1
|
Scholten RH, Essig YJ, Roursgaard M, Jensen A, Krais AM, Gren L, Dierschke K, Gudmundsson A, Wierzbicka A, Møller P. Inhalation of hydrogenated vegetable oil combustion exhaust and genotoxicity responses in humans. Arch Toxicol 2021; 95:3407-3416. [PMID: 34468814 DOI: 10.1007/s00204-021-03143-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Biofuels from vegetable oils or animal fats are considered to be more sustainable than petroleum-derived diesel fuel. In this study, we have assessed the effect of hydrogenated vegetable oil (HVO) exhaust on levels of DNA damage in peripheral blood mononuclear cells (PBMCs) as primary outcome, and oxidative stress and inflammation as mediators of genotoxicity. In a randomized cross-over study, healthy humans were exposed to filtered air, inorganic salt particles, exhausts from combustion of HVO in engines with aftertreatment [i.e. emission with nitrogen oxides and low amounts of particulate matter less than 2.5 µm (approximately 1 µg/m3)], or without aftertreatment (i.e. emission with nitrogen oxides and 93 ± 13 µg/m3 of PM2.5). The subjects were exposed for 3 h and blood samples were collected before, within 1 h after the exposure and 24 h after. None of the exposures caused generation of DNA strand breaks and oxidatively damaged DNA, or affected gene expression of factors related to DNA repair (Ogg1), antioxidant defense (Hmox1) or pro-inflammatory cytokines (Ccl2, Il8 and Tnfa) in PBMCs. The results from this study indicate that short-term HVO exhaust exposure is not associated with genotoxic hazard in humans.
Collapse
Affiliation(s)
- Rebecca Harnung Scholten
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Yona J Essig
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Louise Gren
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - Katrin Dierschke
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark.
| |
Collapse
|
2
|
Møller P, Scholten RH, Roursgaard M, Krais AM. Inflammation, oxidative stress and genotoxicity responses to biodiesel emissions in cultured mammalian cells and animals. Crit Rev Toxicol 2020; 50:383-401. [PMID: 32543270 DOI: 10.1080/10408444.2020.1762541] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biodiesel fuels are alternatives to petrodiesel, especially in the transport sector where they have lower carbon footprint. Notwithstanding the environmental benefit, biodiesel fuels may have other toxicological properties than petrodiesel. Particulate matter (PM) from petrodiesel causes cancer in the lung as a consequence of delivery of genotoxic polycyclic aromatic hydrocarbons, oxidative stress and inflammation. We have reviewed articles from 2002 to 2019 (50% of the articles since 2015) that have described toxicological effects in terms of genotoxicity, oxidative stress and inflammation of biodiesel exhaust exposure in humans, animals and cell cultures. The studies have assessed first generation biodiesel from different feedstock (e.g. rapeseed and soy), certain second generation fuels (e.g. waste oil), and hydrogenated vegetable oil. It is not possible to rank the potency of toxicological effects of specific biodiesel fuels. However, exposure to biodiesel exhaust causes oxidative stress, inflammation and genotoxicity in cell cultures. Three studies in animals have not indicated genotoxicity in lung tissue. The database on oxidative stress and inflammation in animal studies is larger (13 studies); ten studies have reported increased levels of oxidative stress biomarkers or inflammation, although the effects have been modest in most studies. The cell culture and animal studies have not consistently shown a different potency in effect between biodiesel and petrodiesel exhausts. Both increased and decreased potency have been reported, which might be due to differences in feedstock or combustion conditions. In conclusion, combustion products from biodiesel and petrodiesel fuel may evoke similar toxicological effects on genotoxicity, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Rebecca Harnung Scholten
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Godri Pollitt KJ, Chhan D, Rais K, Pan K, Wallace JS. Biodiesel fuels: A greener diesel? A review from a health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1036-1055. [PMID: 31726536 DOI: 10.1016/j.scitotenv.2019.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 06/10/2023]
Abstract
Biodiesels have been promoted as a greener alternative to diesel with decreased emissions and health effects. To investigate the scientific basis of the suggested environmental and health benefits offered by biodiesel, this review examines the current state of knowledge and key uncertainties of pollutant profiles of biodiesel engine exhaust and the associated the respiratory and cardiovascular outcomes. The ease and low cost of biodiesel production has facilitated greater distribution and commercial use. The pollutant profile of biodiesel engine exhaust is distinct from diesel, characterised by increased NOx and aldehyde emissions but decreased CO and CO2. Lower engine-out particulate matter mass concentrations have also been observed over a range of feedstocks. However, these reduced emissions have been attributable to a shift towards smaller sized particulate emissions. The toxicity of biodiesel engine exhaust has been investigated in vitro using various lung cell, in vivo evaluating responses induced in animals and through several human exposure studies. Discrepancies exist across results reported by in vitro and in vivo studies, which may be attributable to differences in biodiesel feedstocks, engine characteristics, operating conditions or use of aftertreatment systems across test scenarios. The limited human testing further suggests short-term exposure to biodiesel engine exhaust is associated with cardiopulmonary outcomes that are comparable to diesel. Additional information about the health effects of biodiesel engine exhaust exposure is required for effective public health policy.
Collapse
Affiliation(s)
- Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, Laboratory of Epidemiology and Public Health, 60 College Street, Room 444, New Haven, CT 06520, USA.
| | - Dany Chhan
- Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Khaled Rais
- Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kang Pan
- Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - James S Wallace
- Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines. ENERGIES 2019. [DOI: 10.3390/en12101987] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rising pollution levels resulting from vehicular emissions and the depletion of petroleum-based fuels have left mankind in pursuit of alternatives. There are stringent regulations around the world to control the particulate matter (PM) emissions from internal combustion engines. To this end, researchers have been exploring different measures to reduce PM emissions such as using modern combustion techniques, after-treatment systems such as diesel particulate filter (DPF) and gasoline particulate filter (GPF), and alternative fuels. Alternative fuels such as biodiesel (derived from edible, nonedible, and waste resources), alcohol fuels (ethanol, n-butanol, and n-pentanol), and fuel additives have been investigated over the last decade. PM characterization and toxicity analysis is still growing as researchers are developing methodologies to reduce particle emissions using various approaches such as fuel modification and after-treatment devices. To address these aspects, this review paper studies the PM characteristics, health issues, PM physical and chemical properties, and the effect of alternative fuels such as biodiesel, alcohol fuels, and oxygenated additives on PM emissions from diesel engines. In addition, the correlation between physical and chemical properties of alternate fuels and the characteristics of PM emissions is explored.
Collapse
|
5
|
Martin NR, Kelley P, Klaski R, Bosco A, Moore B, Traviss N. Characterization and comparison of oxidative potential of real-world biodiesel and petroleum diesel particulate matter emitted from a nonroad heavy duty diesel engine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:908-914. [PMID: 30481717 PMCID: PMC7372722 DOI: 10.1016/j.scitotenv.2018.11.292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Little is known regarding the oxidative potential of biodiesel particulate matter (PM) relative to diesel PM emitted from heavy duty diesel (HDD) nonroad engines generated in real-world occupational settings. The composition of biodiesel and diesel PM can include transition metals, polar, and nonpolar organic species which can increase oxidative potential via production of reactive oxygen species (ROS). Elevated ROS can lead to oxidative stress and induce antioxidant defense, inflammation, and toxicity. This study characterized the chemical composition of PM (water soluble organic carbon and elemental metals) collected in a real-world occupational setting. ROS production in a human epithelial cell line (BEAS-2B) treated with biodiesel and diesel PM extracts was compared to oxidative potential measured by an acellular dithiothreitol (DTT) assay. The oxidative potential (DTT consumption rate) of diesel PM was 21% greater than biodiesel PM at the highest treatment concentration (60 μg/mL), yet the ROS generated in vitro were similar between fuel types. Average concentrations of Cu, Cr and Zn were higher in diesel PM compared to biodiesel PM. Additionally, there was a significant correlation between DTT consumption and Cu in diesel PM (r = 0.98), but not B20 PM. There was a strong correlation between WSOC content in diesel PM and ROS generated in vitro (r = 0.83), but no correlation between WSOC content in biodiesel PM and ROS. Taken together, the results indicate the influence of fuel type on the chemical composition and oxidative potential of PM generated by a nonroad HDD engine operated at a recycling center. While acknowledging the potential influence of other species of interest not measured (i.e., quinones), real-world petroleum diesel PM emissions had higher oxidative potential compared to biodiesel PM suggesting that biodiesel use may reduce risk to human health.
Collapse
Affiliation(s)
- Nathan R Martin
- Department of Environmental Studies, Keene State College, Keene, NH 03431, United States of America
| | - Patrick Kelley
- Department of Environmental Studies, Keene State College, Keene, NH 03431, United States of America; Department of Chemistry, Keene State College, Keene, NH 03431, United States of America
| | - Rachel Klaski
- Department of Environmental Studies, Keene State College, Keene, NH 03431, United States of America; Department of Biology, Keene State College, Keene, NH 03431, United States of America
| | - Andrew Bosco
- Department of Environmental Studies, Keene State College, Keene, NH 03431, United States of America; Department of Biology, Keene State College, Keene, NH 03431, United States of America
| | - Brian Moore
- Department of Environmental Studies, Keene State College, Keene, NH 03431, United States of America; Department of Chemistry, Keene State College, Keene, NH 03431, United States of America; Department of Biology, Keene State College, Keene, NH 03431, United States of America
| | - Nora Traviss
- Department of Environmental Studies, Keene State College, Keene, NH 03431, United States of America.
| |
Collapse
|
6
|
Selley L, Phillips DH, Mudway I. The potential of omics approaches to elucidate mechanisms of biodiesel-induced pulmonary toxicity. Part Fibre Toxicol 2019; 16:4. [PMID: 30621739 PMCID: PMC6504167 DOI: 10.1186/s12989-018-0284-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Combustion of biodiesels in place of fossil diesel (FD) has been proposed as a method of reducing transport-related toxic emissions in Europe. While biodiesel exhaust (BDE) contains fewer hydrocarbons, total particulates and carbon monoxide than FD exhaust (FDE), its high nitrogen oxide and ultrafine particle content may still promote pulmonary pathophysiologies. MAIN BODY Using a complement of in vitro and in vivo studies, this review documents progress in our understanding of pulmonary responses to BDE exposure. Focusing initially on hypothesis-driven, targeted analyses, the merits and limitations of comparing BDE-induced responses to those caused by FDE exposure are discussed within the contexts of policy making and exploration of toxicity mechanisms. The introduction and progression of omics-led workflows are also discussed, summarising the novel insights into mechanisms of BDE-induced toxicity that they have uncovered. Finally, options for the expansion of BDE-related omics screens are explored, focusing on the mechanistic relevance of metabolomic profiling and offering rationale for expansion beyond classical models of pulmonary exposure. CONCLUSION Together, these discussions suggest that molecular profiling methods have identified mechanistically informative, novel and fuel-specific signatures of pulmonary responses to biodiesel exhaust exposure that would have been difficult to detect using traditional, hypothesis driven approaches alone.
Collapse
Affiliation(s)
- Liza Selley
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN UK
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment & Health, School of Population Health and Environmental Sciences, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
- NIHR HPRU in Health Impact of Environmental Hazards, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
| | - Ian Mudway
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment & Health, School of Population Health and Environmental Sciences, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
- NIHR HPRU in Health Impact of Environmental Hazards, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
| |
Collapse
|
7
|
Martin N, Lombard M, Jensen KR, Kelley P, Pratt T, Traviss N. Effect of biodiesel fuel on "real-world", nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:409-418. [PMID: 28236480 PMCID: PMC7372720 DOI: 10.1016/j.scitotenv.2016.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 05/15/2023]
Abstract
Biodiesel is regarded by many as a "greener" alternative fuel to petroleum diesel with potentially lower health risk. However, recent studies examining biodiesel particulate matter (PM) characteristics and health effects are contradictive, and typically utilize PM generated by passenger car engines in laboratory settings. There is a critical need to analyze diesel and biodiesel PM generated in a "real-world" setting where heavy duty-diesel (HDD) engines and commercially purchased fuel are utilized. This study compares the mass concentrations, chemical composition and cytotoxicity of real-world PM from combustion of both petroleum diesel and a waste grease 20% biodiesel blend (B20) at a community recycling center operating HDD nonroad equipment. PM was analyzed for metals, elemental/organic carbon (EC/OC), polycyclic aromatic hydrocarbons (PAHs), and nitro-polycyclic aromatic hydrocarbons (N-PAHs). Cytotoxicity in a human lung epithelial cell line (BEAS-2B) following 24h exposure to the real-world particles was also evaluated. On average, higher concentrations for both EC and OC were measured in diesel PM. B20 PM contained significantly higher levels of Cu and Mo whereas diesel PM contained significantly higher concentrations of Pb. Principal component analysis determined Mo, Cu, and Ni were the metals with the greatest loading factor, suggesting a unique pattern related to the B20 fuel source. Total PAH concentration during diesel fuel use was 1.9 times higher than during B20 operations; however, total N-PAH concentration was 3.3 times higher during B20 use. Diesel PM cytotoxicity was 8.5 times higher than B20 PM (p<0.05) in a BEAS-2B cell line. This study contributes novel data on real-world, nonroad engine sources of metals, PAH and N-PAH species, comparing tailpipe PM vs. PM collected inside the equipment cabin. Results suggest PM generated from burning petroleum diesel in nonroad engines may be more harmful to human health, but the links between exposure, composition and toxicity are not straightforward.
Collapse
Affiliation(s)
- Nathan Martin
- Department of Environmental Studies, Keene State College, Keene, NH, 03431, United States
| | - Melissa Lombard
- Department of Earth Sciences, University of New Hampshire, Durham, NH 03824, United States
| | - Kirk R Jensen
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, 80401, United States
| | - Patrick Kelley
- Department of Environmental Studies, Keene State College, Keene, NH, 03431, United States
| | - Tara Pratt
- Department of Environmental Studies, Keene State College, Keene, NH, 03431, United States
| | - Nora Traviss
- Department of Environmental Studies, Keene State College, Keene, NH, 03431, United States.
| |
Collapse
|
8
|
Gioda A, Rodríguez-Cotto RI, Amaral BS, Encarnación-Medina J, Ortiz-Martínez MG, Jiménez-Vélez BD. Biodiesel from soybean promotes cell proliferation in vitro. Toxicol In Vitro 2016; 34:283-288. [PMID: 27179667 PMCID: PMC4922417 DOI: 10.1016/j.tiv.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/14/2016] [Accepted: 05/09/2016] [Indexed: 11/26/2022]
Abstract
Toxicological responses of exhaust emissions of biodiesel are different due to variation in methods of generation and the tested biological models. A chemical profile was generated using ICP-MS and GC-MS for the biodiesel samples obtained in Brazil. A cytotoxicity assay and cytokine secretion experiments were evaluated in human bronchial epithelial cells (BEAS-2B). Cells were exposed to polar (acetone) and nonpolar (hexane) extracts from particles obtained from fuel exhaust: fossil diesel (B5), pure soybean biodiesel (B100), soybean biodiesel with additive (B100A) and ethanol additive (EtOH). Biodiesel and its additives exhibited higher organic and inorganic constituents on particles when compared to B5. The biodiesel extracts did not exert any toxic effect at concentrations 10, 25, 50, 75, and 100μgmL(-1). In fact quite the opposite, a cell proliferation effect induced by the B100 and B100A extracts is reported. A small increase in concentrations of inflammatory mediators (Interleukin-6, IL-6; and Interleukin-8, IL-8) in the medium of biodiesel-treated cells was observed, however, no statistical difference was found. An interesting finding indicates that the presence of metals in the nonpolar (hexane) fraction of biodiesel fuel (B100) represses cytokine release in lung cells. This was revealed by the use of the metal chelator. Results suggest that metals associated with biodiesel's organic constituents might play a significant role in molecular mechanisms associated to cellular proliferation and immune responses.
Collapse
Affiliation(s)
- Adriana Gioda
- Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Department of Chemistry, Rio de Janeiro 22451-900, Brazil.
| | - Rosa I Rodríguez-Cotto
- University of Puerto Rico - Medical Sciences Campus, Department of Biochemistry, Puerto Rico; Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico.
| | - Beatriz Silva Amaral
- Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Department of Chemistry, Rio de Janeiro 22451-900, Brazil; Instituto Federal do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil.
| | - Jarline Encarnación-Medina
- University of Puerto Rico - Medical Sciences Campus, Department of Biochemistry, Puerto Rico; Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico.
| | - Mario G Ortiz-Martínez
- University of Puerto Rico - Medical Sciences Campus, Department of Biochemistry, Puerto Rico; Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico.
| | - Braulio D Jiménez-Vélez
- University of Puerto Rico - Medical Sciences Campus, Department of Biochemistry, Puerto Rico; Center for Environmental and Toxicological Research, San Juan 00936, Puerto Rico.
| |
Collapse
|