death that contributes to the advancement of melanoma and that macrophages are important in the disease. CONCLUSION In summary, different immune cell infiltrations-particularly macrophages-have a significant impact on the onset and course of melanoma, and our findings may help direct future investigations into melanoma macrophages.
Collapse
Affiliation(s)
- Li Jin
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Ge Yang
- Department of Dermatology, Sichuan Provincial People's Hospital, School of medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangying Liu
- Department of Dermatology, Sichuan Provincial People's Hospital, School of medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Rang
- Department of Dermatology, Sichuan Provincial People's Hospital, School of medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Cui
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China; Department of Dermatology, Sichuan Provincial People's Hospital, School of medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Spirito F, Nocini R, Mori G, Albanese M, Georgakopoulou EA, Sivaramakrishnan G, Khalil B, Špiljak B, Surya V, Mishra D, Chaurasia A. The Potential of Oncolytic Virotherapy in the Treatment of Head and Neck Cancer: A Comprehensive Review. Int J Mol Sci 2024; 25:12990. [PMID: 39684701 DOI: 10.3390/ijms252312990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Head and neck cancer (HNC) represents a challenging oncological entity with significant morbidity and mortality rates. Despite advances in conventional therapies, including surgery, chemotherapy, and radiation therapy, the overall survival rates for advanced HNC remain suboptimal. In recent years, the emerging field of oncolytic virotherapy has gained attention as a promising therapeutic approach for various malignancies, including HNC. This review provides a comprehensive overview of the current understanding of oncolytic viruses (Ovs) in the context of HNC treatment, including their mechanisms of action, preclinical and clinical studies, challenges, and future directions. Future oncolytic virotherapy focuses on improving delivery and specificity through nanoparticle carriers and genetic modifications to enhance tumor targeting and immune response. Combining different OVs and integrating them with immunotherapies, such as checkpoint inhibitors, could overcome tumor resistance and improve outcomes. Personalized approaches and rigorous clinical trials are key to ensuring the safety and effectiveness of virotherapy in treating HNC.
Collapse
Affiliation(s)
- Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Riccardo Nocini
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Massimo Albanese
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Eleni A Georgakopoulou
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Basel Khalil
- Department of Basic Sciences, Faculty of Dentistry, University of Damascus, Damascus 30621, Syria
| | - Bruno Špiljak
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Varun Surya
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepika Mishra
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George's Medical University, Lucknow 226003, India
| |
Collapse
|
3
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
4
|
Mongeon B, Hébert-Doutreloux J, Surendran A, Karimi E, Fiset B, Quail DF, Walsh LA, Jenner AL, Craig M. Spatial computational modelling illuminates the role of the tumour microenvironment for treating glioblastoma with immunotherapies. NPJ Syst Biol Appl 2024; 10:91. [PMID: 39155294 PMCID: PMC11330976 DOI: 10.1038/s41540-024-00419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Glioblastoma is the most common and deadliest brain tumour in adults, with a median survival of 15 months under the current standard of care. Immunotherapies like immune checkpoint inhibitors and oncolytic viruses have been extensively studied to improve this endpoint. However, most thus far have failed. To improve the efficacy of immunotherapies to treat glioblastoma, new single-cell imaging modalities like imaging mass cytometry can be leveraged and integrated with computational models. This enables a better understanding of the tumour microenvironment and its role in treatment success or failure in this hard-to-treat tumour. Here, we implemented an agent-based model that allows for spatial predictions of combination chemotherapy, oncolytic virus, and immune checkpoint inhibitors against glioblastoma. We initialised our model with patient imaging mass cytometry data to predict patient-specific responses and found that oncolytic viruses drive combination treatment responses determined by intratumoral cell density. We found that tumours with higher tumour cell density responded better to treatment. When fixing the number of cancer cells, treatment efficacy was shown to be a function of CD4 + T cell and, to a lesser extent, of macrophage counts. Critically, our simulations show that care must be put into the integration of spatial data and agent-based models to effectively capture intratumoral dynamics. Together, this study emphasizes the use of predictive spatial modelling to better understand cancer immunotherapy treatment dynamics, while highlighting key factors to consider during model design and implementation.
Collapse
Affiliation(s)
- Blanche Mongeon
- Sainte-Justine University Hospital Azrieli Research Centre, Montréal, QC, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada
| | | | - Anudeep Surendran
- Center for Advanced Systems Understanding, Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elham Karimi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Benoit Fiset
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Physiology, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Logan A Walsh
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Morgan Craig
- Sainte-Justine University Hospital Azrieli Research Centre, Montréal, QC, Canada.
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
Kulbay M, Marcotte E, Remtulla R, Lau THA, Paez-Escamilla M, Wu KY, Burnier MN. Uveal Melanoma: Comprehensive Review of Its Pathophysiology, Diagnosis, Treatment, and Future Perspectives. Biomedicines 2024; 12:1758. [PMID: 39200222 PMCID: PMC11352094 DOI: 10.3390/biomedicines12081758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/02/2024] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignancy in adults. Recent advances highlight the role of tumor-derived extracellular vesicles (TEV) and circulating hybrid cells (CHC) in UM tumorigenesis. Bridged with liquid biopsies, a novel technology that has shown incredible performance in detecting cancer cells or products derived from tumors in bodily fluids, it can significantly impact disease management and outcome. The aim of this comprehensive literature review is to provide a summary of current knowledge and ongoing advances in posterior UM pathophysiology, diagnosis, and treatment. The first section of the manuscript discusses the complex and intricate role of TEVs and CHCs. The second part of this review delves into the epidemiology, etiology and risk factors, clinical presentation, and prognosis of UM. Third, current diagnostic methods, ensued by novel diagnostic tools for the early detection of UM, such as liquid biopsies and artificial intelligence-based technologies, are of paramount importance in this review. The fundamental principles, limits, and challenges associated with these diagnostic tools, as well as their potential as a tracker for disease progression, are discussed. Finally, a summary of current treatment modalities is provided, followed by an overview of ongoing preclinical and clinical research studies to provide further insights on potential biomolecular pathway alterations and therapeutic targets for the management of UM. This review is thus an important resource for all healthcare professionals, clinicians, and researchers working in the field of ocular oncology.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Emily Marcotte
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Raheem Remtulla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Tsz Hin Alexander Lau
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Manuel Paez-Escamilla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
| | - Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | - Miguel N. Burnier
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada; (M.K.); (R.R.); (T.H.A.L.); (M.P.-E.)
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
6
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
7
|
Natarelli N, Aleman SJ, Mark IM, Tran JT, Kwak S, Botto E, Aflatooni S, Diaz MJ, Lipner SR. A Review of Current and Pipeline Drugs for Treatment of Melanoma. Pharmaceuticals (Basel) 2024; 17:214. [PMID: 38399429 PMCID: PMC10892880 DOI: 10.3390/ph17020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Malignant melanoma is the most aggressive form of skin cancer. Standard treatment options include surgery, radiation therapy, systemic chemotherapy, targeted therapy, and immunotherapy. Combining these modalities often yields better responses. Surgery is suitable for localized cases, sometimes involving lymph node dissection and biopsy, to assess the spread of the disease. Radiation therapy may be sometimes used as a standalone treatment or following surgical excision. Systemic chemotherapy, while having low response rates, is utilized as part of combination treatments or when other methods fail. The development of resistance to systemic chemotherapies and associated side effects have prompted further research and clinical trials for novel approaches. In the case of advanced-stage melanoma, a comprehensive approach may be necessary, incorporating targeted therapies and immunotherapies that demonstrate significant antitumor activity. Targeted therapies, including inhibitors targeting BRAF, MEK, c-KIT, and NRAS, are designed to block the specific molecules responsible for tumor growth. These therapies show promise, particularly in patients with corresponding mutations. Combination therapy, including BRAF and MEK inhibitors, has been evidenced to improve progression-free survival; however, concerns about resistance and cutaneous toxicities highlight the need for close monitoring. Immunotherapies, leveraging tumor-infiltrating lymphocytes and CAR T cells, enhance immune responses. Lifileucel, an FDA-approved tumor-infiltrating lymphocyte therapy, has demonstrated improved response rates in advanced-stage melanoma. Ongoing trials continue to explore the efficacy of CAR T-cell therapy for advanced melanoma. Checkpoint inhibitors targeting CTLA-4 and PD-1 have enhanced outcomes. Emerging IL-2 therapies boost dendritic cells, enhancing anticancer immunity. Oncolytic virus therapy, approved for advanced melanoma, augments treatment efficacy in combination approaches. While immunotherapy has significantly advanced melanoma treatment, its success varies, prompting research into new drugs and factors influencing outcomes. This review provides insights into current melanoma treatments and recent therapeutic advances.
Collapse
Affiliation(s)
- Nicole Natarelli
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Sarah J. Aleman
- School of Medicine, Louisiana State University, New Orleans, LA 70112, USA
| | - Isabella M. Mark
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jasmine T. Tran
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Sean Kwak
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Elizabeth Botto
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Shaliz Aflatooni
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Michael J. Diaz
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Shari R. Lipner
- Department of Dermatology, Weill Cornell Medicine, New York City, NY 10021, USA
| |
Collapse
|
8
|
Wang C, Lu N, Yan L, Li Y. The efficacy and safety assessment of oncolytic virotherapies in the treatment of advanced melanoma: a systematic review and meta-analysis. Virol J 2023; 20:252. [PMID: 37919738 PMCID: PMC10623758 DOI: 10.1186/s12985-023-02220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The efficacy and safety of oncolytic virotherapies in the treatment of advanced melanoma still remains controversal. It is necessary to conduct quantitative evaluation on the basis of preclinical trial reports. METHODS Publicly available databases (PubMed, Embase, Medline, Web of Science and Cochrane Library.) and register (Clinicaltrials.gov) were searched to collect treatment outcomes of oncolytic virotherapies (including herpes simplex virus type 1 (HSV), coxsackievirus A21 (CVA21), adenovirus, poxvirus and reovirus) for advanced/unresectable melanoma. Comparisons of treatment response, adverse events (AEs) and survival analyses for different virotherapies were performed by R software based on the extracted data from eligible studies. RESULTS Finally, thirty-four eligible studies were analysed and HSV virotherapy had the highest average complete response (CR, 24.8%) and HSV had a slightly higher average overall response rate (ORR) than CVA21 (43.8% vs 42.6%). In the pooled results of comparing talimogene laherparepve (T-VEC) with or without GM-CSF/ICIs (immune checkpoint inhibitors) to GM-CSF/ICIs monotherapy suggested virotherapy was more efficient in subgroups CR (RR = 1.80, 95% CI [1.30; 2.51], P < 0.01), ORR (RR = 1.17, 95% CI [1.02; 1.34], P < 0.05), and DCR (RR = 1.27, 95% CI [1.15; 1.40], P < 0.01). In patients treated with T-VEC+ICIs, 2-year overall survival (12.1 ± 6.9 months) and progression-free survival (9.9 ± 6.9) were significantly longer than those treated with T-VEC alone. Furthermore, we found that AEs occurred frequently in virotherapy but decreased in a large cohort of enrolled patients, some of which, such as abdominal distension/pain, injection site pain and pruritus, were found to be positively associated with disease progression in patients treated with T-VEC monotherapy. CONCLUSION Given the relative safety and tolerability of oncolytic viruses, and the lack of reports of dose-limiting-dependent toxicities, more patients treated with T-VEC with or without ICIs should be added to future assessment analyses. There is still a long way to go before it can be used as a first-line therapy for patients with advanced or unresectable melanoma.
Collapse
Affiliation(s)
- Changyuan Wang
- Department of Dermatology, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), NO.1 Jiaozhou Road, Qingdao, 266000, Shandong Province, China
| | - Nanxiao Lu
- Department of Dermatology, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), NO.1 Jiaozhou Road, Qingdao, 266000, Shandong Province, China
| | - Lin Yan
- Department of Dermatology, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), NO.1 Jiaozhou Road, Qingdao, 266000, Shandong Province, China
| | - Yang Li
- Department of Dermatology, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), NO.1 Jiaozhou Road, Qingdao, 266000, Shandong Province, China.
| |
Collapse
|
9
|
Brănişteanu DE, Porumb-Andrese E, Porumb V, Stărică A, Moraru AD, Nicolescu AC, Zemba M, Brănişteanu CI, Brănişteanu G, Brănişteanu DC. New Treatment Horizons in Uveal and Cutaneous Melanoma. Life (Basel) 2023; 13:1666. [PMID: 37629523 PMCID: PMC10455832 DOI: 10.3390/life13081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is a complex and heterogeneous malignant tumor with distinct genetic characteristics and therapeutic challenges in both cutaneous melanoma (CM) and uveal melanoma (UM). This review explores the underlying molecular features and genetic alterations in these melanoma subtypes, highlighting the importance of employing specific model systems tailored to their unique profiles for the development of targeted therapies. Over the past decade, significant progress has been made in unraveling the molecular and genetic characteristics of CM and UM, leading to notable advancements in treatment options. Genetic mutations in the mitogen-activated protein kinase (MAPK) pathway drive CM, while UM is characterized by mutations in genes like GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Chromosomal aberrations, including monosomy 3 in UM and monosomy 10 in CM, play significant roles in tumorigenesis. Immune cell infiltration differs between CM and UM, impacting prognosis. Therapeutic advancements targeting these genetic alterations, including oncolytic viruses and immunotherapies, have shown promise in preclinical and clinical studies. Oncolytic viruses selectively infect malignant cells, inducing oncolysis and activating antitumor immune responses. Talimogene laherparepvec (T-VEC) is an FDA-approved oncolytic virus for CM treatment, and other oncolytic viruses, such as coxsackieviruses and HF-10, are being investigated. Furthermore, combining oncolytic viruses with immunotherapies, such as CAR-T cell therapy, holds great potential. Understanding the intrinsic molecular features of melanoma and their role in shaping novel therapeutic approaches provides insights into targeted interventions and paves the way for more effective treatments for CM and UM.
Collapse
Affiliation(s)
- Daciana Elena Brănişteanu
- Department of Medical Specialties (III)-Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Railway Clinical Hospital, 700506 Iasi, Romania;
| | - Elena Porumb-Andrese
- Department of Medical Specialties (III)-Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Railway Clinical Hospital, 700506 Iasi, Romania;
| | - Vlad Porumb
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Military Emergency Clinical Hospital “Dr. Iacob Czihac”, 700506 Iasi, Romania
| | | | - Andreea Dana Moraru
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | | - Mihail Zemba
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | | | - George Brănişteanu
- “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.I.B.); (G.B.)
| | - Daniel Constantin Brănişteanu
- Railway Clinical Hospital, 700506 Iasi, Romania;
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
10
|
Das A, Ghose A, Naicker K, Sanchez E, Chargari C, Rassy E, Boussios S. Advances in adoptive T-cell therapy for metastatic melanoma. Curr Res Transl Med 2023; 71:103404. [PMID: 37478776 DOI: 10.1016/j.retram.2023.103404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Adoptive T cell therapy (ACT) is a fast developing, niche area of immunotherapy (IO), which is revolutionising the therapeutic landscape of solid tumour oncology, especially metastatic melanoma (MM). Identifying tumour antigens (TAs) as potential targets, the ACT response is mediated by either Tumour Infiltrating Lymphocytes (TILs) or genetically modified T cells with specific receptors - T cell receptors (TCRs) or chimeric antigen receptors (CARs) or more prospectively, natural killer (NK) cells. Clinical trials involving ACT in MM from 2006 to present have shown promising results. Yet it is not without its drawbacks which include significant auto-immune toxicity and need for pre-conditioning lymphodepletion. Although immune-modulation is underway using various combination therapies in the hope of enhancing efficacy and reducing toxicity. Our review article explores the role of ACT in MM, including the various modalities - their safety, efficacy, risks and their development in the trial and the real world setting.
Collapse
Affiliation(s)
- Aparimita Das
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom; Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chennai, India
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom; Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, London, United Kingdom
| | - Kevin Naicker
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom
| | - Cyrus Chargari
- Department of Radiation Oncology, Pitié Salpêtrière University Hospital, Paris, France
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805, Villejuif, France
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom; Kent and Medway Medical School, University of Kent, Canterbury, United Kingdom; Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, SE1 9RT, London, United Kingdom; AELIA Organization, 9th Km Thessaloniki, Thermi 57001, Thessaloniki, Greece.
| |
Collapse
|
11
|
Melanoma Cellular Signaling Transduction Pathways Targeted by Polyphenols Action Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020407. [PMID: 36829966 PMCID: PMC9952468 DOI: 10.3390/antiox12020407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Although different anti-melanoma treatments are available, their efficacy is still improvable, and the number of deaths continues to increase worldwide. A promising source of antitumor agents could be presented by polyphenols-natural plant-based compounds. Over the past decades, many studies have described multiple anticancer effects of polyphenols in melanoma, presenting their potential interactions with targeted molecules from different signaling pathways. However, to our knowledge, there is no comprehensive review on polyphenols-regulated mechanisms in melanoma cells available in the literature. To fulfill this gap, this article aims to summarize the current knowledge of molecular mechanisms of action regulated by polyphenols involved in melanoma initiation and progression. Here, we focus on in vitro and in vivo effects of polyphenol treatments on tumor-essential cellular pathways, such as cell proliferation, apoptosis, autophagy, inflammation, angiogenesis, and metastasis. Moreover, emerging studies regarding the well-marked role of polyphenols in the regulation of microRNAs (miRNAs), highlighting their contribution to melanoma development, are also epitomized. Finally, we hope this review will provide a firm basis for developing polyphenol-based therapeutic agents in melanoma treatment.
Collapse
|
12
|
Danaeifar M. Recent advances in gene therapy: genetic bullets to the root of the problem. Clin Exp Med 2022:10.1007/s10238-022-00925-x. [PMID: 36284069 DOI: 10.1007/s10238-022-00925-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022]
Abstract
Genetics and molecular genetic techniques have changed many perspectives and paradigms in medicine. Using genetic methods, many diseases have been cured or alleviated. Gene therapy, in its simplest definition, is application of genetic materials and related techniques to treat various human diseases. Evaluation of the trends in the field of medicine and therapeutics clarifies that gene therapy has attracted a lot of attention due to its powerful potential to treat a number of diseases. There are various genetic materials that can be used in gene therapy such as DNA, single- and double-stranded RNA, siRNA and shRNA. The main gene editing techniques used for in vitro and in vivo gene modification are ZNF, TALEN and CRISPR-Cas9. The latter has increased hopes for more precise and efficient gene targeting as it requires two separate recognition sites which makes it more specific and can also cause rapid and sufficient cleavage within the target sequence. There must be carriers for delivering genes to the target tissue. The most commonly used carriers for this purpose are viral vectors such as adenoviruses, adeno-associated viruses and lentiviruses. Non-viral vectors consist of bacterial vectors, liposomes, dendrimers and nanoparticles.
Collapse
|
13
|
Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther 2022; 29:647-660. [PMID: 34158626 DOI: 10.1038/s41417-021-00359-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an encouraging and fast-growing platform used for the treatment of various types of tumors in human body. Despite the recent success of CAR T-cell therapy in hematologic malignancies, especially in B-cell lymphoma and acute lymphoblastic leukemia, the application of this treatment approach in solid tumors faced several obstacles resulted from the heterogeneous expression of antigens as well as the induction of immunosuppressive tumor microenvironment. Oncolytic virotherapy (OV) is a new cancer treatment modality by the use of competent or genetically engineered viruses to replicate in tumor cells selectively. OVs represent potential candidates to synergize the current setbacks of CAR T-cell application in solid tumors and then and overcome them. As well, the application of OVs gives researches the ability to engineer the virus with payloads in the way that it selectively deliver a specific therapeutic agents in tumor milieu to reinforce the cytotoxic activity of CAR T cells. Herein, we made a comprehensive review on the outcomes resulted from the combination of CAR T-cell immunotherapy and oncolytic virotherapy for the treatment of solid cancers. In the current study, we also provided brief details on some challenges that remained in this field and attempted to shed a little light on the future perspectives.
Collapse
|
14
|
Cerqueira OLD, Antunes F, Assis NG, Cardoso EC, Clavijo-Salomón MA, Domingues AC, Tessarollo NG, Strauss BE. Perspectives for Combining Viral Oncolysis With Additional Immunotherapies for the Treatment of Melanoma. Front Mol Biosci 2022; 9:777775. [PMID: 35495634 PMCID: PMC9048901 DOI: 10.3389/fmolb.2022.777775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest type of skin cancer with steadily increasing incidence worldwide during the last few decades. In addition to its tumor associated antigens (TAAs), melanoma has a high mutation rate compared to other tumors, which promotes the appearance of tumor specific antigens (TSAs) as well as increased lymphocytic infiltration, inviting the use of therapeutic tools that evoke new or restore pre-existing immune responses. Innovative therapeutic proposals, such as immune checkpoint inhibitors (ICIs), have emerged as effective options for melanoma. However, a significant portion of these patients relapse and become refractory to treatment. Likewise, strategies using viral vectors, replicative or not, have garnered confidence and approval by different regulatory agencies around the world. It is possible that further success of immune therapies against melanoma will come from synergistic combinations of different approaches. In this review we outline molecular features inherent to melanoma and how this supports the use of viral oncolysis and immunotherapies when used as monotherapies or in combination.
Collapse
Affiliation(s)
- Otto Luiz Dutra Cerqueira
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Fernanda Antunes
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Nadine G Assis
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Elaine C Cardoso
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Maria A Clavijo-Salomón
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ana C Domingues
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Nayara G Tessarollo
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Bryan E Strauss
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- *Correspondence: Bryan E Strauss,
| |
Collapse
|
15
|
Skudalski L, Waldman R, Kerr PE, Grant-Kels JM. Melanoma: An update on systemic therapies. J Am Acad Dermatol 2022; 86:515-524. [PMID: 34915056 DOI: 10.1016/j.jaad.2021.09.075] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 10/19/2022]
Abstract
Despite advances in early detection as described in part 1 of this continuing medical education series, melanoma continues to be a large contributor to cutaneous cancer-related mortality. In a subset of patients with unresectable or metastatic disease, surgical clearance is often not possible; therefore, systemic and local therapies are considered. The second article in this series provides dermatologists with an up-to-date working knowledge of the treatment options that may be prescribed by oncologists for patients with unresectable stage III, stage IV, and recurrent melanoma.
Collapse
Affiliation(s)
- Lauren Skudalski
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Reid Waldman
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Philip E Kerr
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida.
| |
Collapse
|
16
|
Puigdelloses M, Garcia-Moure M, Labiano S, Laspidea V, Gonzalez-Huarriz M, Zalacain M, Marrodan L, Martinez-Velez N, De la Nava D, Ausejo I, Hervás-Stubbs S, Herrador G, Chen Z, Hambardzumyan D, Patino Garcia A, Jiang H, Gomez-Manzano C, Fueyo J, Gállego Pérez-Larraya J, Alonso M. CD137 and PD-L1 targeting with immunovirotherapy induces a potent and durable antitumor immune response in glioblastoma models. J Immunother Cancer 2021; 9:jitc-2021-002644. [PMID: 34281988 PMCID: PMC8291319 DOI: 10.1136/jitc-2021-002644] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 01/09/2023] Open
Abstract
Background Glioblastoma (GBM) is a devastating primary brain tumor with a highly immunosuppressive tumor microenvironment, and treatment with oncolytic viruses (OVs) has emerged as a promising strategy for these tumors. Our group constructed a new OV named Delta-24-ACT, which was based on the Delta-24-RGD platform armed with 4-1BB ligand (4-1BBL). In this study, we evaluated the antitumor effect of Delta-24-ACT alone or in combination with an immune checkpoint inhibitor (ICI) in preclinical models of glioma. Methods The in vitro effect of Delta-24-ACT was characterized through analyses of its infectivity, replication and cytotoxicity by flow cytometry, immunofluorescence (IF) and MTS assays, respectively. The antitumor effect and therapeutic mechanism were evaluated in vivo using several immunocompetent murine glioma models. The tumor microenvironment was studied by flow cytometry, immunohistochemistry and IF. Results Delta-24-ACT was able to infect and exert a cytotoxic effect on murine and human glioma cell lines. Moreover, Delta-24-ACT expressed functional 4-1BBL that was able to costimulate T lymphocytes in vitro and in vivo. Delta-24-ACT elicited a more potent antitumor effect in GBM murine models than Delta-24-RGD, as demonstrated by significant increases in median survival and the percentage of long-term survivors. Furthermore, Delta-24-ACT modulated the tumor microenvironment, which led to lymphocyte infiltration and alteration of their immune phenotype, as characterized by increases in the expression of Programmed Death 1 (PD-1) on T cells and Programmed Death-ligand 1 (PD-L1) on different myeloid cell populations. Because Delta-24-ACT did not induce an immune memory response in long-term survivors, as indicated by rechallenge experiments, we combined Delta-24-ACT with an anti-PD-L1 antibody. In GL261 tumor-bearing mice, this combination showed superior efficacy compared with either monotherapy. Specifically, this combination not only increased the median survival but also generated immune memory, which allowed long-term survival and thus tumor rejection on rechallenge. Conclusions In summary, our data demonstrated the efficacy of Delta-24-ACT combined with a PD-L1 inhibitor in murine glioma models. Moreover, the data underscore the potential to combine local immunovirotherapy with ICIs as an effective therapy for poorly infiltrated tumors.
Collapse
Affiliation(s)
- Montserrat Puigdelloses
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marc Garcia-Moure
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Labiano
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Virginia Laspidea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marisol Gonzalez-Huarriz
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta Zalacain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Lucia Marrodan
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Naiara Martinez-Velez
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Daniel De la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Iker Ausejo
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program in Immunology and Immunotherapy, Foundation for the Applied Medical Research, Pamplona, Spain
| | - Guillermo Herrador
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - ZhiHong Chen
- Department of Oncological Sciences, The Tisch Cancer Institut and Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institut and Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Ana Patino Garcia
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Hong Jiang
- Department of NeuroOncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Candelaria Gomez-Manzano
- Department of NeuroOncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of NeuroOncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaime Gállego Pérez-Larraya
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain .,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain .,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
17
|
Marzęda P, Drozd M, Wróblewska-Łuczka P, Łuszczki JJ. Cannabinoids and their derivatives in struggle against melanoma. Pharmacol Rep 2021; 73:1485-1496. [PMID: 34264513 PMCID: PMC8599338 DOI: 10.1007/s43440-021-00308-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/26/2023]
Abstract
Abstract Melanoma is one of the most aggressive malignances in human. Recently developed therapies improved overall survival rate, however, the treatment of melanoma still remains a challenging issue. This review attempts to summarize recent advances in studies on cannabinoids used in the setting of melanoma treatment. Searches were carried out in PubMed, Google Scholar, Scopus, Research Gate. Conclusions after analysis of available data suggest that cannabinoids limit number of metastasis, and reduce growth of melanoma. The findings indicate that cannabinoids induce apoptosis, necrosis, autophagy, cell cycle arrest and exert significant interactions with tumor microenvironment. Cannabinoids should be rather considered as a part of multi-targeted anti-tumor therapy instead of being standalone agent. Moreover, cannabinoids are likely to improve quality of life in patients with cancer, due to different supportive effects, like analgesia and/or anti-emetic effects. In this review, it was pointed out that cannabinoids may be potentially useful in the melanoma therapy. Nevertheless, due to limited amount of data, great variety of cannabinoids available and lack of clinical trials, further studies are required to determine an exact role of cannabinoids in the treatment of melanoma. Graphic abstract ![]()
Collapse
Affiliation(s)
- Paweł Marzęda
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Małgorzata Drozd
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Paula Wróblewska-Łuczka
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland.
| |
Collapse
|
18
|
Soltantoyeh T, Akbari B, Karimi A, Mahmoodi Chalbatani G, Ghahri-Saremi N, Hadjati J, Hamblin MR, Mirzaei HR. Chimeric Antigen Receptor (CAR) T Cell Therapy for Metastatic Melanoma: Challenges and Road Ahead. Cells 2021; 10:cells10061450. [PMID: 34207884 PMCID: PMC8230324 DOI: 10.3390/cells10061450] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Metastatic melanoma is the most aggressive and difficult to treat type of skin cancer, with a survival rate of less than 10%. Metastatic melanoma has conventionally been considered very difficult to treat; however, recent progress in understanding the cellular and molecular mechanisms involved in the tumorigenesis, metastasis and immune escape have led to the introduction of new therapies. These include targeted molecular therapy and novel immune-based approaches such as immune checkpoint blockade (ICB), tumor-infiltrating lymphocytes (TILs), and genetically engineered T-lymphocytes such as chimeric antigen receptor (CAR) T cells. Among these, CAR T cell therapy has recently made promising strides towards the treatment of advanced hematological and solid cancers. Although CAR T cell therapy might offer new hope for melanoma patients, it is not without its shortcomings, which include off-target toxicity, and the emergence of resistance to therapy (e.g., due to antigen loss), leading to eventual relapse. The present review will not only describe the basic steps of melanoma metastasis, but also discuss how CAR T cells could treat metastatic melanoma. We will outline specific strategies including combination approaches that could be used to overcome some limitations of CAR T cell therapy for metastatic melanoma.
Collapse
Affiliation(s)
- Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa;
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
- Correspondence: ; Tel.: +98-21-64053268; Fax: +98-21-66419536
| |
Collapse
|
19
|
Oncolytic reovirus induces ovarian cancer cell apoptosis in a TLR3-dependent manner. Virus Res 2021; 301:198440. [PMID: 33940002 DOI: 10.1016/j.virusres.2021.198440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023]
Abstract
Globally, ovarian cancer is the seventh most common cancer and the eighth-most common cause of cancer death among women with a five-year survival rate of less than 45%. Although reovirus is known to be effective for treating ovarian cancer, some types of tumor cells still exhibit resistance to reovirus. In order to solve this resistance problem in the treatment of ovarian cancer, we selected the reovirus-resistant OV-90 ovarian cancer cells to study reovirus oncolytic effects. We found that the viability of OV-90 cells decreased after reovirus double-stranded RNA (dsRNA) genome transfection. Interestingly, we observed that chemical blockage of the Toll-like receptor 3 (TLR3)-dsRNA binding complex in OV-90 cells and the inhibition of downstream TLR3 signaling disrupted OV-90 apoptosis triggered by reovirus dsRNA. Together, these results demonstrate that reovirus dsRNA induces reovirus-resistant tumor cell apoptosis through the TLR3 signaling pathway.
Collapse
|
20
|
Volovat SR, Negru S, Stolniceanu CR, Volovat C, Lungulescu C, Scripcariu D, Cobzeanu BM, Stefanescu C, Grigorescu C, Augustin I, Lupascu Ursulescu C, Volovat CC. Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review). Exp Ther Med 2021; 21:535. [PMID: 33815608 PMCID: PMC8014970 DOI: 10.3892/etm.2021.9967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy has shifted the paradigm in cancer treatment in recent years. Immune checkpoint blockage (ICB), the active cancer vaccination and chimeric antigen receptor (CAR) for T-cell-based adoptive cell transfer represent the main developments, achieving a surprising increased survival in patients included in clinical trials. In spite of these results, the current state-of-the-art immunotherapy has its limitations in efficacy. The existence of an interdisciplinary interface involving current knowledge in biology, immunology, bioengineering and materials science represents important progress in increasing the effectiveness of immunotherapy in cancer. Cutaneous melanoma remains a difficult cancer to treat, in which immunotherapy is a major therapeutic option. In fact, enhancing immunotherapy is possible using sophisticated biomedical nanotechnology platforms of organic or inorganic materials or engineering various immune cells to enhance the immune system. In addition, biological devices have developed, changing the approach to and treatment results in melanoma. In this review, we present different modalities to modulate the immune system, as well as opportunities and challenges in melanoma treatment.
Collapse
Affiliation(s)
- Simona Ruxandra Volovat
- Department of Medicine III-Medical Oncology-Radiotherapy, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Serban Negru
- Department of Medical Oncology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medicine III-Medical Oncology-Radiotherapy, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania.,Department of Medical Oncology, 'Euroclinic' Center of Oncology, 70010 Iasi, Romania
| | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Dragos Scripcariu
- Department of Surgery, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Bogdan Mihail Cobzeanu
- Department of Surgery, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristina Grigorescu
- Department of Surgery, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, 'Euroclinic' Center of Oncology, 70010 Iasi, Romania
| | - Corina Lupascu Ursulescu
- Department of Radiology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Constantin Volovat
- Department of Radiology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania.,Department of Radiology, 'Sf. Spiridon' Emergency Clinic Hospital, 700111 Iasi, Romania
| |
Collapse
|
21
|
Niedźwiedzka-Rystwej P, Grywalska E, Hrynkiewicz R, Wołącewicz M, Becht R, Roliński J. The Double-Edged Sword Role of Viruses in Gastric Cancer. Cancers (Basel) 2020; 12:cancers12061680. [PMID: 32599870 PMCID: PMC7352989 DOI: 10.3390/cancers12061680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Due to its high morbidity and mortality, gastric cancer is a topic of a great concern throughout the world. Major ways of treatment are gastrectomy and chemotherapy, unfortunately they are not always successful. In a search for more efficient therapy strategies, viruses and their potential seem to be an important issue. On one hand, several oncogenic viruses have been noticed in the case of gastric cancer, making the positive treatment even more advantageous, but on the other, viruses exist with a potential therapeutic role in this malignancy.
Collapse
Affiliation(s)
- Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
- Correspondence:
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (J.R.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
| | - Mikołaj Wołącewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
| | - Rafał Becht
- Clinical Department of Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University of Szczecin, 70-204 Szczecin, Poland;
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (J.R.)
| |
Collapse
|
22
|
Trus I, Berube N, Jiang P, Rak J, Gerdts V, Karniychuk U. Zika Virus with Increased CpG Dinucleotide Frequencies Shows Oncolytic Activity in Glioblastoma Stem Cells. Viruses 2020; 12:v12050579. [PMID: 32466170 PMCID: PMC7290362 DOI: 10.3390/v12050579] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
We studied whether cytosine phosphate–guanine (CpG) recoding in a viral genome may provide oncolytic candidates with reduced infection kinetics in nonmalignant brain cells, but with high virulence in glioblastoma stem cells (GSCs). As a model, we used well-characterized CpG-recoded Zika virus vaccine candidates that previously showed genetic stability and safety in animal models. In vitro, one of the CpG-recoded Zika virus variants had reduced infection kinetics in nonmalignant brain cells but high infectivity and oncolytic activity in GSCs as represented by reduced cell proliferation. The recoded virus also efficiently replicated in GSC-derived tumors in ovo with a significant reduction of tumor growth. We also showed that some GSCs may be resistant to Zika virus oncolytic activity, emphasizing the need for personalized oncolytic therapy or a strategy to overcome resistance in GSCs. Collectively, we demonstrated the potential of the CpG recoding approach for oncolytic virus development that encourages further research towards a better understanding of host–tumor–CpG-recoded virus interactions.
Collapse
Affiliation(s)
- Ivan Trus
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (I.T.); (N.B.); (V.G.)
| | - Nathalie Berube
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (I.T.); (N.B.); (V.G.)
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854-8082, USA;
| | - Janusz Rak
- The Research Institute of the McGill University Health Centre, Montreal, QC H3H 2R9, Canada;
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (I.T.); (N.B.); (V.G.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (I.T.); (N.B.); (V.G.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
- Correspondence:
| |
Collapse
|