1
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Li Y, Li H, Huang W, Yu Q, Wang K, Xiong Y, Wang Q, Qin Y, Kuang X, Tang J. Single-cell RNA sequencing reveals the landscape of biomarker in allergic rhinitis patient undergoing intracervical lymphatic immunotherapy and related pan-cancer analysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2817-2829. [PMID: 38291708 DOI: 10.1002/tox.24151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Allergic rhinitis (AR) is one of the leading allergic diseases worldwide. Allergen immunotherapy (AIT) induces persistent specific allergen tolerance to achieve remission of the symptoms in AR patients. We creatively conducted the intra-cervical lymphatic immunotherapy (ICLIT) for AR patients. However, the underlying molecular mechanism of immune cell response of AIT in AR remains elusive. METHOD To investigate the transcriptome profile in AR patients who underwent ICLIT, we comprehensively investigated the transcriptional changes in B cells from peripheral blood mononuclear cells of AR patient by single-cell RNA sequencing. Immunoglobulins and relative key gene, which influences the B cell differentiation, was demonstrated. The biomarkers' association with different types of tumors was investigated. RESULTS Naive B cells, germinal center B cells, activated memory B cells, and memory B cells constituted the B cells subsets. The expression of IGHE, IGHGs, IGHA, IGHD, and IGHM from memory B cells was validated. Pseudotime analysis further indicated the dynamic change from the expression of the immunoglobulins in the memory B cells, suggesting that ITGB1 may contribute to the differentiation procedure of memory B cells. The cell-cell communication among these immune cells demonstrated the significantly enhanced CD23, BTLA signaling after ICLIT in AR patient. ITGB1 was upregulated in 13 tumors and downregulated in six others. High ITGB1 expression was linked to poor prognosis in eight types of tumors. ITGB1 expression showed correlations with tumor mutation burden, tissue purity, and microsatellite instability in different types of tumors. DISCUSSION ITGB1 was demonstrated as a potential biomarker for AR patients after ICLIT and is significant in identifying immune infiltration in tumor tissue and predicting tumor prognosis.
Collapse
Affiliation(s)
- Yin Li
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| | - Hao Li
- Department of Infectious Diseases, The First People's Hospital of Changde City, Xiangya School of Medicine, Central South University, Changde, China
| | - Weijun Huang
- Department of Ultrasound, The First People's Hospital of Foshan, Foshan, China
| | - Qingqing Yu
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| | - Kai Wang
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| | - Yu Xiong
- Department of Otolaryngology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qixing Wang
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| | - Yang Qin
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| | - Xiong Kuang
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| | - Jun Tang
- Department of Otolaryngology, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
3
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
4
|
Fiala S, Fleit HB. Clinical and experimental treatment of allergic asthma with an emphasis on allergen immunotherapy and its mechanisms. Clin Exp Immunol 2023; 212:14-28. [PMID: 36879430 PMCID: PMC10081111 DOI: 10.1093/cei/uxad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Allergen immunotherapy (AIT) is currently the only form of treatment that modifies allergic asthma. Pharmacotherapy alone seeks to control the symptoms of allergic asthma, allergic rhinitis, and other atopic conditions. In contrast, AIT can induce long-term physiological modifications through the immune system. AIT enables individuals to live improved lives many years after treatment ends, where they are desensitized to the allergen(s) used or no longer have significant allergic reactions upon allergen provocation. The leading forms of treatment with AIT involve injections of allergen extracts with increasing doses via the subcutaneous route or drops/tablets via the sublingual route for several years. Since the initial attempts at this treatment as early as 1911 by Leonard Noon, the mechanisms by which AIT operates remain unclear. This literature-based review provides the primary care practitioner with a current understanding of the mechanisms of AIT, including its treatment safety, protocols, and long-term efficacy. The primary mechanisms underlying AIT include changes in immunoglobulin classes (IgA, IgE, and IgG), immunosuppressive regulatory T-cell induction, helper T cell type 2 to helper T cell type 1 cell/cytokine profile shifts, decreased early-phase reaction activity and mediators, and increased production of IL-10, IL-35, TGF-β, and IFN-γ. Using the databases PubMed and Embase, a selective literature search was conducted searching for English, full-text, reviews published between 2015 and 2022 using the keywords (with wildcards) "allerg*," "immunotherap*," "mechanis*," and "asthma." Among the cited references, additional references were identified using a manual search.
Collapse
Affiliation(s)
- Scott Fiala
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Howard B Fleit
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Salivary IgG4 Levels Contribute to Assessing the Efficacy of Dermatophagoides pteronyssinus Subcutaneous Immunotherapy in Children with Asthma or Allergic Rhinitis. J Clin Med 2023; 12:jcm12041665. [PMID: 36836200 PMCID: PMC9963254 DOI: 10.3390/jcm12041665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
At present, there are no effective, non-invasive, and objective indicators to evaluate the efficacy of pediatric house dust mite (HDM)-specific allergen immunotherapy (AIT). A prospective, observational study was performed in children with Dermatophagoides pteronyssinus (Der p) asthma and/or allergic rhinitis (AR). Forty-four patients received subcutaneous Der p-AIT for 2 years, and eleven patients received only symptomatic treatment. The patients needed to finish their questionnaires at each visit. Serum and salivary Der p-specific IgE, IgG4, and IgE-blocking factors (IgE-BFs) were measured at 0, 4, 12, and 24 months during AIT. A correlation between them was also evaluated. Subcutaneous Der p-specific AIT improved the clinical symptoms of children with asthma and/or AR. The Der p-specific IgE-BF significantly increased at 4, 12, and 24 months after AIT treatment. Serum and salivary Der p-specific IgG4 significantly increased with the time of the AIT treatment, and significant correlations between them at different time points were observed (p < 0.05). Furthermore, there were significant correlations (R = 0.31-0.62) between the serum Der p-specific IgE-BF and Der p-specific IgG4 at the baseline, 4, 12, and 24 months after the AIT (p < 0.01). The salivary Der p-specific IgG4 levels also demonstrated a certain correlation with the Der p-specific IgE-BF. Der p-specific AIT is an effective treatment for children with asthma and/or AR. Its effect was associated with increased serum and salivary-specific IgG4 levels, as well as an increased IgE-BF. Non-invasive salivary-specific IgG4 may be useful for monitoring the efficacy of AIT in children.
Collapse
|
6
|
Liu Y, Zhao L, Wang J, Guo Y, Wang Y, Zhang L, Wu Z, Zhu M, Yang X, Xu P, Wu S, Gao Z, Sun JL. Serological analysis of allergic components of house dust mite provides more insight in epidemiological characteristics and clinical symptom development in North China. Front Immunol 2023; 14:1083755. [PMID: 37180108 PMCID: PMC10172571 DOI: 10.3389/fimmu.2023.1083755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Background House dust mite (HDM) is the most common airborne source causing complex allergy symptoms. There are geographic differences in the allergen molecule sensitization profiles. Serological testing with allergen components may provide more clues for diagnosis and clinical management. Objective This study aims to investigate the sensitization profile of eight HDM allergen components in a large number of patients enrolled in the clinic and to analyze the relation of gender, age, and clinical symptoms in North China. Methods The 548 serum samples of HDM-allergic patients (ImmunoCAP® d1 or d2 IgE ≥0.35) were collected in Beijing City and divided in four different age groups and three allergic symptoms. The specific IgE of HDM allergenic components, Der p 1/Der f 1, Der p 2/Der f 2, Der p 7, Der p 10, Der p 21, and Der p 23, was measured using the micro-arrayed allergen test kit developed by Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd. The new system was validated by comparing to single-component Der p 1, Der p 2, and Der p 23 tests by ImmunoCAP in 39 sera. The epidemiological study of these IgE profiles and the relation to age and clinical phenotypes were analyzed. Results A greater proportion of male patients was in the younger age groups, while more female patients were in the adult groups. Both the sIgE levels and the positive rates (approximately 60%) against Der p 1/Der f 1 and Der p 2/Der f 2 were higher than for the Der p 7, Der p 10, and Der p 21 components (below 25%). The Der f 1 and Der p 2 positive rates were higher in 2-12-year-old children. The Der p 2 and Der f 2 IgE levels and positive rates were higher in the allergic rhinitis group. The positive rates of Der p 10 increased significantly with age. Der p 21 is relevant in allergic dermatitis symptom, while Der p 23 contributes to asthma development. Conclusion HDM groups 1 and 2 were the major sensitizing allergens, with group 2 being the most important component relevant to respiratory symptoms in North China. The Der p 10 sensitization tends to increase with age. Der p 21 and Der p 23 might be associated with the development of allergic skin disease and asthma, respectively. Multiple allergen sensitizations increased the risk of allergic asthma.
Collapse
Affiliation(s)
- Yi Liu
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Hangzhou Zheda Dixun Biological Gene Engineering Co. Ltd., Zhejiang, China
| | - Lan Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaofeng Wang
- R&D Department, Hangzhou Zheda Dixun Biological Gene Engineering Co. Ltd., Zhejiang, China
| | - Yinshi Guo
- Allergy Department, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifei Wang
- R&D Department, Hangzhou Zheda Dixun Biological Gene Engineering Co. Ltd., Zhejiang, China
| | - Lishan Zhang
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhoujie Wu
- R&D Department, Hangzhou Zheda Dixun Biological Gene Engineering Co. Ltd., Zhejiang, China
| | - Mingzhi Zhu
- R&D Department, Hangzhou Zheda Dixun Biological Gene Engineering Co. Ltd., Zhejiang, China
| | - Xukai Yang
- R&D Department, Hangzhou Zheda Dixun Biological Gene Engineering Co. Ltd., Zhejiang, China
| | - Puyang Xu
- R&D Department, Hangzhou Zheda Dixun Biological Gene Engineering Co. Ltd., Zhejiang, China
| | - Shandong Wu
- R&D Department, Hangzhou Zheda Dixun Biological Gene Engineering Co. Ltd., Zhejiang, China
- *Correspondence: Jin-Lyu Sun, ; Zhongshan Gao, ; Shandong Wu,
| | - Zhongshan Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jin-Lyu Sun, ; Zhongshan Gao, ; Shandong Wu,
| | - Jin-Lyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jin-Lyu Sun, ; Zhongshan Gao, ; Shandong Wu,
| |
Collapse
|
7
|
Kanchan K, Shankar G, Huffaker MF, Bahnson HT, Chinthrajah RS, Sanda S, Manohar M, Ling H, Paschall JE, Toit GD, Ruczinski I, Togias A, Lack G, Nadeau KC, Jones SM, Nepom GT, Mathias RA. HLA-associated outcomes in peanut oral immunotherapy trials identify mechanistic and clinical determinants of therapeutic success. Front Immunol 2022; 13:941839. [PMID: 36466872 PMCID: PMC9717393 DOI: 10.3389/fimmu.2022.941839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Rationale Previous studies identified an interaction between HLA and oral peanut exposure. HLA-DQA1*01:02 had a protective role with the induction of Ara h 2 epitope-specific IgG4 associated with peanut consumption during the LEAP clinical trial for prevention of peanut allergy, while it was a risk allele for peanut allergy in the peanut avoidance group. We have now evaluated this gene-environment interaction in two subsequent peanut oral immunotherapy (OIT) trials - IMPACT and POISED - to better understand the potential for the HLA-DQA1*01:02 allele as an indicator of higher likelihood of desensitization, sustained unresponsiveness, and peanut allergy remission. Methods We determined HLA-DQA1*01:02 carrier status using genome sequencing from POISED (N=118, age: 7-55yr) and IMPACT (N=126, age: 12-<48mo). We tested for association with remission, sustained unresponsiveness (SU), and desensitization in the OIT groups, as well as peanut component specific IgG4 (psIgG4) using generalized linear models and adjusting for relevant covariates and ancestry. Results While not quite statistically significant, a higher proportion of HLA-DQA1*01:02 carriers receiving OIT in IMPACT were desensitized (93%) compared to non-carriers (78%); odds ratio (OR)=5.74 (p=0.06). In this sample we also observed that a higher proportion of carriers achieved remission (35%) compared to non-carriers (22%); OR=1.26 (p=0.80). In POISED, carriers more frequently attained continued desensitization (80% versus 61% among non-carriers; OR=1.28, p=0.86) and achieved SU (52% versus 31%; OR=2.32, p=0.19). psIgG4 associations with HLA-DQA1*01:02 in the OIT arm of IMPACT which included younger study subjects recapitulated patterns noted in LEAP, but no associations of note were observed in the older POISED study subjects. Conclusions Findings across three clinical trials show a pattern of a gene environment interaction between HLA and oral peanut exposure. Age, and prior sensitization contribute additional determinants of outcomes, consistent with a mechanism of restricted antigen recognition fundamental to driving protective immune responses to OIT.
Collapse
Affiliation(s)
- Kanika Kanchan
- Division of Allergy and Clinical Immunology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Gautam Shankar
- Division of Allergy and Clinical Immunology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | | | - Henry T. Bahnson
- The Immune Tolerance Network, Seattle, WA, United States,Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - R Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, United States
| | - Srinath Sanda
- The Immune Tolerance Network, San Francisco, CA, United States
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, United States
| | - Hua Ling
- Institute of Genetic Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Justin E. Paschall
- Institute of Genetic Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - George Du Toit
- The Department of Pediatric Allergy, Division of Asthma, Allergy and Lung Biology, King’s College London, and Guy’s and St Thomas’ National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Alkis Togias
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Gideon Lack
- The Department of Pediatric Allergy, Division of Asthma, Allergy and Lung Biology, King’s College London, and Guy’s and St Thomas’ National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, United States
| | - Stacie M. Jones
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital, Little Rock, AR, United States
| | - Gerald T. Nepom
- The Immune Tolerance Network, Seattle, WA, United States,Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Rasika A. Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States,*Correspondence: Rasika Mathias,
| |
Collapse
|
8
|
Restimulia L, Ilyas S, Munir D, Putra A, Madiadipoera T, Farhat F, Sembiring RJ, Ichwan M, Amalina ND, Alif I. The CD4+CD25+FoxP3+ Regulatory T Cells Regulated by MSCs Suppress Plasma Cells in a Mouse Model of Allergic Rhinitis. Med Arch 2021; 75:256-261. [PMID: 34759444 PMCID: PMC8563054 DOI: 10.5455/medarh.2021.75.256-261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Allergic Rhinitis (AR) is the most common immunological disease that has been associated with inflammatory responses and is characterized by sneezing. Previous studies found that AR's allergen exposure significantly induces plasma cells and reduces regulatory T (Treg) cells, a population that contributes to control AR. Therefore, upregulating Treg expression can regulate plasma cells leading to inhibit sneezing in AR. Mesenchymal stem cells (MSCs) are multipotent stem cells that have the immunoregulatory and antiinflammation ability by secreting various cytokines including IL-10 and TGF-β which potent as a promising therapeutic modality for allergic airway diseases, including AR. Objective: To investigate the role of MSCs in generating CD4+, CD25+, and Foxp3+ Regulatory T cells associated with suppressing plasma cell in AR model. Methods: In this study, fifteen male Wistar rats (6 to 8 weeks old) were randomly divided into three groups (control group, sham group, and MSCs treatment group). OVA nasal challenge was conducted daily from day 15 to 21, and MSCs (1x106) were administrated intraperitoneally to OVA-sensitized rats on day 21. Sneezing was observed from day 22 to 28. The rats were sacrificed on day 22 and day 28. The expression of CD4+ CD25+ Foxp3+ in Treg and plasma cells was analyzed by flow cytometry assay. Results: This study showed that the percentage of plasma cell and sneezing times significantly decreased in MSCs treatment. This finding was aligned with the significant increase of CD4+CD25+Foxp3+ Treg level. Conclusion: MSCs administration suppress plasma cells population and sneezing times by up regulating Treg to control AR.
Collapse
Affiliation(s)
- Lia Restimulia
- Departement of Doctoral Degree Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.,Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Delfitri Munir
- Departement of Doctoral Degree Program, faculty of medicine, universitas sumatera utara, Medan, Indonesia.,Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Medan, Indonesia.,Pusat Unggulan Inovasi (PUI) Stem Cell, Universitas Sumatera Utara (USU), Medan, Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research (SCCR), Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia.,Department of Pathology, Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia.,Department of Postgraduate Biomedical Science, Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia
| | - Teti Madiadipoera
- Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Farhat Farhat
- Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rosita Juwita Sembiring
- Departement of Doctoral Degree Program, faculty of medicine, universitas sumatera utara, Medan, Indonesia
| | - Muhammad Ichwan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Nur Dina Amalina
- Stem Cell and Cancer Research (SCCR), Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia.,Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang, Indonesia
| | - Iffan Alif
- Stem Cell and Cancer Research (SCCR), Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia
| |
Collapse
|
9
|
Mori F, Giovannini M, Barni S, Jiménez-Saiz R, Munblit D, Biagioni B, Liccioli G, Sarti L, Liotti L, Ricci S, Novembre E, Sahiner U, Baldo E, Caimmi D. Oral Immunotherapy for Food-Allergic Children: A Pro-Con Debate. Front Immunol 2021; 12:636612. [PMID: 34650547 PMCID: PMC8507468 DOI: 10.3389/fimmu.2021.636612] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
The prevalence of food allergy has increased in recent years, especially in children. Allergen avoidance, and drugs in case of an allergic reaction, remains the standard of care in food allergy. Nevertheless, increasing attention has been given to the possibility to treat food allergy, through immunotherapy, particularly oral immunotherapy (OIT). Several OIT protocols and clinical trials have been published. Most of them focus on children allergic to milk, egg, or peanut, although recent studies developed protocols for other foods, such as wheat and different nuts. OIT efficacy in randomized controlled trials is usually evaluated as the possibility for patients to achieve desensitization through the consumption of an increasing amount of a food allergen, while the issue of a possible long-term sustained unresponsiveness has not been completely addressed. Here, we evaluated current pediatric OIT knowledge, focusing on the results of clinical trials and current guidelines. Specifically, we wanted to highlight what is known in terms of OIT efficacy and effectiveness, safety, and impact on quality of life. For each aspect, we reported the pros and the cons, inferable from published literature. In conclusion, even though many protocols, reviews and meta-analysis have been published on this topic, pediatric OIT remains a controversial therapy and no definitive generalized conclusion may be drawn so far. It should be an option provided by specialized teams, when both patients and their families are prone to adhere to the proposed protocol. Efficacy, long-term effectiveness, possible role of adjuvant therapies, risk of severe reactions including anaphylaxis or eosinophilic esophagitis, and impact on the quality of life of both children and caregivers are all aspects that should be discussed before starting OIT. Future studies are needed to provide firm clinical and scientific evidence, which should also consider patient reported outcomes.
Collapse
Affiliation(s)
- Francesca Mori
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Simona Barni
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-IP), Madrid, Spain.,Department of Immunology & Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain.,Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Daniel Munblit
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.,Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - Benedetta Biagioni
- Allergy Outpatient Clinic, Division of Internal Medicine, IRCCS Azienda Ospedaliera Universitaria, Bologna, Italy
| | - Giulia Liccioli
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Lucrezia Sarti
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Lucia Liotti
- Department of Pediatrics, Salesi Children's Hospital, Azienda Ospedaliera Universitaria (AOU) Ospedali Riuniti Ancona, Ancona, Italy
| | - Silvia Ricci
- Division of Immunology, Section of Pediatrics, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Elio Novembre
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Umit Sahiner
- Department of Pediatric Allergy, Hacettepe University, Ankara, Turkey
| | - Ermanno Baldo
- "Giovan Battista Mattei" Research Institute, Stenico, Italy
| | - Davide Caimmi
- Allergy Unit, CHU de Montpellier, Univ Montpellier, Montpellier, France.,IDESP, UA11, INSERM-Univ Montpellier, Montpellier, France
| |
Collapse
|
10
|
Baker JR, Rasky AJ, Landers JJ, Janczak KW, Totten TD, Lukacs NW, O’Konek JJ. Intranasal delivery of allergen in a nanoemulsion adjuvant inhibits allergen-specific reactions in mouse models of allergic airway disease. Clin Exp Allergy 2021; 51:1361-1373. [PMID: 33999457 PMCID: PMC11155263 DOI: 10.1111/cea.13903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Atopic diseases are an increasing problem that involve both immediate hypersensitivity reactions mediated by IgE and unique cellular inflammation. Many forms of specific immunotherapy involve the administration of allergen to suppress allergic immune responses but are focused on IgE-mediated reactions. In contrast, the effect of allergen-specific immunotherapy on allergic inflammation is complex, not entirely consistent and not well understood. We have previously demonstrated the ability of allergen administered in a nanoemulsion (NE) mucosal adjuvant to suppress IgE-mediated allergic responses and protect from allergen challenge in murine food allergy models. This activity was associated with decreases in allergen-specific IL-10 and reductions in allergic cytokines and increases in regulatory T cells. OBJECTIVE Here, we extend these studies to using 2 distinct models, the ovalbumin (OVA) and cockroach (CRA) models of allergic airway disease, which are based predominantly on allergic inflammation. METHODS Acute or chronic allergic airway disease was induced in mice using ovalbumin and cockroach allergen models. Mice received three therapeutic immunizations with allergen in NE, and reactivity to airway challenge was determined. RESULTS Therapeutic immunization with cockroach or OVA allergen in NE markedly reduced pathology after airway challenge. The 2 models demonstrated protection from allergen challenge-induced pathology that was associated with suppression of Th2-polarized immune responses in the lung. In addition, the reduction in ILC2 numbers in the lungs of allergic mice along with reduction in epithelial cell alarmins, IL-25 and IL-33, suggests an overall change in the lung immune environment induced by the NE immunization protocol. CONCLUSIONS AND CLINICAL RELEVANCE These results demonstrate that suppression of allergic airway inflammation and bronchial hyper-reactivity can be achieved using allergen-specific immunotherapy without significant reductions in allergen-specific IgE and suggest that ILC2 cells may be critical targets for this activity.
Collapse
Affiliation(s)
- James R. Baker
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J. Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey J. Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Tiffanie D. Totten
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica J. O’Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Koenig JFE, Bruton K, Phelps A, Grydziuszko E, Jiménez-Saiz R, Jordana M. Memory Generation and Re-Activation in Food Allergy. Immunotargets Ther 2021; 10:171-184. [PMID: 34136419 PMCID: PMC8200165 DOI: 10.2147/itt.s284823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Recent evidence has highlighted the critical role of memory cells in maintaining lifelong food allergies, thereby identifying these cells as therapeutic targets. IgG+ memory B cells replenish pools of IgE-secreting cells upon allergen exposure, which contract thereafter due to the short lifespan of tightly regulated IgE-expressing cells. Advances in the detection and highly dimensional analysis of allergen-specific B and T cells from allergic patients have provided insight on their phenotype and function. The newly identified Th2A and Tfh13 populations represent a leap in our understanding of allergen-specific T cell phenotypes, although how these populations contribute to IgE memory responses remains poorly understood. Within, we discuss the mechanisms by which memory B and T cells are activated, integrating knowledge from human systems and fundamental research. We then focus on memory reactivation, specifically, on the pathways of secondary IgE responses. Throughout, we identify areas of future research which will help identify immunotargets for a transformative therapy for food allergy.
Collapse
Affiliation(s)
- Joshua F E Koenig
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kelly Bruton
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Allyssa Phelps
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Emily Grydziuszko
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Jiménez-Saiz
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IIS-IP), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - Manel Jordana
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Barker‐Tejeda TC, Bazire R, Obeso D, Mera‐Berriatua L, Rosace D, Vazquez‐Cortes S, Ramos T, Rico MDP, Chivato T, Barbas C, Villaseñor A, Escribese MM, Fernández‐Rivas M, Blanco C, Barber D. Exploring novel systemic biomarker approaches in grass-pollen sublingual immunotherapy using omics. Allergy 2021; 76:1199-1212. [PMID: 32813887 PMCID: PMC8246889 DOI: 10.1111/all.14565] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Background Sublingual allergen‐specific immunotherapy (SLIT) intervention improves the control of grass pollen allergy by maintaining allergen tolerance after cessation. Despite its widespread use, little is known about systemic effects and kinetics associated to SLIT, as well as the influence of the patient sensitization phenotype (Mono‐ or Poly‐sensitized). In this quest, omics sciences could help to gain new insights to understand SLIT effects. Methods 47 grass‐pollen‐allergic patients were enrolled in a double‐blind, placebo‐controlled, multicenter trial using GRAZAX® during 2 years. Immunological assays (sIgE, sIgG4, and ISAC) were carried out to 31 patients who finished the trial. Additionally, serum and PBMCs samples were analyzed by metabolomics and transcriptomics, respectively. Based on their sensitization level, 22 patients were allocated in Mono‐ or Poly‐sensitized groups, excluding patients allergic to epithelia. Individuals were compared based on their treatment (Active/Placebo) and sensitization level (Mono/Poly). Results Kinetics of serological changes agreed with those previously described. At two years of SLIT, there are scarce systemic changes that could be associated to improvement in systemic inflammation. Poly‐sensitized patients presented a higher inflammation at inclusion, while Mono‐sensitized patients presented a reduced activity of mast cells and phagocytes as an effect of the treatment. Conclusions The most relevant systemic change detected after two years of SLIT was the desensitization of effector cells, which was only detected in Mono‐sensitized patients. This change may be related to the clinical improvement, as previously reported, and, together with the other results, may explain why clinical effect is lost if SLIT is discontinued at this point.
Collapse
Affiliation(s)
- Tomas Clive Barker‐Tejeda
- Facultad de Farmacia Centro de Metabolómica y Bioanálisis (CEMBIO) Universidad San Pablo‐CEU CEU Universities Urbanización Montepríncipe Madrid España
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Raphaelle Bazire
- Servicio de Alergia Instituto de Investigación Sanitaria Princesa (IP) Hospital Universitario de La Princesa Madrid España
- Servicio de Alergia Hospital Infantil Universitario Niño Jesús Fundación para la Investigación Biomédica del Hospital Niño Jesús Madrid España
| | - David Obeso
- Facultad de Farmacia Centro de Metabolómica y Bioanálisis (CEMBIO) Universidad San Pablo‐CEU CEU Universities Urbanización Montepríncipe Madrid España
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Leticia Mera‐Berriatua
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Domenico Rosace
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Sonia Vazquez‐Cortes
- Servicio de Alergia Hospital Clínico San Carlos Universidad Complutense, IdISSC Madrid España
| | - Tania Ramos
- Servicio de Alergia Instituto de Investigación Sanitaria Princesa (IP) Hospital Universitario de La Princesa Madrid España
| | - Maria del Pilar Rico
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Tomás Chivato
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Coral Barbas
- Facultad de Farmacia Centro de Metabolómica y Bioanálisis (CEMBIO) Universidad San Pablo‐CEU CEU Universities Urbanización Montepríncipe Madrid España
| | - Alma Villaseñor
- Facultad de Farmacia Centro de Metabolómica y Bioanálisis (CEMBIO) Universidad San Pablo‐CEU CEU Universities Urbanización Montepríncipe Madrid España
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | - Maria M. Escribese
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| | | | - Carlos Blanco
- Servicio de Alergia Instituto de Investigación Sanitaria Princesa (IP) Hospital Universitario de La Princesa Madrid España
| | - Domingo Barber
- Facultad de Medicina Departamento de Ciencias Médicas Básicas Instituto de Medicina Molecular Aplicada (IMMA) Universidad San Pablo‐CEU CEU Universities Madrid España
| |
Collapse
|
13
|
Schoos AMM, Bullens D, Chawes BL, Costa J, De Vlieger L, DunnGalvin A, Epstein MM, Garssen J, Hilger C, Knipping K, Kuehn A, Mijakoski D, Munblit D, Nekliudov NA, Ozdemir C, Patient K, Peroni D, Stoleski S, Stylianou E, Tukalj M, Verhoeckx K, Zidarn M, van de Veen W. Immunological Outcomes of Allergen-Specific Immunotherapy in Food Allergy. Front Immunol 2020; 11:568598. [PMID: 33224138 PMCID: PMC7670865 DOI: 10.3389/fimmu.2020.568598] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022] Open
Abstract
IgE-mediated food allergies are caused by adverse immunologic responses to food proteins. Allergic reactions may present locally in different tissues such as skin, gastrointestinal and respiratory tract and may result is systemic life-threatening reactions. During the last decades, the prevalence of food allergies has significantly increased throughout the world, and considerable efforts have been made to develop curative therapies. Food allergen immunotherapy is a promising therapeutic approach for food allergies that is based on the administration of increasing doses of culprit food extracts, or purified, and sometime modified food allergens. Different routes of administration for food allergen immunotherapy including oral, sublingual, epicutaneous and subcutaneous regimens are being evaluated. Although a wealth of data from clinical food allergen immunotherapy trials has been obtained, a lack of consistency in assessed clinical and immunological outcome measures presents a major hurdle for evaluating these new treatments. Coordinated efforts are needed to establish standardized outcome measures to be applied in food allergy immunotherapy studies, allowing for better harmonization of data and setting the standards for the future research. Several immunological parameters have been measured in food allergen immunotherapy, including allergen-specific immunoglobulin levels, basophil activation, cytokines, and other soluble biomarkers, T cell and B cell responses and skin prick tests. In this review we discuss different immunological parameters and assess their applicability as potential outcome measures for food allergen immunotherapy that may be included in such a standardized set of outcome measures.
Collapse
Affiliation(s)
- Ann-Marie Malby Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Dominique Bullens
- Allergy and Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Clinical Division of Pediatrics, UZ Leuven, Leuven, Belgium
| | - Bo Lund Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Liselot De Vlieger
- Allergy and Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Audrey DunnGalvin
- School of Applied Psychology, University College Cork, Cork, Ireland
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Michelle M. Epstein
- Experimental Allergy Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Centre of Excellence Immunology, Danone Nutricia research, Utrecht, Netherlands
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Karen Knipping
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Centre of Excellence Immunology, Danone Nutricia research, Utrecht, Netherlands
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Dragan Mijakoski
- Institute of Occupational Health of RNM, Skopje, North Macedonia
- Faculty of Medicine, Ss. Cyril and Methodius, University in Skopje, Skopje, North Macedonia
| | - Daniel Munblit
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Inflammation, Repair and Development Section, NHLI, Imperial College London, London, United Kingdom
| | - Nikita A. Nekliudov
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Turkey
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Karine Patient
- SPI—Food Allergy Unit, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Diego Peroni
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sasho Stoleski
- Institute of Occupational Health of RNM, Skopje, North Macedonia
- Faculty of Medicine, Ss. Cyril and Methodius, University in Skopje, Skopje, North Macedonia
| | - Eva Stylianou
- Regional Unit for Asthma, Allergy and Hypersensitivity, Department of Pulmonary Diseases, Oslo University Hospital, Oslo, Norway
| | - Mirjana Tukalj
- Children’s Hospital, Department of Allergology and Pulmonology, Zagreb, Croatia
- Faculty of Medicine, University of Osijek, Osijek, Croatia
- Catholic University of Croatia, Zagreb, Croatia
| | - Kitty Verhoeckx
- Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mihaela Zidarn
- University Clinic of Pulmonary and Allergic Diseases Golnik, Golnik, Slovenia, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
14
|
Riggioni C, Comberiati P, Giovannini M, Agache I, Akdis M, Alves‐Correia M, Antó JM, Arcolaci A, Azkur AK, Azkur D, Beken B, Boccabella C, Bousquet J, Breiteneder H, Carvalho D, De las Vecillas L, Diamant Z, Eguiluz‐Gracia I, Eiwegger T, Eyerich S, Fokkens W, Gao Y, Hannachi F, Johnston SL, Jutel M, Karavelia A, Klimek L, Moya B, Nadeau KC, O'Hehir R, O'Mahony L, Pfaar O, Sanak M, Schwarze J, Sokolowska M, Torres MJ, van de Veen W, van Zelm MC, Wang DY, Zhang L, Jiménez‐Saiz R, Akdis CA. A compendium answering 150 questions on COVID-19 and SARS-CoV-2. Allergy 2020; 75:2503-2541. [PMID: 32535955 PMCID: PMC7323196 DOI: 10.1111/all.14449] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, China reported the first cases of the coronavirus disease 2019 (COVID-19). This disease, caused by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), has developed into a pandemic. To date, it has resulted in ~9 million confirmed cases and caused almost 500 000 related deaths worldwide. Unequivocally, the COVID-19 pandemic is the gravest health and socioeconomic crisis of our time. In this context, numerous questions have emerged in demand of basic scientific information and evidence-based medical advice on SARS-CoV-2 and COVID-19. Although the majority of the patients show a very mild, self-limiting viral respiratory disease, many clinical manifestations in severe patients are unique to COVID-19, such as severe lymphopenia and eosinopenia, extensive pneumonia, a "cytokine storm" leading to acute respiratory distress syndrome, endothelitis, thromboembolic complications, and multiorgan failure. The epidemiologic features of COVID-19 are distinctive and have changed throughout the pandemic. Vaccine and drug development studies and clinical trials are rapidly growing at an unprecedented speed. However, basic and clinical research on COVID-19-related topics should be based on more coordinated high-quality studies. This paper answers pressing questions, formulated by young clinicians and scientists, on SARS-CoV-2, COVID-19, and allergy, focusing on the following topics: virology, immunology, diagnosis, management of patients with allergic disease and asthma, treatment, clinical trials, drug discovery, vaccine development, and epidemiology. A total of 150 questions were answered by experts in the field providing a comprehensive and practical overview of COVID-19 and allergic disease.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Allergen immunotherapy is the only treatment modality which alters the natural course of allergic diseases by restoring immune tolerance against allergens. Deeper understanding of tolerance mechanisms will lead to the development of new vaccines, which target immune responses and promote tolerance. RECENT FINDINGS Successful allergen immunotherapy (AIT) induces allergen-specific peripheral tolerance, characterized mainly by the generation of allergen-specific Treg cells and reduction of Th2 cells. At the early phase, AIT leads to a decrease in the activity and degranulation of mast cells and basophils and a decrease in inflammatory responses of eosinophils in inflamed tissues. Treg cells show their effects by secreting inhibitory cytokines including interleukin (IL)-10, transforming growth factor-β, interfering with cellular metabolisms, suppressing antigen presenting cells and innate lymphoid cells (ILCs) and by cytolysis. AIT induces the development of regulatory B cells producing IL-10 and B cells expressing allergen-specific IgG4. Recent investigations have demonstrated that AIT is also associated with the formation of ILC2reg and DCreg cells which contribute to tolerance induction. SUMMARY Research done so far, has shown that multiple molecular and cellular factors are dysregulated in allergic diseases and modified by AIT. Studies should now focus on finding the best target and ideal biomarkers to identify ideal candidates for AIT.
Collapse
|
16
|
Mechanisms of Subcutaneous and Sublingual Aeroallergen Immunotherapy: What Is New? Immunol Allergy Clin North Am 2019; 40:1-14. [PMID: 31761112 DOI: 10.1016/j.iac.2019.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allergen immunotherapy (AIT) is considered to be the only treatment option with the promise of healing and induction of long-lasting allergen tolerance, persisting even after discontinuation of therapy. Despite a more than 100-year-long history, still only a minority of patients are being treated with AIT. Substantial developments took place in the last decade to overcome problems in standardization, efficacy, safety, high costs, long duration of treatment; and new guidelines have also been implemented. Major advancements in the understanding of AIT mechanisms with the focus on recent findings of subcutaneous and sublingual AIT have been summarized.
Collapse
|
17
|
Saunders SP, Ma EGM, Aranda CJ, Curotto de Lafaille MA. Non-classical B Cell Memory of Allergic IgE Responses. Front Immunol 2019; 10:715. [PMID: 31105687 PMCID: PMC6498404 DOI: 10.3389/fimmu.2019.00715] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/18/2019] [Indexed: 02/03/2023] Open
Abstract
The long-term effectiveness of antibody responses relies on the development of humoral immune memory. Humoral immunity is maintained by long-lived plasma cells that secrete antigen-specific antibodies, and memory B cells that rapidly respond to antigen re-exposure by generating new plasma cells and memory B cells. Developing effective immunological memory is essential for protection against pathogens, and is the basis of successful vaccinations. IgE responses have evolved for protection against helminth parasites infections and against toxins, but IgE is also a potent mediator of allergic diseases. There has been a dramatic increase in the incidence of allergic diseases in recent decades and this has provided the impetus to study the nature of IgE antibody responses. As will be discussed in depth in this review, the IgE memory response has unique features that distinguish it from classical B cell memory.
Collapse
Affiliation(s)
- Sean P Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Laboratory of Allergy and Inflammation, Department of Medicine, New York University, New York, NY, United States
| | - Erica G M Ma
- Division of Pulmonary, Critical Care and Sleep Medicine, Laboratory of Allergy and Inflammation, Department of Medicine, New York University, New York, NY, United States.,Sackler Institute of Graduate Biomedical Sciences, New York University, New York, NY, United States
| | - Carlos J Aranda
- Division of Pulmonary, Critical Care and Sleep Medicine, Laboratory of Allergy and Inflammation, Department of Medicine, New York University, New York, NY, United States
| | - Maria A Curotto de Lafaille
- Division of Pulmonary, Critical Care and Sleep Medicine, Laboratory of Allergy and Inflammation, Department of Medicine, New York University, New York, NY, United States.,Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|