1
|
Meza-Morales W, Ayus-Martinez S, Jimenez-Osorio J, Buendia-Otero M, López L, Suleiman D, Suarez E, Freytes DO, Cunci L, Mora C. Functionalized screen-printed electrodes for non-invasive detection of vascular-endothelial cadherin in extracellular vesicles. RSC Adv 2025; 15:12609-12621. [PMID: 40264865 PMCID: PMC12012609 DOI: 10.1039/d4ra08926j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
In this study, we developed a biosensor using a gold screen-printed electrode (Au-SPE) functionalized with mercaptoundecanoic acid (MUA) and an antibody for detecting the vascular-endothelial cadherin (CD144) as a endothelial biomarker protein on extracellular vesicles (EVs) isolated from saliva. The MUA functionalization provides a stable platform for immobilizing the CD144 antibody, ensuring the detection of the target protein. This biosensor combines Au-SPE technology with an immunoassay, offering a rapid, sensitive, and non-invasive method for detection of CD144 carried by EVs. Characterization of saliva-derived EVs using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) confirmed their morphology and size, which fell within the expected range of 80-180 nm. NTA indicated a lower concentration of particles in saliva-EVs than in serum-EVs (controls), highlighting the need for sensitive detection of EV cargos in this type of EV. Immunodetection confirmed the presence of CD144 in both saliva and serum-derived EVs, with higher concentrations in serum. Functionalization of Au-SPEs with MUA and CD144 antibodies was confirmed by significant resistance changes, and atomic force microscopy (AFM) was used to verify the preservation of EV morphology and their capturing post-immune adsorption. A calibration curve demonstrated the high sensitivity of the biosensor prototype for detecting CD144-positive EVs, with a limit of detection (LOD) of 0.111 ng mL-1 and a limit of quantification (LOQ) of 0.37 ng mL-1, requiring only 3 μL of EV-sample. This biosensor shows potential as a novel method for detecting and studying endothelial biomarkers associated with cardiovascular disease in EVs isolated from saliva, a capability not currently available with existing tools. Furthermore, it provides a key platform for expanding research to other biomarkers and diseases by monitoring protein cargos in the EVs, enhancing its utility across diverse clinical applications.
Collapse
Affiliation(s)
- William Meza-Morales
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Sahimy Ayus-Martinez
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Jesus Jimenez-Osorio
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Maria Buendia-Otero
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Luis López
- Department of Chemistry, University of Puerto Rico-Rio Piedras 601 Av. Universidad San Juan Puerto Rico USA
| | - David Suleiman
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Edu Suarez
- Department of Biology, University of Puerto Rico-Ponce Av. Santiago de los Caballeros Ponce Puerto Rico USA
| | - Donald O Freytes
- Lampe Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill/North Carolina State University 4130 Engineering Building III, Campus Box 7115 Raleigh NC 27695 USA
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras 601 Av. Universidad San Juan Puerto Rico USA
| | - Camilo Mora
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| |
Collapse
|
2
|
Prabhahar A, Batta A, Hatwal J, Kumar V, Ramachandran R, Batta A. Endothelial dysfunction in the kidney transplant population: Current evidence and management strategies. World J Transplant 2025; 15:97458. [PMID: 40104196 PMCID: PMC11612885 DOI: 10.5500/wjt.v15.i1.97458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
The endothelium modulates vascular homeostasis owing to a variety of vasoconstrictors and vasodilators. Endothelial dysfunction (ED), characterized by impaired vasodilation, inflammation, and thrombosis, triggers future cardiovascular (CV) diseases. Chronic kidney disease, a state of chronic inflammation caused by oxidative stress, metabolic abnormalities, infection, and uremic toxins damages the endothelium. ED is also associated with a decline in estimated glomerular filtration rate. After kidney transplantation, endothelial functions undergo immediate but partial restoration, promising graft longevity and enhanced CV health. However, the anticipated CV outcomes do not happen due to various transplant-related and unrelated risk factors for ED, culminating in poor CV health and graft survival. ED in kidney transplant recipients is an under-recognized and poorly studied entity. CV diseases are the leading cause of death among kidney transplant candidates with functioning grafts. ED contributes to the pathogenesis of many of the CV diseases. Various biomarkers and vasoreactivity tests are available to study endothelial functions. With an increasing number of transplants happening every year, and improved graft rejection rates due to the availability of effective immunosuppressants, the focus has now shifted to endothelial protection for the prevention, early recognition, and treatment of CV diseases.
Collapse
Affiliation(s)
- Arun Prabhahar
- Department of Telemedicine (Internal Medicine and Nephrology), Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Akshey Batta
- Department of Urology and Renal Transplant, Neelam Hospital, Rajpura 140401, Punjab, India
| | - Juniali Hatwal
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vivek Kumar
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana 141001, Punjab, India
| |
Collapse
|
3
|
Ament AL, Heiner M, Hessler MC, Alexopoulos I, Steeg K, Gärtner U, Vazquez-Armendariz AI, Herold S. Endothelialized Bronchioalveolar Lung Organoids Model Endothelial Cell Responses to Injury. Am J Respir Cell Mol Biol 2025; 72:124-132. [PMID: 39226154 DOI: 10.1165/rcmb.2023-0373ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/03/2024] [Indexed: 09/05/2024] Open
Abstract
Organoid three-dimensional systems are powerful platforms to study development and disease. Recently, the complexity of lung organoid models derived from adult mouse and human stem cells has increased substantially in terms of cellular composition and structural complexity. However, a murine lung organoid system with a clear integrated endothelial compartment is still missing. Here, we describe a novel method that adds another level of intricacy to our published bronchioalveolar lung organoid (BALO) model by microinjection of FACS-sorted lung endothelial cells (ECs) into differentiated organoid cultures. Before microinjection, ECs obtained from the lung homogenate of young mice expressed typical EC markers such as CD31 and vascular endothelial cadherin and showed tube formation capacity. Following microinjection, ECs surrounded the BALO's alveolar-like compartment, aligning with type I and type II alveolar epithelial cells, as demonstrated by confocal and electron microscopy. Notably, expression of Car4 and Aplnr was as well detected, suggesting the presence of EC microvascular phenotypes in the cultured ECs. Moreover, upon epithelial cell injury by LPS and influenza A virus, endothelialized BALOs released proinflammatory cytokines, leading to the upregulation ICAM-1 (intercellular adhesion molecule 1) in ECs. In summary, we characterized for the first time an organoid model that incorporates ECs into the alveolar structures of lung organoids, not only increasing our previous model's cellular and structural complexity but also providing a suitable niche to model lung endothelium responses to injury ex vivo.
Collapse
Affiliation(s)
- Anna-Lena Ament
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Organoid Biology, Life & Medical Sciences Institute (LIMES), Transdisciplinary Research Area (TRA) Life and Health, University of Bonn, Bonn, Germany
| | - Monika Heiner
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Marie Christin Hessler
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Institute of Lung Health (ILH), Giessen, Germany
| | - Katharina Steeg
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Giessen, and
| | - Ulrich Gärtner
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Organoid Biology, Life & Medical Sciences Institute (LIMES), Transdisciplinary Research Area (TRA) Life and Health, University of Bonn, Bonn, Germany
| | - Susanne Herold
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Institute of Lung Health (ILH), Giessen, Germany
| |
Collapse
|
4
|
Hou Z, Deng L, Fang F, Zhao T, Zhang Y, Li G, Miao MZ, Zhang Y, Yu H, Liu X. Endothelial cells under disturbed flow release extracellular vesicles to promote inflammatory polarization of macrophages and accelerate atherosclerosis. BMC Biol 2025; 23:20. [PMID: 39838385 PMCID: PMC11753076 DOI: 10.1186/s12915-025-02125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) derived from endothelial cells (ECs) are increasingly recognized for their role in the initiation and progression of atherosclerosis. ECs experience varying degrees and types of blood flow depending on their specific arterial locations. In regions of disturbed flow, which are predominant sites for atherosclerotic plaque formation, the impact of disturbed flow on the secretion and function of ECs-derived EVs remains unclear. This study aims to assess the role of disturbed flow in the secretion of EVs from ECs and to evaluate their proatherogenic function. RESULTS Our comprehensive experiments revealed that disturbed flow facilitated the secretion of ECs-derived EVs both in vivo and in vitro. Mechanistically, the MAPK pathway transduces mechanical cues from disturbed flow in ECs, leading to increased secretion of EVs. Pharmacological inhibition of the MAPK pathway reduced the secretion of EVs even under disturbed flow conditions. Interestingly, under disturbed flow stimulation, ECs-derived EVs promoted monocyte accumulation and enhanced their invasion of the endothelium. More important, these EVs initiated the inflammatory polarization of macrophages from the M2 to the M1 phenotype. However, the phenotypic switching of vascular smooth muscle cells was not affected by exposure to these EVs. CONCLUSIONS Taken together, targeting the MAPK signaling pathway holds potential as a novel therapeutic strategy for inhibiting the secretion of EC-derived EVs and mitigating the inflammatory polarization of macrophages, ultimately ameliorating the progression of atherosclerosis.
Collapse
Affiliation(s)
- Zhe Hou
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Li Deng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ting Zhao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yaojia Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Gang Li
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15 Ave NE, Seattle, 98195, USA
| | - Michael Z Miao
- Division of Oral & Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, 27599, USA
| | | | - Hongchi Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Kotlyarov S, Kotlyarova A. Biological Functions and Clinical Significance of the ABCG1 Transporter. BIOLOGY 2024; 14:8. [PMID: 39857239 PMCID: PMC11760449 DOI: 10.3390/biology14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are a large family of proteins that transport various substances across cell membranes using energy from ATP hydrolysis. ATP-binding cassette sub-family G member 1 (ABCG1) is a member of the ABCG subfamily of transporters and performs many important functions, such as the export of cholesterol and some other lipids across the membranes of various cells. Cholesterol transport is the mechanism that links metabolism and the innate immune system. Due to its lipid transport function, ABCG1 may contribute to the prevention of atherosclerosis and is involved in the functioning of the lung, pancreas, and other organs and systems. However, the full clinical significance of ABCG1 is still unknown and is a promising area for future research.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
6
|
Abdelsalam SS, Zahid MA, Ghanem SK, Khan A, Parray A, Agouni A. Sestrin2 Suppression Promotes Endothelial-Mesenchymal Transition and Exacerbates Methylglyoxal-Induced Endothelial Dysfunction. Int J Mol Sci 2024; 25:13463. [PMID: 39769227 PMCID: PMC11676724 DOI: 10.3390/ijms252413463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/03/2025] Open
Abstract
Sestrin2 (SESN2) is a stress-inducible protein known for its cytoprotective functions, but its role in diabetic vascular complications remains unclear. This study investigated the impact of SESN2 on methylglyoxal (MGO)-induced endothelial-mesenchymal transition (EndMT). Human endothelial cells were transfected with SESN2 siRNA duplexes to silence SESN2 expression, followed by MGO treatment. SESN2 knockdown significantly exacerbated MGO-induced oxidative stress, as evidenced by the reduced expression of antioxidant markers. Furthermore, SESN2 silencing enhanced the inflammatory response to MGO, demonstrated by the increased levels of pro-inflammatory cytokines. Notably, SESN2 deficiency promoted EndMT, a key process in diabetes-induced cardiovascular complications, as shown by the increased expression of mesenchymal markers and the decreased expression of endothelial markers. These findings suggest that SESN2 plays a critical protective role in endothelial cells against MGO-induced damage. The study provides novel insights into the molecular mechanisms underlying diabetic cardiovascular complications and identifies SESN2 as a potential therapeutic target for preventing endothelial dysfunction in diabetes. Our results indicate that SESN2 downregulation may contribute to the pathogenesis of diabetic vascular complications by promoting EndMT, increased oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Shahenda Salah Abdelsalam
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.S.A.); (M.A.Z.); (S.K.G.)
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.S.A.); (M.A.Z.); (S.K.G.)
| | - Sarah Khalaf Ghanem
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.S.A.); (M.A.Z.); (S.K.G.)
| | - Abbas Khan
- Department of Biological Sciences, School of Medical and Life Sciences (SMLS), Sunway University, Bandar Sunway 47500, Malaysia;
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.S.A.); (M.A.Z.); (S.K.G.)
| |
Collapse
|
7
|
Han J, Kang X, Su Y, Wang J, Cui X, Bian Y, Wu C. Plasma exosomes from patients with coronary artery disease promote atherosclerosis via impairing vascular endothelial junctions. Sci Rep 2024; 14:29813. [PMID: 39616226 PMCID: PMC11608243 DOI: 10.1038/s41598-024-81352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
The underlying mechanism of vascular endothelial hyperpermeability caused by decrease of endothelial junctions occurring in atherosclerosis remains elusive. Our findings identified that plasma exosomes from patients with stable coronary artery disease (ExoSCAD) contain differentially expressed miRNAs that are clustered with genes related to cell junctions, prompting us to investigate the role of ExoSCAD in regulating vascular endothelial junctions and to elucidate the underlying mechanisms. Here, we show that ExoSCAD markedly impair vascular endothelial junctions via suppressing VE-Cadherin and ZO-1 in endothelial cells in vitro and in vivo, consequently increases endothelial permeability. Critically, exosomal miR-140-3p plays a crucial role in ExoSCAD-induced inhibition of ZO-1, and may be an important causative factor in the development of endothelial hyperpermeability during atherosclerosis. Additionally, exosomal miR-140-3p level coordinates with severity of SCAD. Targeting miR-140-3p in circulating exosomes might open novel options for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jian Han
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Xiaoyan Kang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Yazhen Su
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Jing Wang
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Xiaogang Cui
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yunfei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
8
|
Lin S, Yu Y, Söderström LÅ, Gisterå A. Erosion of the Atheroma: Wicked T Cells at the Culprit Site. Curr Atheroscler Rep 2024; 27:4. [PMID: 39549205 PMCID: PMC11569023 DOI: 10.1007/s11883-024-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE OF REVIEW There is a growing recognition of plaque erosion as a cause of acute coronary syndrome. This review aims to examine the potential involvement of T cells in this process. RECENT FINDINGS Immune-vascular interactions have been identified in the development of plaque erosions. Up to one-third of eroded plaques show evidence of active immune infiltration, with the presence of T cells. We propose that microerosions may frequently occur in association with the infiltration of T cells and macrophages in early atherosclerotic lesions. Healing of erosions could trigger the deposition of excessive extracellular matrix. The pro-inflammatory and cytotoxic actions of T cells, along with reduced endothelial integrity and other mechanisms, may subsequently give rise to clinical symptoms. To gain a better understanding of the role of T cells in plaque erosion, it is crucial to develop improved models for conducting controlled experiments and to study atherosclerosis in younger individuals.
Collapse
Affiliation(s)
- Shiying Lin
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Yinda Yu
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Leif Å Söderström
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anton Gisterå
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Visionsgatan 4, Solna, Stockholm, SE-17164, Sweden.
| |
Collapse
|
9
|
Wang Y, Li Y, Lu Y, Li J. Biomimetic Nanoparticles for the Diagnosis and Therapy of Atherosclerosis. CHEM REC 2024; 24:e202400087. [PMID: 39148157 DOI: 10.1002/tcr.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Indexed: 08/17/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammation of blood vessels, which often has no obvious symptoms in the early stage of the disease, but when atherosclerotic plaques are formed, they often cause lumen blockage, and even plaque rupture leads to thrombosis, that is the essential factor of cardiovascular events, for example myocardial infarction, cerebral infarction, and renal atrophy. Therefore, it is considerably significant for the early recognition and precise therapy of plaque. Biomimetic nanoparticles (BNPs), especially those coated with cell membranes, can retain the biological function of cell membranes or cells, which has led to extensive research and application in the diagnosis and treatment of AS in recent years. In this review, we summarized the roles of various key cells in AS progression, the construction of biomimetic nanoparticles based on these key cells as well as their applications in AS diagnosis and therapy. Furthermore, we give a challenge and prospect of biomimetic nanoparticles in AS, hoping to elevate their application quality and the possibility of clinical translation.
Collapse
Affiliation(s)
- Yan Wang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yize Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuqing Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| |
Collapse
|
10
|
Vasishta S, Ammankallu S, Umakanth S, Keshava Prasad TS, Joshi MB. DNA methyltransferase isoforms regulate endothelial cell exosome proteome composition. Biochimie 2024; 223:98-115. [PMID: 38735570 DOI: 10.1016/j.biochi.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Extrinsic and intrinsic pathological stimuli in vascular disorders induce DNA methylation based epigenetic reprogramming in endothelial cells, which leads to perturbed gene expression and subsequently results in endothelial dysfunction (ED). ED is also characterized by release of exosomes with altered proteome leading to paracrine interactions in vasculature and subsequently contributing to manifestation, progression and severity of vascular complications. However, epigenetic regulation of exosome proteome is not known. Hence, our present study aimed to understand influence of DNA methylation on exosome proteome composition and their influence on endothelial cell (EC) function. DNMT isoforms (DNMT1, DNMT3A, and DNMT3B) were overexpressed using lentivirus in ECs. Exosomes were isolated and characterized from ECs overexpressing DNMT isoforms and C57BL/6 mice plasma treated with 5-aza-2'-deoxycytidine. 3D spheroid assay was performed to understand the influence of exosomes derived from cells overexpressing DNMTs on EC functions. Further, the exosomes were subjected to TMT labelled proteomics analysis followed by validation. 3D spheroid assay showed increase in the pro-angiogenic activity in response to exosomes derived from DNMT overexpressing cells which was impeded by inclusion of 5-aza-2'-deoxycytidine. Our results showed that exosome proteome and PTMs were significantly modulated and were associated with dysregulation of vascular homeostasis, metabolism, inflammation and endothelial cell functions. In vitro and in vivo validation showed elevated DNMT1 and TGF-β1 exosome proteins due to DNMT1 and DNMT3A overexpression, but not DNMT3B which was mitigated by 5-aza-2'-deoxycytidine indicating epigenetic regulation. Further, exosomes induced ED as evidenced by reduced expression of phospho-eNOSser1177. Our study unveils epigenetically regulated exosome proteins, aiding management of vascular complications.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shruthi Ammankallu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575020, Karnataka, India
| | | | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
11
|
Hossain SS, Johnson MJ, Hughes TJR. A parametric study of the effect of 3D plaque shape on local hemodynamics and implications for plaque instability. Biomech Model Mechanobiol 2024; 23:1209-1227. [PMID: 38532042 PMCID: PMC11341608 DOI: 10.1007/s10237-024-01834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
The vast majority of heart attacks occur when vulnerable plaques rupture, releasing their lipid content into the blood stream leading to thrombus formation and blockage of a coronary artery. Detection of these unstable plaques before they rupture remains a challenge. Hemodynamic features including wall shear stress (WSS) and wall shear stress gradient (WSSG) near the vulnerable plaque and local inflammation are known to affect plaque instability. In this work, a computational workflow has been developed to enable a comprehensive parametric study detailing the effects of 3D plaque shape on local hemodynamics and their implications for plaque instability. Parameterized geometric 3D plaque models are created within a patient-specific coronary artery tree using a NURBS (non-uniform rational B-splines)-based vascular modeling pipeline. Realistic blood flow features are simulated by using a Navier-Stokes solver within an isogeometric finite-element analysis framework. Near wall hemodynamic quantities such as WSS and WSSG are quantified, and vascular distribution of an inflammatory marker (VCAM-1) is estimated. Results show that proximally skewed eccentric plaques have the most vulnerable combination of high WSS and high positive spatial WSSG, and the presence of multiple lesions increases risk of rupture. The computational tool developed in this work, in conjunction with clinical data, -could help identify surrogate markers of plaque instability, potentially leading to a noninvasive clinical procedure for the detection of vulnerable plaques before rupture.
Collapse
Affiliation(s)
- Shaolie S Hossain
- Molecular Cardiology Research Laboratories, The Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA.
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, TX, 78712, USA.
| | - Michael J Johnson
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, TX, 78712, USA
| | - Thomas J R Hughes
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, TX, 78712, USA
| |
Collapse
|
12
|
Vuong TNAM, Bartolf‐Kopp M, Andelovic K, Jungst T, Farbehi N, Wise SG, Hayward C, Stevens MC, Rnjak‐Kovacina J. Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307627. [PMID: 38704690 PMCID: PMC11234431 DOI: 10.1002/advs.202307627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular disease, resulting in mortality, elevated healthcare costs, diminished productivity, and reduced quality of life for individuals and their communities. This is exacerbated by the limited understanding of its underlying causes and limitations in current therapeutic interventions, highlighting the need for sophisticated models of atherosclerosis. This review critically evaluates the computational and biological models of atherosclerosis, focusing on the study of hemodynamics in atherosclerotic coronary arteries. Computational models account for the geometrical complexities and hemodynamics of the blood vessels and stenoses, but they fail to capture the complex biological processes involved in atherosclerosis. Different in vitro and in vivo biological models can capture aspects of the biological complexity of healthy and stenosed vessels, but rarely mimic the human anatomy and physiological hemodynamics, and require significantly more time, cost, and resources. Therefore, emerging strategies are examined that integrate computational and biological models, and the potential of advances in imaging, biofabrication, and machine learning is explored in developing more effective models of atherosclerosis.
Collapse
Affiliation(s)
| | - Michael Bartolf‐Kopp
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Kristina Andelovic
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
- Department of Orthopedics, Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Nona Farbehi
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Garvan Weizmann Center for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Steven G. Wise
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Christopher Hayward
- St Vincent's HospitalSydneyVictor Chang Cardiac Research InstituteSydney2010Australia
| | | | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
13
|
Bruoha S, Galli M, Sabouret P, Yosefy C, Taha L, Gragnano F, Savage MP, Shuvy M, Biondi-Zoccai G, Glikson M, Asher E. Atherosclerotic Plaque Erosion: Mechanisms, Clinical Implications, and Potential Therapeutic Strategies-A Review. J Cardiovasc Pharmacol 2024; 83:547-556. [PMID: 38421206 DOI: 10.1097/fjc.0000000000001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT Atherosclerosis is an insidious and progressive inflammatory disease characterized by the formation of lipid-laden plaques within the intima of arterial walls with potentially devastating consequences. While rupture of vulnerable plaques has been extensively studied, a distinct mechanism known as plaque erosion (PE) has gained recognition and attention in recent years. PE, characterized by the loss of endothelial cell lining in the presence of intact fibrous cap, contributes to a significant and growing proportion of acute coronary events. However, despite a heterogeneous substrate underlying coronary thrombosis, treatment remains identical. This article provides an overview of atherosclerotic PE characteristics and its underlying mechanisms, highlights its clinical implications, and discusses potential therapeutic strategies.
Collapse
Affiliation(s)
- Sharon Bruoha
- Department of Cardiology, Barzilai Medical Center, the Ben-Gurion University of the Negev, Israel
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Pierre Sabouret
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
- National College of French Cardiologists, 13 rue Niepce, 75014 Paris, France
| | - Chaim Yosefy
- Department of Cardiology, Barzilai Medical Center, the Ben-Gurion University of the Negev, Israel
| | - Louay Taha
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Michael P Savage
- Division of Cardiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mony Shuvy
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy ; and
- Mediterranea Cardiocentro, Naples, Italy
| | - Michael Glikson
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Elad Asher
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| |
Collapse
|
14
|
Chang X, Wang B, Zhao Y, Deng B, Liu P, Wang Y. The role of IFI16 in regulating PANoptosis and implication in heart diseases. Cell Death Discov 2024; 10:204. [PMID: 38693141 PMCID: PMC11063201 DOI: 10.1038/s41420-024-01978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
Interferon Gamma Inducible Protein 16 (IFI16) belongs to the HIN-200 protein family and is pivotal in immunological responses. Serving as a DNA sensor, IFI16 identifies viral and aberrant DNA, triggering immune and inflammatory responses. It is implicated in diverse cellular death mechanisms, such as pyroptosis, apoptosis, and necroptosis. Notably, these processes are integral to the emergent concept of PANoptosis, which encompasses cellular demise and inflammatory pathways. Current research implies a significant regulatory role for IFI16 in PANoptosis, particularly regarding cardiac pathologies. This review delves into the complex interplay between IFI16 and PANoptosis in heart diseases, including atherosclerosis, myocardial infarction, heart failure, and diabetic cardiomyopathy. It synthesizes evidence of IFI16's impact on PANoptosis, with the intention of providing novel insights for therapeutic strategies targeting heart diseases.
Collapse
Affiliation(s)
- Xindi Chang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bei Wang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Yingli Zhao
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bing Deng
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Ping Liu
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| | - Yiru Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| |
Collapse
|
15
|
Kiseleva D, Kolmogorov V, Cherednichenko V, Khovantseva U, Bogatyreva A, Markina Y, Gorelkin P, Erofeev A, Markin A. Effect of LDL Extracted from Human Plasma on Membrane Stiffness in Living Endothelial Cells and Macrophages via Scanning Ion Conductance Microscopy. Cells 2024; 13:358. [PMID: 38391971 PMCID: PMC10887070 DOI: 10.3390/cells13040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Mechanical properties of living cells play a crucial role in a wide range of biological functions and pathologies, including atherosclerosis. We used low-stress Scanning Ion-Conductance Microscopy (SICM) correlated with confocal imaging and demonstrated the topographical changes and mechanical properties alterations in EA.hy926 and THP-1 exposed to LDL extracted from CVD patients' blood samples. We show that the cells stiffened in the presence of LDL, which also triggered caveolae formation. Endothelial cells accumulated less cholesterol in the form of lipid droplets in comparison to THP-1 cells based on fluorescence intensity data and biochemical analysis; however, the effect on Young's modulus is higher. The cell stiffness is closely connected to the distribution of lipid droplets along the z-axis. In conclusion, we show that the sensitivity of endothelial cells to LDL is higher compared to that of THP-1, triggering changes in the cytoskeleton and membrane stiffness which may result in the increased permeability of the intima layer due to loss of intercellular connections and adhesion.
Collapse
Affiliation(s)
- Diana Kiseleva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Vasilii Kolmogorov
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Vadim Cherednichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Ulyana Khovantseva
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Anastasia Bogatyreva
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Yuliya Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Petr Gorelkin
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Alexander Erofeev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Alexander Markin
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
- Medical Institute, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
16
|
Zakharova IS, Shevchenko AI, Arssan MA, Sleptcov AA, Nazarenko MS, Zarubin AA, Zheltysheva NV, Shevchenko VA, Tmoyan NA, Saaya SB, Ezhov MV, Kukharchuk VV, Parfyonova YV, Zakian SM. iPSC-Derived Endothelial Cells Reveal LDLR Dysfunction and Dysregulated Gene Expression Profiles in Familial Hypercholesterolemia. Int J Mol Sci 2024; 25:689. [PMID: 38255763 PMCID: PMC10815294 DOI: 10.3390/ijms25020689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Defects in the low-density lipoprotein receptor (LDLR) are associated with familial hypercholesterolemia (FH), manifested by atherosclerosis and cardiovascular disease. LDLR deficiency in hepatocytes leads to elevated blood cholesterol levels, which damage vascular cells, especially endothelial cells, through oxidative stress and inflammation. However, the distinctions between endothelial cells from individuals with normal and defective LDLR are not yet fully understood. In this study, we obtained and examined endothelial derivatives of induced pluripotent stem cells (iPSCs) generated previously from conditionally healthy donors and compound heterozygous FH patients carrying pathogenic LDLR alleles. In normal iPSC-derived endothelial cells (iPSC-ECs), we detected the LDLR protein predominantly in its mature form, whereas iPSC-ECs from FH patients have reduced levels of mature LDLR and show abolished low-density lipoprotein uptake. RNA-seq of mutant LDLR iPSC-ECs revealed a unique transcriptome profile with downregulated genes related to monocarboxylic acid transport, exocytosis, and cell adhesion, whereas upregulated signaling pathways were involved in cell secretion and leukocyte activation. Overall, these findings suggest that LDLR defects increase the susceptibility of endothelial cells to inflammation and oxidative stress. In combination with elevated extrinsic cholesterol levels, this may result in accelerated endothelial dysfunction, contributing to early progression of atherosclerosis and other cardiovascular pathologies associated with FH.
Collapse
Affiliation(s)
- Irina S. Zakharova
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Alexander I. Shevchenko
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Mhd Amin Arssan
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Aleksei A. Sleptcov
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Maria S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Aleksei A. Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Centre, Russian Academy of Science, 634050 Tomsk, Russia; (A.A.S.); (M.S.N.); (A.A.Z.)
| | - Nina V. Zheltysheva
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Vlada A. Shevchenko
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| | - Narek A. Tmoyan
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Shoraan B. Saaya
- E.N. Meshalkin National Medical Research Centre, Ministry of Health Care of the Russian Federation, 630055 Novosibirsk, Russia;
| | - Marat V. Ezhov
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Valery V. Kukharchuk
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Yelena V. Parfyonova
- Federal State Budgetary Institution, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Ministry of Health of Russian Federation, 121552 Moscow, Russia; (N.A.T.); (M.V.E.); (V.V.K.); (Y.V.P.)
| | - Suren M. Zakian
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.S.Z.); (A.I.S.); (M.A.A.); (N.V.Z.); (V.A.S.)
| |
Collapse
|
17
|
Heutinck JM, de Koning IA, Vromen T, Thijssen DHJ, Kemps HMC. Exercise-based cardiac rehabilitation in stable angina pectoris: a narrative review on current evidence and underlying physiological mechanisms. Neth Heart J 2024; 32:23-30. [PMID: 37982981 PMCID: PMC10781904 DOI: 10.1007/s12471-023-01830-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
Stable angina pectoris (SAP) is a prevalent condition characterised by a high disease burden. Based on recent evidence, the need for revascularisation in addition to optimal medical treatment to reduce mortality and re-events is heavily debated. These observations may be explained by the fact that revascularisation is targeted at the local flow-limiting coronary artery lesion, while the aetiology of SAP relates to the systemic, inflammatory process of atherosclerosis, causing generalised vascular dysfunction throughout the entire vascular system. Moreover, cardiovascular events are not solely caused by obstructive plaques but are also associated with plaque burden and high-risk plaque features. Therefore, to reduce the risk of cardiovascular events and angina, and thereby improve quality of life, alternative therapeutic approaches to revascularisation should be considered, preferably targeting the cardiovascular system as a whole with a physiological approach. Exercise-based cardiac rehabilitation fits this description and is a promising strategy as a first-line treatment in addition to optimal medical treatment. In this review, we discuss the role of exercise-based cardiac rehabilitation in SAP in relation to the underlying physiological mechanisms, we summarise the existing evidence and highlight future directions.
Collapse
Affiliation(s)
- Joyce M Heutinck
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Iris A de Koning
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Vromen
- Department of Cardiology, Maxima Medical Centre, Veldhoven, The Netherlands
| | - Dick H J Thijssen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Hareld M C Kemps
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Cardiology, Maxima Medical Centre, Veldhoven, The Netherlands
| |
Collapse
|
18
|
Kordi N, Sanaei M, Akraminia P, Yavari S, Saydi A, Abadi FK, Heydari N, Jung F, Karami S. PANoptosis and cardiovascular disease: The preventive role of exercise training. Clin Hemorheol Microcirc 2024; 88:499-512. [PMID: 39269827 DOI: 10.3233/ch-242396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Regulated cell death, including pyroptosis, apoptosis, and necroptosis, is vital for the body's defense system. Recent research suggests that these three types of cell death are interconnected, giving rise to a new concept called PANoptosis. PANoptosis has been linked to various diseases, making it crucial to comprehend its mechanism for effective treatments. PANoptosis is controlled by upstream receptors and molecular signals, which form polymeric complexes known as PANoptosomes. Cell death combines necroptosis, apoptosis, and pyroptosis and cannot be fully explained by any of these processes alone. Understanding pyroptosis, apoptosis, and necroptosis is essential for understanding PANoptosis. Physical exercise has been shown to suppress pyroptotic, apoptotic, and necroptotic signaling pathways by reducing inflammatory factors, proapoptotic factors, and necroptotic factors such as caspases and TNF-alpha. This ultimately leads to a decrease in cardiac structural remodeling. The beneficial effects of exercise on cardiovascular health may be attributed to its ability to inhibit these cell death pathways.
Collapse
Affiliation(s)
- Negin Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | | | - Peyman Akraminia
- Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Islamic Azad University, South Tehran Branch, Iran
| | - Sajad Yavari
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ali Saydi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Fatemeh Khamis Abadi
- Department of Sport Physiology, Faculty of Human Sciences, Islamic Azad University, Borujerd, Iran
| | - Naser Heydari
- Faculty of Physical Education and Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Friedrich Jung
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Sajad Karami
- Faculty of Physical Education and Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
19
|
Kologrivova IV, Suslova TE, Koshelskaya OA, Kravchenko ES, Kharitonova OA, Romanova EA, Vyrostkova AI, Boshchenko AA. Intermediate Monocytes and Circulating Endothelial Cells: Interplay with Severity of Atherosclerosis in Patients with Coronary Artery Disease and Type 2 Diabetes Mellitus. Biomedicines 2023; 11:2911. [PMID: 38001912 PMCID: PMC10669450 DOI: 10.3390/biomedicines11112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The aim was to investigate the association of monocyte heterogeneity and presence of circulating endothelial cells with the severity of coronary atherosclerosis in patients with coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM). We recruited 62 patients with CAD, including 22 patients with DM2. The severity of atherosclerosis was evaluated using Gensini Score. Numbers of classical (CD14++CD16-), intermediate (CD14++CD16+), and non-classical (CD14+CD16++) monocyte subsets; circulating endothelial progenitor cells; and the presence of circulating endothelial cells were evaluated. Counts and frequencies of intermediate monocytes, but not glycaemia parameters, were associated with the severity of atherosclerosis in diabetic CAD patients (rs = 0.689; p = 0.001 and rs = 0.632; p = 0.002, respectively). Frequency of Tie2+ cells was lower in classical than in non-classical monocytes in CAD patients (p = 0.007), while in patients with association of CAD and T2DM, differences between Tie2+ monocytes subsets disappeared (p = 0.080). Circulating endothelial cells were determined in 100% of CAD+T2DM patients, and counts of CD14++CD16+ monocytes and concentration of TGF-β predicted the presence of circulating endothelial cells (sensitivity 92.3%; specificity 90.9%; AUC = 0.930). Thus, intermediate monocytes represent one of the key determinants of the appearance of circulating endothelial cells in all the patients with CAD, but are associated with the severity of atherosclerosis only in patients with association of CAD and T2DM.
Collapse
Affiliation(s)
- Irina V. Kologrivova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (T.E.S.); (O.A.K.); (E.S.K.); (O.A.K.); (A.A.B.)
| | - Tatiana E. Suslova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (T.E.S.); (O.A.K.); (E.S.K.); (O.A.K.); (A.A.B.)
| | - Olga A. Koshelskaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (T.E.S.); (O.A.K.); (E.S.K.); (O.A.K.); (A.A.B.)
| | - Elena S. Kravchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (T.E.S.); (O.A.K.); (E.S.K.); (O.A.K.); (A.A.B.)
| | - Olga A. Kharitonova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (T.E.S.); (O.A.K.); (E.S.K.); (O.A.K.); (A.A.B.)
| | - Ekaterina A. Romanova
- Department of Biomedicine, Siberian State Medical University, 2 Moskovskii trakt, Tomsk 634050, Russia; (E.A.R.); (A.I.V.)
| | - Alexandra I. Vyrostkova
- Department of Biomedicine, Siberian State Medical University, 2 Moskovskii trakt, Tomsk 634050, Russia; (E.A.R.); (A.I.V.)
| | - Alla A. Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (T.E.S.); (O.A.K.); (E.S.K.); (O.A.K.); (A.A.B.)
| |
Collapse
|
20
|
Arabshomali A, Bazzazzadehgan S, Mahdi F, Shariat-Madar Z. Potential Benefits of Antioxidant Phytochemicals in Type 2 Diabetes. Molecules 2023; 28:7209. [PMID: 37894687 PMCID: PMC10609456 DOI: 10.3390/molecules28207209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The clinical relationship between diabetes and inflammation is well established. Evidence clearly indicates that disrupting oxidant-antioxidant equilibrium and elevated lipid peroxidation could be a potential mechanism for chronic kidney disease associated with type 2 diabetes mellitus (T2DM). Under diabetic conditions, hyperglycemia, especially inflammation, and increased reactive oxygen species generation are bidirectionally associated. Inflammation, oxidative stress, and tissue damage are believed to play a role in the development of diabetes. Although the exact mechanism underlying oxidative stress and its impact on diabetes progression remains uncertain, the hyperglycemia-inflammation-oxidative stress interaction clearly plays a significant role in the onset and progression of vascular disease, kidney disease, hepatic injury, and pancreas damage and, therefore, holds promise as a therapeutic target. Evidence strongly indicates that the use of multiple antidiabetic medications fails to achieve the normal range for glycated hemoglobin targets, signifying treatment-resistant diabetes. Antioxidants with polyphenols are considered useful as adjuvant therapy for their potential anti-inflammatory effect and antioxidant activity. We aimed to analyze the current major points reported in preclinical, in vivo, and clinical studies of antioxidants in the prevention or treatment of inflammation in T2DM. Then, we will share our speculative vision for future diabetes clinical trials.
Collapse
Affiliation(s)
- Arman Arabshomali
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (A.A.); (S.B.)
| | - Shadi Bazzazzadehgan
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (A.A.); (S.B.)
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, Division of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Zia Shariat-Madar
- Department of BioMolecular Sciences, Division of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| |
Collapse
|
21
|
Xiao Z, Li Y, Xiong L, Liao J, Gao Y, Luo Y, Wang Y, Chen T, Yu D, Wang T, Zhang C, Chen Z. Recent Advances in Anti-Atherosclerosis and Potential Therapeutic Targets for Nanomaterial-Derived Drug Formulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302918. [PMID: 37698552 PMCID: PMC10582432 DOI: 10.1002/advs.202302918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Indexed: 09/13/2023]
Abstract
Atherosclerosis, the leading cause of death worldwide, is responsible for ≈17.6 million deaths globally each year. Most therapeutic drugs for atherosclerosis have low delivery efficiencies and significant side effects, and this has hampered the development of effective treatment strategies. Diversified nanomaterials can improve drug properties and are considered to be key for the development of improved treatment strategies for atherosclerosis. The pathological mechanisms underlying atherosclerosis is summarized, rationally designed nanoparticle-mediated therapeutic strategies, and potential future therapeutic targets for nanodelivery. The content of this study reveals the potential and challenges of nanoparticle use for the treatment of atherosclerosis and highlights new effective design ideas.
Collapse
Affiliation(s)
- Zhicheng Xiao
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yi Li
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Jun Liao
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yijun Gao
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yunchun Luo
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Ting Chen
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Dahai Yu
- Weihai Medical Area970 Hospital of Joint Logistic Support Force of PLAWeihai264200China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Chuan Zhang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityNew York11439USA
| |
Collapse
|
22
|
Law SH, Ke CC, Chu CS, Liu SH, Weng MC, Ke LY, Chan HC. SPECT/CT imaging for tracking subendothelial retention of electronegative low-density lipoprotein in vivo. Int J Biol Macromol 2023; 250:126069. [PMID: 37536403 DOI: 10.1016/j.ijbiomac.2023.126069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
The fifth subfraction of low-density lipoprotein (L5 LDL) can be separated from human LDL using fast-protein liquid chromatography with an anion exchange column. L5 LDL induces vascular endothelial injury both in vitro and in vivo through the lectin-like oxidized LDL receptor-1 (LOX-1). However, no in vivo evidence shows the tendency of L5 LDL deposition on vascular endothelium and links to dysfunction. This study aimed to investigate L5 LDL retention in vivo using SPECT/CT imaging, with Iodine-131 (131I)-labeled and injected into six-month-old apolipoprotein E knockout (apoE-/-) mice through tail veins. Besides, we examined the biodistribution of L5 LDL in tissues and analyzed the intracellular trafficking in human aortic endothelial cells (HAoECs) by confocal microscopy. The impacts of L5 LDL on HAoECs were analyzed using electron microscopy for mitochondrial morphology and western blotting for signaling. Results showed 131I-labeled-L5 was preferentially deposited in the heart and vessels compared to L1 LDL. Furthermore, L5 LDL was co-localized with the mitochondria and associated with mitofusin (MFN1/2) and optic atrophy protein 1 (OPA1) downregulation, leading to mitochondrial fission. In summary, L5 LDL exhibits a propensity for subendothelial retention, thereby promoting endothelial dysfunction and the formation of atherosclerotic lesions.
Collapse
Affiliation(s)
- Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, College of Health Sciences, Kaohsiung Medical University, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Sheng Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Hsuan Liu
- Faculty of Health Sciences, Bristol Medical School, Bristol, England, United Kingdom
| | - Mao-Chi Weng
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine & Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hua-Chen Chan
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
23
|
Lan Y, Dong M, Li Y, Diao Y, Chen Z, Wu Z. Upregulation of girdin delays endothelial cell apoptosis via promoting engulfment of platelets. Mol Biol Rep 2023; 50:8111-8120. [PMID: 37548867 DOI: 10.1007/s11033-023-08625-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/22/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Endothelial cells are crucial in maintaining the homeostasis of the blood-brain barrier. Girders of actin filament (Girdin) and phosphor (p)-Girdin are essential for the engulfment of human brain microvascular endothelial cells (HBMECs) into platelets (PLTs), but the potential mechanism remains unclear and requires further study. METHODS Following PLT and cytochalasin D treatment, Hoechst 33,342 detected apoptosis. The transfection efficiency of the short hairpin RNA targeting Girdin (sh-Girdin) or overexpressing Girdin (OE-Girdin) was determined using western blotting. Sh-Girdin, OE-Girdin, mutated Girdin (m-Girdin), and microfilament binding region deleted Girdin (Del-Girdin) were transfected into HBMECs under PLT conditions. Subsequently, the engulfment of HBMECs by PLTs was detected by flow cytometry and transmission electron microscopy. Girdin and phosphorylated (p)-Girdin levels were quantified by western blot. The positive expression of Girdin was measured by immunohistochemistry (IHC). The localization of PLT, Girdin, and p-Girdin and the engulfment of HBMECs in PLTs were analyzed by confocal microscopy. RESULT Cytochalasin D overturned the inhibitory effect of PLT on cell apoptosis. OE-Girdin enhanced the fluorescent intensity of PLT-labelling and the engulfment of HBMECs by PLTs, while sh-Girdin, m-Girdin, and Del-Girdin ran reversely. OE-Girdin elevated the Girdin and p-Girdin levels, while sh-Girdin and Del-Girdin were the opposite, but m-Girdin did not affect the p-Girdin and Girdin levels. CONCLUSION Girdin and p-Girdin were co-located with PLTs in HBMECs. The over-expression of Girdin was identified as being associated with the increasing engulfment of PTLs. Girdin may be an effective target to alleviate endothelial cell apoptosis.
Collapse
Affiliation(s)
- Yong Lan
- Department of Vascular Surgery, Beijing hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| | - Min Dong
- Department of Cardiology, Beijing hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Yongpeng Diao
- Department of Vascular Surgery, Beijing hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Zhiyuan Wu
- Department of Vascular Surgery, Beijing hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
24
|
Wojtasińska A, Frąk W, Lisińska W, Sapeda N, Młynarska E, Rysz J, Franczyk B. Novel Insights into the Molecular Mechanisms of Atherosclerosis. Int J Mol Sci 2023; 24:13434. [PMID: 37686238 PMCID: PMC10487483 DOI: 10.3390/ijms241713434] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Atherosclerosis is one of the most fatal diseases in the world. The associated thickening of the arterial wall and its background and consequences make it a very composite disease entity with many mechanisms that lead to its creation. It is an active process, and scientists from various branches are engaged in research, including molecular biologists, cardiologists, and immunologists. This review summarizes the available information on the pathophysiological implications of atherosclerosis, focusing on endothelium dysfunction, inflammatory factors, aging, and uric acid, vitamin D, and miRNA expression as recent evidence of interactions of the molecular and cellular elements. Analyzing new discoveries for the underlying causes of this condition assists the general research to improve understanding of the mechanism of pathophysiology and thus prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Armanda Wojtasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (W.L.)
| | - Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (W.L.)
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (W.L.)
| | - Natalia Sapeda
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (W.L.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (W.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (W.L.)
| |
Collapse
|
25
|
Xue J, Zhang Z, Sun Y, Jin D, Guo L, Li X, Zhao D, Feng X, Qi W, Zhu H. Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases. J Inflamm Res 2023; 16:3593-3617. [PMID: 37641702 PMCID: PMC10460614 DOI: 10.2147/jir.s418166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Endothelial cells (ECs) are widely distributed inside the vascular network, forming a vital barrier between the bloodstream and the walls of blood vessels. These versatile cells serve myriad functions, including the regulation of vascular tension and the management of hemostasis and thrombosis. Inflammation constitutes a cascade of biological responses incited by biological, chemical, or physical stimuli. While inflammation is inherently a protective mechanism, dysregulated inflammation can precipitate a host of vascular pathologies. ECs play a critical role in the genesis and progression of vascular inflammation, which has been implicated in the etiology of numerous vascular disorders, such as atherosclerosis, cardiovascular diseases, respiratory diseases, diabetes mellitus, and sepsis. Upon activation, ECs secrete potent inflammatory mediators that elicit both innate and adaptive immune reactions, culminating in inflammation. To date, no comprehensive and nuanced account of the research progress concerning ECs and inflammation in vascular-related maladies exists. Consequently, this review endeavors to synthesize the contributions of ECs to inflammatory processes, delineate the molecular signaling pathways involved in regulation, and categorize and consolidate the various models and treatment strategies for vascular-related diseases. It is our aspiration that this review furnishes cogent experimental evidence supporting the established link between endothelial inflammation and vascular-related pathologies, offers a theoretical foundation for clinical investigations, and imparts valuable insights for the development of therapeutic agents targeting these diseases.
Collapse
Affiliation(s)
- Jiaojiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Yuting Sun
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Di Jin
- Department of Nephrology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Liming Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiaochun Feng
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Haoyu Zhu
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| |
Collapse
|
26
|
Marrero AD, Castilla L, Bernal M, Manrique I, Posligua-García JD, Moya-Utrera F, Porras-Alcalá C, Espartero JL, Sarabia F, Quesada AR, Medina MÁ, Martínez-Poveda B. Inhibition of Endothelial Inflammatory Response by HT-C6, a Hydroxytyrosol Alkyl Ether Derivative. Antioxidants (Basel) 2023; 12:1513. [PMID: 37627508 PMCID: PMC10451341 DOI: 10.3390/antiox12081513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Hydroxytyrosol (HT) is a bioactive phenolic compound naturally present in olives and extra virgin olive oil (EVOO) which is described as an antioxidant, antitumoral and antiangiogenic molecule. Previous studies of semi-synthetic HT-derivatives presented the hydroxytyrosyl alkyl ether HT-C6 as one of the most potent derivatives studied in the context of antioxidant, anti-platelet and antiangiogenic assays, but its direct effect on inflammation was not reported. In this work, we use RT-qPCR measure of gene expression, protein analysis by Western-blot and immunofluorescence techniques, adhesion and migration functional assays and single-cell monitoring of reactive oxygen species (ROS) in order to explore in vitro the ability of HT-C6 to interfere in the inflammatory response of endothelial cells (ECs). Our results showed that HT-C6 strongly reduces the TNF-α-induced expression of vascular cell adhesion molecule 1 (VCAM1), intercellular cell adhesion molecule 1 (ICAM1), E-selectin (SELE), C-C motif chemokine ligand 2 and 5 (CCL2 and CCL5) in HUVECs, impairing the chemotactic and adhesion potential of these cells towards THP-1 monocytes in vitro. In this work, we define a mechanism of action underlying the anti-inflammatory effect of HT-C6, which involves the abrogation of nuclear factor kappa B (NF-κB) pathway activation in ECs. These results, together with the ability of HT-C6 to reduce ROS formation in ECs, point to this compound as a promising HT-derivative to be tested in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ana Dácil Marrero
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, 29071 Málaga, Spain; (A.D.M.); (L.C.); (M.B.); (I.M.); (J.D.P.-G.); (A.R.Q.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Castilla
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, 29071 Málaga, Spain; (A.D.M.); (L.C.); (M.B.); (I.M.); (J.D.P.-G.); (A.R.Q.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Manuel Bernal
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, 29071 Málaga, Spain; (A.D.M.); (L.C.); (M.B.); (I.M.); (J.D.P.-G.); (A.R.Q.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Inmaculada Manrique
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, 29071 Málaga, Spain; (A.D.M.); (L.C.); (M.B.); (I.M.); (J.D.P.-G.); (A.R.Q.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Joel D. Posligua-García
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, 29071 Málaga, Spain; (A.D.M.); (L.C.); (M.B.); (I.M.); (J.D.P.-G.); (A.R.Q.); (M.Á.M.)
| | - Federico Moya-Utrera
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (F.S.)
| | - Cristina Porras-Alcalá
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (F.S.)
| | - José Luis Espartero
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Francisco Sarabia
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (F.S.)
| | - Ana R. Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, 29071 Málaga, Spain; (A.D.M.); (L.C.); (M.B.); (I.M.); (J.D.P.-G.); (A.R.Q.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, 29071 Málaga, Spain; (A.D.M.); (L.C.); (M.B.); (I.M.); (J.D.P.-G.); (A.R.Q.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, 29071 Málaga, Spain; (A.D.M.); (L.C.); (M.B.); (I.M.); (J.D.P.-G.); (A.R.Q.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
27
|
Luo T, Zhang Z, Xu J, Liu H, Cai L, Huang G, Wang C, Chen Y, Xia L, Ding X, Wang J, Li X. Atherosclerosis treatment with nanoagent: potential targets, stimulus signals and drug delivery mechanisms. Front Bioeng Biotechnol 2023; 11:1205751. [PMID: 37404681 PMCID: PMC10315585 DOI: 10.3389/fbioe.2023.1205751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease (CVDs) is the first killer of human health, and it caused up at least 31% of global deaths. Atherosclerosis is one of the main reasons caused CVDs. Oral drug therapy with statins and other lipid-regulating drugs is the conventional treatment strategies for atherosclerosis. However, conventional therapeutic strategies are constrained by low drug utilization and non-target organ injury problems. Micro-nano materials, including particles, liposomes, micelles and bubbles, have been developed as the revolutionized tools for CVDs detection and drug delivery, specifically atherosclerotic targeting treatment. Furthermore, the micro-nano materials also could be designed to intelligently and responsive targeting drug delivering, and then become a promising tool to achieve atherosclerosis precision treatment. This work reviewed the advances in atherosclerosis nanotherapy, including the materials carriers, target sites, responsive model and treatment results. These nanoagents precisely delivery the therapeutic agents to the target atherosclerosis sites, and intelligent and precise release of drugs, which could minimize the potential adverse effects and be more effective in atherosclerosis lesion.
Collapse
Affiliation(s)
- Ting Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhen Zhang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Junbo Xu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hanxiong Liu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lin Cai
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Gang Huang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Chunbin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yingzhong Chen
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Long Xia
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xunshi Ding
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Li
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Kotlyarov SN, Suchkov IA, Uryasev OM, Kotlyarova AA. Analysis of Inflammation Biomarkers in Exhaled Breath Condensate in Patients with COPD Combined with Peripheral Arterial Disease. THE RUSSIAN ARCHIVES OF INTERNAL MEDICINE 2023; 13:213-223. [DOI: 10.20514/2226-6704-2023-13-3-213-223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
29
|
Adetunji JA, Fasae KD, Awe AI, Paimo OK, Adegoke AM, Akintunde JK, Sekhoacha MP. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon 2023; 9:e17166. [PMID: 37484296 PMCID: PMC10361329 DOI: 10.1016/j.heliyon.2023.e17166] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The endothelial cells (ECs) make up the inner lining of blood vessels, acting as a barrier separating the blood and the tissues in several organs. ECs maintain endothelium integrity by controlling the constriction and relaxation of the vasculature, blood fluidity, adhesion, and migration. These actions of ECs are efficiently coordinated via an intricate signaling network connecting receptors, and a wide range of cellular macromolecules. ECs are naturally quiescent i.e.; they are not stimulated and do not proliferate. Upon infection or disease, ECs become activated, and this alteration is pivotal in the pathogenesis of a spectrum of human neurological, cardiovascular, diabetic, cancerous, and viral diseases. Considering the central position that ECs play in disease pathogenesis, therapeutic options have been targeted at improving ECs integrity, assembly, functioning, and health. The dietary intake of flavonoids present in citrus fruits has been associated with a reduced risk of endothelium dysfunction. Naringenin (NGN) and Naringin (NAR), major flavonoids in grapefruit, tomatoes, and oranges possess anti-inflammatory, antioxidant properties, and cell survival potentials, which improve the health of the vascular endothelium. In this review, we provide a comprehensive summary and present the advances in understanding of the mechanisms through which NGN and NAR modulate the biomarkers of vascular dysfunction and protect the endothelium against unresolved inflammation, oxidative stress, atherosclerosis, and angiogenesis. We also provide perspectives and suggest further studies that will help assess the efficacy of citrus flavonoids in the therapeutics of human vascular diseases.
Collapse
Affiliation(s)
- Joy A. Adetunji
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Kehinde D. Fasae
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Ayobami I. Awe
- Department of Biology, The Catholic University of America, Washington DC, USA
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ayodeji M. Adegoke
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Jacob K. Akintunde
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mamello P. Sekhoacha
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
30
|
Kotlyarov S, Kotlyarova A. Participation of Krüppel-like Factors in Atherogenesis. Metabolites 2023; 13:448. [PMID: 36984888 PMCID: PMC10052737 DOI: 10.3390/metabo13030448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Atherosclerosis is an important problem in modern medicine, the keys to understanding many aspects of which are still not available to clinicians. Atherosclerosis develops as a result of a complex chain of events in which many cells of the vascular wall and peripheral blood flow are involved. Endothelial cells, which line the vascular wall in a monolayer, play an important role in vascular biology. A growing body of evidence strengthens the understanding of the multifaceted functions of endothelial cells, which not only organize the barrier between blood flow and tissues but also act as regulators of hemodynamics and play an important role in regulating the function of other cells in the vascular wall. Krüppel-like factors (KLFs) perform several biological functions in various cells of the vascular wall. The large family of KLFs in humans includes 18 members, among which KLF2 and KLF4 are at the crossroads between endothelial cell mechanobiology and immunometabolism, which play important roles in both the normal vascular wall and atherosclerosis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
31
|
Ruan Q, Guan P, Qi W, Li J, Xi M, Xiao L, Zhong S, Ma D, Ni J. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol 2023; 14:1103592. [PMID: 36999040 PMCID: PMC10043234 DOI: 10.3389/fimmu.2023.1103592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial occlusion, and is one of the leading causes of death in the world population. The progression of AS is closely associated with several inflammatory diseases, among which periodontitis has been shown to increase the risk of AS. Porphyromonas gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms, is the “dominant flora” in periodontitis, and its multiple virulence factors are important in stimulating host immunity. Therefore, it is significant to elucidate the potential mechanism and association between P. gingivalis and AS to prevent and treat AS. By summarizing the existing studies, we found that P. gingivalis promotes the progression of AS through multiple immune pathways. P. gingivalis can escape host immune clearance and, in various forms, circulate with blood and lymph and colonize arterial vessel walls, directly inducing local inflammation in blood vessels. It also induces the production of systemic inflammatory mediators and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes the progression of AS. In this paper, we summarize the recent evidence (including clinical studies and animal studies) on the correlation between P. gingivalis and AS, and describe the specific immune mechanisms by which P. gingivalis promotes AS progression from three aspects (immune escape, blood circulation, and lymphatic circulation), providing new insights into the prevention and treatment of AS by suppressing periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Qijun Ruan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peng Guan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Limin Xiao
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| |
Collapse
|
32
|
Gurgoglione FL, Denegri A, Russo M, Calvieri C, Benatti G, Niccoli G. Intracoronary Imaging of Coronary Atherosclerotic Plaque: From Assessment of Pathophysiological Mechanisms to Therapeutic Implication. Int J Mol Sci 2023; 24:5155. [PMID: 36982230 PMCID: PMC10049285 DOI: 10.3390/ijms24065155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality worldwide. Several cardiovascular risk factors are implicated in atherosclerotic plaque promotion and progression and are responsible for the clinical manifestations of coronary artery disease (CAD), ranging from chronic to acute coronary syndromes and sudden coronary death. The advent of intravascular imaging (IVI), including intravascular ultrasound, optical coherence tomography and near-infrared diffuse reflectance spectroscopy has significantly improved the comprehension of CAD pathophysiology and has strengthened the prognostic relevance of coronary plaque morphology assessment. Indeed, several atherosclerotic plaque phenotype and mechanisms of plaque destabilization have been recognized with different natural history and prognosis. Finally, IVI demonstrated benefits of secondary prevention therapies, such as lipid-lowering and anti-inflammatory agents. The purpose of this review is to shed light on the principles and properties of available IVI modalities along with their prognostic significance.
Collapse
Affiliation(s)
| | - Andrea Denegri
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Michele Russo
- Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, 31015 Conegliano, Italy
| | - Camilla Calvieri
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, La Sapienza University, 00185 Rome, Italy
| | - Giorgio Benatti
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Giampaolo Niccoli
- Cardiology Department, University of Parma, 43126 Parma, Italy
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| |
Collapse
|
33
|
Basílio J, Hochreiter B, Hoesel B, Sheshori E, Mussbacher M, Hanel R, Schmid JA. Antagonistic Functions of Androgen Receptor and NF-κB in Prostate Cancer-Experimental and Computational Analyses. Cancers (Basel) 2022; 14:cancers14246164. [PMID: 36551650 PMCID: PMC9776608 DOI: 10.3390/cancers14246164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is very frequent and is, in many countries, the third-leading cause of cancer related death in men. While early diagnosis and treatment by surgical removal is often curative, metastasizing prostate cancer has a very bad prognosis. Based on the androgen-dependence of prostate epithelial cells, the standard treatment is blockade of the androgen receptor (AR). However, nearly all patients suffer from a tumor relapse as the metastasizing cells become AR-independent. In our study we show a counter-regulatory link between AR and NF-κB both in human cells and in mouse models of prostate cancer, implying that inhibition of AR signaling results in induction of NF-κB-dependent inflammatory pathways, which may even foster the survival of metastasizing cells. This could be shown by reporter gene assays, DNA-binding measurements, and immune-fluorescence microscopy, and furthermore by a whole set of computational methods using a variety of datasets. Interestingly, loss of PTEN, a frequent genetic alteration in prostate cancer, also causes an upregulation of NF-κB and inflammatory activity. Finally, we present a mathematical model of a dynamic network between AR, NF-κB/IκB, PI3K/PTEN, and the oncogene c-Myc, which indicates that AR blockade may upregulate c-Myc together with NF-κB, and that combined anti-AR/anti-NF-κB and anti-PI3K treatment might be beneficial.
Collapse
Affiliation(s)
- José Basílio
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
- INESC ID—Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa, Universidade de Lisboa, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
| | - Bernhard Hochreiter
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Bastian Hoesel
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Emira Sheshori
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Marion Mussbacher
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria
| | - Rudolf Hanel
- Complexity Science Hub Vienna, Josefstaedter Strasse 39, 1080 Vienna, Austria
- Section for Science of Complex Systems, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Johannes A. Schmid
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40160-31155
| |
Collapse
|
34
|
Fasolo F, Paloschi V, Maegdefessel L. Long non-coding RNAs at the crossroad of vascular smooth muscle cell phenotypic modulation in atherosclerosis and neointimal formation. Atherosclerosis 2022:S0021-9150(22)01542-8. [PMID: 36513554 DOI: 10.1016/j.atherosclerosis.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Despite extraordinary advances in the comprehension of the pathophysiology of atherosclerosis and the employment of very effective treatments, cardiovascular diseases are still a major cause of mortality and represent a large share of health expenditure worldwide. Atherosclerosis is a disease affecting the medium and large arteries, which consists of a progressive accumulation of fatty substances, cellular waste products and fibrous elements, which culminates in the buildup of a plaque obstructing the blood flow. Endothelial dysfunction represents an early pathological event, favoring immune cells recruitment and triggering local inflammation. The release of inflammatory cytokines and other signaling molecules stimulates phenotypic modifications in the underlying vascular smooth muscle cells, which, in physiological conditions, are responsible for the maintenance of vessels architecture while regulating vascular tone. Vascular smooth muscle cells are highly plastic and may respond to disease stimuli by de-differentiating and losing their contractility, while increasing their synthetic, proliferative, and migratory capacity. This phenotypic switching is considered a pathological hallmark of atherogenesis and is ruled by the activation of selective gene programs. The advent of genomics and the improvement of sequencing technologies deepened our knowledge of the complex gene expression regulatory networks mediated by non-coding RNAs, and favored the rise of innovative therapeutic approaches targeting the non-coding transcriptome. In the context of atherosclerosis, long non-coding RNAs have received increasing attention as potential translational targets, due to their contribution to the molecular dynamics modulating the expression of vascular smooth muscle cells contractile/synthetic gene programs. In this review, we will focus on the most well-characterized long non-coding RNAs contributing to atherosclerosis by controlling expression of the contractile apparatus and genes activated in perturbed vascular smooth muscle cells.
Collapse
Affiliation(s)
- Francesca Fasolo
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Berlin, Germany.
| | - Valentina Paloschi
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Berlin, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Berlin, Germany; Molecular Vascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Yin YL, Wang HH, Gui ZC, Mi S, Guo S, Wang Y, Wang QQ, Yue RZ, Lin LB, Fan JX, Zhang X, Mao BY, Liu TH, Wan GR, Zhan HQ, Zhu ML, Jiang LH, Li P. Citronellal Attenuates Oxidative Stress-Induced Mitochondrial Damage through TRPM2/NHE1 Pathway and Effectively Inhibits Endothelial Dysfunction in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:2241. [PMID: 36421426 PMCID: PMC9686689 DOI: 10.3390/antiox11112241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
In type 2 diabetes mellitus (T2DM), oxidative stress induces endothelial dysfunction (ED), which is closely related to the formation of atherosclerosis. However, there are few effective drugs to prevent and cure it. Citronellal (CT) is an aromatic active substance extracted from citronella plants. Recently, CT has been shown to prevent ED, but the underlying mechanism remains unclear. The purpose of this study was to investigate whether CT ameliorated T2DM-induced ED by inhibiting the TRPM2/NHE1 signal pathway. Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable cation channel activated by oxidative stress, which damages endothelial cell barrier function and further leads to ED or atherosclerosis in T2DM. The Na+/H+ exchanger 1 (NHE1), a transmembrane protein, also plays an important role in ED. Whether TRPM2 and NHE1 are involved in the mechanism of CT improving ED in T2DM still needs further study. Through the evaluations of ophthalmoscope, HE and Oil red staining, vascular function, oxidative stress level, and mitochondrial membrane potential evaluation, we observed that CT not only reduced the formation of lipid deposition but also inhibited ED and suppressed oxidative stress-induced mitochondrial damage in vasculature of T2DM rats. The expressions of NHE1 and TRPM2 was up-regulated in the carotid vessels of T2DM rats; NHE1 expression was also upregulated in endothelial cells with overexpression of TRPM2, but CT reversed the up-regulation of NHE1 in vivo and in vitro. In contrast, CT had no inhibitory effect on the expression of NHE1 in TRPM2 knockout mice. Our study show that CT suppressed the expression of NHE1 and TPRM2, alleviated oxidative stress-induced mitochondrial damage, and imposed a protective effect on ED in T2DM rats.
Collapse
Affiliation(s)
- Ya-Ling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Huan-Huan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zi-Chen Gui
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan Mi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Yue Wang
- Sanquan College, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian-Qian Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui-Zhu Yue
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Lai-Biao Lin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Jia-Xin Fan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Bing-Yan Mao
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Tian-Heng Liu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Guang-Rui Wan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - He-Qin Zhan
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Mo-Li Zhu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peng Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
36
|
Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022; 10:biomedicines10081938. [PMID: 36009488 PMCID: PMC9405799 DOI: 10.3390/biomedicines10081938] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are disorders associated with the heart and circulatory system. Atherosclerosis is its major underlying cause. CVDs are chronic and can remain hidden for a long time. Moreover, CVDs are the leading cause of global morbidity and mortality, thus creating a major public health concern. This review summarizes the available information on the pathophysiological implications of CVDs, focusing on coronary artery disease along with atherosclerosis as its major cause and arterial hypertension. We discuss the endothelium dysfunction, inflammatory factors, and oxidation associated with atherosclerosis. Mechanisms such as dysfunction of the endothelium and inflammation, which have been identified as critical pathways for development of coronary artery disease, have become easier to diagnose in recent years. Relatively recently, evidence has been found indicating that interactions of the molecular and cellular elements such as matrix metalloproteinases, elements of the immune system, and oxidative stress are involved in the pathophysiology of arterial hypertension. Many studies have revealed several important inflammatory and genetic risk factors associated with CVDs. However, further investigation is crucial to improve our knowledge of CVDs progression and, more importantly, accelerate basic research to improve our understanding of the mechanism of pathophysiology.
Collapse
|
37
|
Zhang X, Ren Z, Xu W, Jiang Z. Necroptosis in atherosclerosis. Clin Chim Acta 2022; 534:22-28. [PMID: 35809652 DOI: 10.1016/j.cca.2022.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Atherosclerosis, a chronic inflammatory disease, is a leading cause of death worldwide. Vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs) and macrophages play extremely vital roles in the formation of atherosclerotic plaques and subsequent atherosclerosis. Necroptosis, a caspase-independent programmed cell necrosis, occurs in advanced atherosclerotic plaques and has been implicated in VEC, VSMC and macrophage function. Although necroptosis may have considered as a defensive line against intracellular infection, it can induce a pro-inflammatory state, which will accelerate the disease process. Accordingly, necroptosis plays an important pathophysiologic role. In this review, we explore the role of necroptosis in VECs, VSMCs and macrophages in atherosclerotic plaques and their connection to atherosclerosis.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Wenxin Xu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
38
|
Xu S, Jin T, Weng J. Endothelial Cells as a Key Cell Type for Innate Immunity: A Focused Review on RIG-I Signaling Pathway. Front Immunol 2022; 13:951614. [PMID: 35865527 PMCID: PMC9294349 DOI: 10.3389/fimmu.2022.951614] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022] Open
Abstract
The vascular endothelium consists of a highly heterogeneous monolayer of endothelial cells (ECs) which are the primary target for bacterial and viral infections due to EC’s constant and close contact with the bloodstream. Emerging evidence has shown that ECs are a key cell type for innate immunity. Like macrophages, ECs serve as sentinels when sensing invading pathogens or microbial infection caused by viruses and bacteria. It remains elusive how ECs senses danger signals, transduce the signal and fulfil immune functions. Retinoic acid-inducible gene-I (RIG-I, gene name also known as DDX58) is an important member of RIG-I-like receptor (RLR) family that functions as an important pathogen recognition receptor (PRR) to execute immune surveillance and confer host antiviral response. Recent studies have demonstrated that virus infection, dsRNA, dsDNA, interferons, LPS, and 25-hydroxycholesterol (25-HC) can increase RIG-1 expression in ECs and propagate anti-viral response. Of translational significance, RIG-I activation can be inhibited by Panax notoginseng saponins, endogenous PPARγ ligand 15-PGJ2, tryptanthrin and 2-animopurine. Considering the pivotal role of inflammation and innate immunity in regulating endothelial dysfunction and atherosclerosis, here we provided a concise review of the role of RIG-I in endothelial cell function and highlight future direction to elucidate the potential role of RIG-I in regulating cardiovascular diseases as well as virus infectious disease, including COVID-19. Furthered understanding of RIG-I-mediated signaling pathways is important to control disorders associated with altered immunity and inflammation in ECs.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
- Laboratory of Metabolics and Cardiovascular Diseases, Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province , University of Science and Technology of China, Hefei, China
- *Correspondence: Suowen Xu, ; Jianping Weng,
| | - Tengchuan Jin
- Laboratory of Structural Immunology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
- Laboratory of Metabolics and Cardiovascular Diseases, Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province , University of Science and Technology of China, Hefei, China
- *Correspondence: Suowen Xu, ; Jianping Weng,
| |
Collapse
|
39
|
Colaci M, Zanoli L, Lo Gullo A, Sambataro D, Sambataro G, Aprile ML, Castellino P, Malatino L. The Impaired Elasticity of Large Arteries in Systemic Sclerosis Patients. J Clin Med 2022; 11:jcm11123256. [PMID: 35743327 PMCID: PMC9224949 DOI: 10.3390/jcm11123256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
(1) Background: Systemic sclerosis (SSc) is an autoimmune disease characterized by endothelial dysfunction and fibrosis of skin and visceral organs. In the last decade, attention has been focused on the macrovascular involvement of the disease. In particular, the observation of increased arterial stiffness represented an interesting aspect of the disease, as predictor of cardiovascular risk. (2) Methods: We recruited 60 SSc patients (52 ± 12 years old, 90% females) and 150 age/sex-matched healthy controls in order to evaluate both intima-media thickness of the right common carotid artery and arterial stiffness using the B-mode echography and the SphygmoCor system® tonometer. (3) Results: The carotid-femoral pulse wave velocity (PWV) was higher in SSc patients than in controls (8.6 ± 1.7 vs. 7.8 ± 1.5 m/s; p < 0.001), as was the carotid-radial PWV (7.8 ± 1.1 vs. 6.7 ± 1.4 m/s; p < 0.001). The intima-media thickness was higher in SSc than in controls (654 ± 108 vs. 602 ± 118 µm; p = 0.004). The other parameters measured at carotid (radial strain, Young’s modulus, compliance and distensibility) all indicated that arterial stiffness in tension was more pronounced in SSc. Of interest, the direct correlation between PWV and age corresponded closely in SSc. Moreover, a significant difference between SSc and controls as regards the carotid parameters was evident in younger subjects. (4) Conclusions: SSc patients showed an increased arterial stiffness compared to healthy controls. In particular, an SSc-related pathologic effect was suggested by the more pronounced increase in PWV with age and lower values of carotid elasticity in younger SSc patients than in age-matched controls.
Collapse
Affiliation(s)
- Michele Colaci
- Rheumatology Clinic, Internal Medicine Unit, AOE Cannizzaro, 95126 Catania, Italy; (M.L.A.); (L.M.)
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (L.Z.); (D.S.); (G.S.); (P.C.)
- Correspondence:
| | - Luca Zanoli
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (L.Z.); (D.S.); (G.S.); (P.C.)
- Internal Medicine Unit, Policlinico Rodolico—S. Marco, 95123 Catania, Italy
| | | | - Domenico Sambataro
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (L.Z.); (D.S.); (G.S.); (P.C.)
| | - Gianluca Sambataro
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (L.Z.); (D.S.); (G.S.); (P.C.)
| | - Maria Letizia Aprile
- Rheumatology Clinic, Internal Medicine Unit, AOE Cannizzaro, 95126 Catania, Italy; (M.L.A.); (L.M.)
| | - Pietro Castellino
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (L.Z.); (D.S.); (G.S.); (P.C.)
- Internal Medicine Unit, Policlinico Rodolico—S. Marco, 95123 Catania, Italy
| | - Lorenzo Malatino
- Rheumatology Clinic, Internal Medicine Unit, AOE Cannizzaro, 95126 Catania, Italy; (M.L.A.); (L.M.)
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (L.Z.); (D.S.); (G.S.); (P.C.)
| |
Collapse
|
40
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:4808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|