1
|
Ren X, Li W. Iron-handling solute carrier SLC22A17 as a blood-brain barrier target after stroke. Neural Regen Res 2025; 20:3207-3208. [PMID: 39715085 PMCID: PMC11881719 DOI: 10.4103/nrr.nrr-d-24-00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Xueqi Ren
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Zhang Y, Zhang Z, Li H, Xiao Y, Ying H. Recent advancements in the application of multi-elemental profiling and ionomics in cardiovascular diseases. J Trace Elem Med Biol 2025; 88:127616. [PMID: 39933207 DOI: 10.1016/j.jtemb.2025.127616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Trace elements and minerals are crucial for human growth and health, whose imbalance is associated with a variety of diseases. Recently, multi-elemental profiling and ionomics have been rapidly developed and widely used to study the distribution, variation, and interactions of various elements in diverse physiological and pathological conditions. By utilizing high-throughput elemental analytical techniques and bioinformatics approaches, researchers can uncover the relationship between the metabolism and balance of different elements and numerous human diseases. METHODS The presented work reviews recent advances in multi-elemental and ionomic profiling of human biological samples for several major types of cardiovascular diseases. RESULTS Research indicates distinct and dynamic patterns of ion contents in these diseases. Accumulation of copper and environmental toxic metals as well as deficiencies in zinc and selenium appear to be the most significant risk factors for the majority of cardiovascular diseases, suggesting that an imbalance in these elements may play a role in the development of these illnesses. Furthermore, each type of cardiovascular disease exhibits a relatively unique distribution of ions in biofluid and hair samples from patients, potentially serving as indicators for the specific disease. CONCLUSION Multi-elemental profiling and ionomics not only enhance our understanding of the association between elemental dyshomeostasis and the development of cardiovascular diseases but also facilitate the discovery of novel diagnostic and prognostic markers for these conditions.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong Province 518055, PR China.
| | - Zaicheng Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province 518055, PR China
| | - Hengtao Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province 518055, PR China
| | - Yao Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province 518055, PR China
| | - Huimin Ying
- Department of Endocrinology, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310023, PR China.
| |
Collapse
|
3
|
An J, Liu Z, Wang Y, Meng K, Wang Y, Sun H, Li M, Tang Z. Drug delivery strategy of hemostatic drugs for intracerebral hemorrhage. J Control Release 2025; 379:202-220. [PMID: 39793654 DOI: 10.1016/j.jconrel.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Intracerebral hemorrhage (ICH) is associated with high rates of mortality and disability, underscoring an urgent need for effective therapeutic interventions. The clinical prognosis of ICH remains limited, primarily due to the absence of targeted, precise therapeutic options. Advances in novel drug delivery platforms, including nanotechnology, gel-based systems, and exosome-mediated therapies, have shown potential in enhancing ICH management. This review delves into the pathophysiological mechanisms of ICH and provides a thorough analysis of existing treatment strategies, with an emphasis on innovative drug delivery approaches designed to address critical pathological pathways. We assess the benefits and limitations of these therapies, offering insights into future directions in ICH research and highlighting the transformative potential of next-generation drug delivery systems in improving patient outcomes.
Collapse
Affiliation(s)
- Junyan An
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhilin Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yihan Wang
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Ke Meng
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Yixuan Wang
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Miao Li
- China-Japan Union Hospital of Jilin University, Department of Neurosurgery, Changchun, Jilin Province 130033, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
4
|
Luo Y, Liu R, Yuan G, Pan Y. Polyphenols for stroke therapy: the role of oxidative stress regulation. Food Funct 2024; 15:11383-11399. [PMID: 39497601 DOI: 10.1039/d4fo01900h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Stroke is associated with a high incidence and disability rate, which seriously endangers human health. Oxidative stress (OS) plays a crucial role in the underlying pathologic progression of cerebral damage in stroke. Emerging experimental studies suggest that polyphenols have antioxidant potential and express protective effects after different types of strokes, but no breakthrough has been achieved in clinical studies. Nanomaterials, due to small characteristic sizes, can be used to deliver drugs, and have shown excellent performance in the treatment of various diseases. The drug delivery capability of nanomaterials has significant implications for the clinical translation and application of polyphenols. This comprehensive review introduces the mechanism of oxidative stress in stroke, and also summarizes the antioxidant effects of polyphenols on reactive oxygen species generation and oxidative stress after stroke. Also, the application characteristics and research progress of nanomaterials in the treatment of stroke with antioxidants are presented.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ruolan Liu
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Academician Workstation, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
5
|
Li W, Shi J, Yu Z, Garcia-Gabilondo M, Held A, Huang L, Deng W, Ning M, Ji X, Rosell A, Wainger BJ, Lo EH. SLC22A17 as a Cell Death-Linked Regulator of Tight Junctions in Cerebral Ischemia. Stroke 2024; 55:1650-1659. [PMID: 38738428 DOI: 10.1161/strokeaha.124.046736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.
Collapse
Affiliation(s)
- Wenlu Li
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jingfei Shi
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (J.S., X.J.)
| | - Zhanyang Yu
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autónoma de Barcelona, Spain (M.G.-G., A.R.)
| | - Aaron Held
- Department of Neurology, Sean M. Healey and AMG Center for ALS (A.H., B.J.W.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lena Huang
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Wenjun Deng
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Clinical Proteomics Research Center (W.D., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Mingming Ning
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Neurology, Clinical Proteomics Research Center (W.D., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Xunming Ji
- Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (J.S., X.J.)
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autónoma de Barcelona, Spain (M.G.-G., A.R.)
| | - Brian J Wainger
- Department of Neurology, Sean M. Healey and AMG Center for ALS (A.H., B.J.W.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eng H Lo
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories (W.L., J.S., Z.Y., L.H., W.D., M.N., E.H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
6
|
Nour Eldine M, Alhousseini M, Nour-Eldine W, Noureldine H, Vakharia KV, Krafft PR, Noureldine MHA. The Role of Oxidative Stress in the Progression of Secondary Brain Injury Following Germinal Matrix Hemorrhage. Transl Stroke Res 2024; 15:647-658. [PMID: 36930383 DOI: 10.1007/s12975-023-01147-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Germinal matrix hemorrhage (GMH) can be a fatal condition responsible for the death of 1.7% of all neonates in the USA. The majority of GMH survivors develop long-term sequalae with debilitating comorbidities. Higher grade GMH is associated with higher mortality rates and higher prevalence of comorbidities. The pathophysiology of GMH can be broken down into two main titles: faulty hemodynamic autoregulation and structural weakness at the level of tissues and cells. Prematurity is the most significant risk factor for GMH, and it predisposes to both major pathophysiological mechanisms of the condition. Secondary brain injury is an important determinant of survival and comorbidities following GMH. Mechanisms of brain injury secondary to GMH include apoptosis, necrosis, neuroinflammation, and oxidative stress. This review will have a special focus on the mechanisms of oxidative stress following GMH, including but not limited to inflammation, mitochondrial reactive oxygen species, glutamate toxicity, and hemoglobin metabolic products. In addition, this review will explore treatment options of GMH, especially targeted therapy.
Collapse
Affiliation(s)
- Mariam Nour Eldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | | | - Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hussein Noureldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Kunal V Vakharia
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Paul R Krafft
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Mohammad Hassan A Noureldine
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
7
|
Tian HY, Huang BY, Nie HF, Chen XY, Zhou Y, Yang T, Cheng SW, Mei ZG, Ge JW. The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases. Brain Sci 2023; 13:1367. [PMID: 37891735 PMCID: PMC10605666 DOI: 10.3390/brainsci13101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cerebral ischemia, a leading cause of disability and mortality worldwide, triggers a cascade of molecular and cellular pathologies linked to several central nervous system (CNS) disorders. These disorders primarily encompass ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and other CNS conditions. Despite substantial progress in understanding and treating the underlying pathological processes in various neurological diseases, there is still a notable absence of effective therapeutic approaches aimed specifically at mitigating the damage caused by these illnesses. Remarkably, ischemia causes severe damage to cells in ischemia-associated CNS diseases. Cerebral ischemia initiates oxygen and glucose deprivation, which subsequently promotes mitochondrial dysfunction, including mitochondrial permeability transition pore (MPTP) opening, mitophagy dysfunction, and excessive mitochondrial fission, triggering various forms of cell death such as autophagy, apoptosis, as well as ferroptosis. Ferroptosis, a novel type of regulated cell death (RCD), is characterized by iron-dependent accumulation of lethal reactive oxygen species (ROS) and lipid peroxidation. Mitochondrial dysfunction and ferroptosis both play critical roles in the pathogenic progression of ischemia-associated CNS diseases. In recent years, growing evidence has indicated that mitochondrial dysfunction interplays with ferroptosis to aggravate cerebral ischemia injury. However, the potential connections between mitochondrial dysfunction and ferroptosis in cerebral ischemia have not yet been clarified. Thus, we analyzed the underlying mechanism between mitochondrial dysfunction and ferroptosis in ischemia-associated CNS diseases. We also discovered that GSH depletion and GPX4 inactivation cause lipoxygenase activation and calcium influx following cerebral ischemia injury, resulting in MPTP opening and mitochondrial dysfunction. Additionally, dysfunction in mitochondrial electron transport and an imbalanced fusion-to-fission ratio can lead to the accumulation of ROS and iron overload, which further contribute to the occurrence of ferroptosis. This creates a vicious cycle that continuously worsens cerebral ischemia injury. In this study, our focus is on exploring the interplay between mitochondrial dysfunction and ferroptosis, which may offer new insights into potential therapeutic approaches for the treatment of ischemia-associated CNS diseases.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Xili Lake, Nanshan District, Shenzhen 518000, China;
| | - Bo-Yang Huang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hui-Fang Nie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiang-Yu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Academy of Traditional Chinese Medicine, Changsha 410208, China
| |
Collapse
|
8
|
Mao H, Dou W, Chen K, Wang X, Wang X, Guo Y, Zhang C. Evaluating iron deposition in gray matter nuclei of patients with unilateral middle cerebral artery stenosis using quantitative susceptibility mapping. Neuroimage Clin 2022; 34:103021. [PMID: 35500369 PMCID: PMC9065429 DOI: 10.1016/j.nicl.2022.103021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/17/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022]
Abstract
Iron mediated oxidative stress is involved in the process of brain injury after long-term ischemia. While increased iron deposition in the affected brain regions was observed in animal models of ischemic stroke, potential changes in the brain iron content in clinical patients with cerebral ischemia remain unclear. Quantitative susceptibility mapping (QSM), a non-invasive magnetic resonance imaging technique, can be used to evaluate iron content in the gray matter (GM) nuclei reliably. In this study, we aimed to quantitatively evaluate iron content changes in GM nuclei of patients with long-term unilateral middle cerebral artery (MCA) stenosis/occlusion-related cerebral ischemia using QSM. Forty-six unilateral MCA stenosis/occlusion patients and 38 age-, sex- and education-matched healthy controls underwent QSM. Clinical variables of history of hypertension, diabetes, hyperlipidemia, hyperhomocysteinemia, smoking, and drinking in all patients were evaluated. The iron-related susceptibility of GM nucleus subregions, including the bilateral caudate nucleus (CN), putamen (PU), globus pallidus (GP), thalamus, substantia nigra (SN), red nucleus, and dentate nucleus, was assessed. Susceptibility was compared between the bilateral GM nuclei in patients and controls. Receiver operating characteristic curve analysis was used to evaluate the efficacy of QSM susceptibility in distinguishing patients with unilateral MCA stenosis/occlusion from healthy controls. Multiple linear regression analysis was used to evaluate the relationship between ipsilateral susceptibility levels and clinical variables. Except for the CN, the susceptibility in most bilateral GM nucleus subregions was comparable in healthy controls, whereas for patients with unilateral MCA stenosis/occlusion, the ipsilateral PU, GP, and SN exhibited significantly higher susceptibility than the contralateral side (all P < 0.05). Compared with controls, susceptibility of the ipsilateral PU, GP, and SN and of contralateral PU in patients were significantly increased (all P < 0.05). The area under the curve (AUC) was greater for the ipsilateral PU than for the GP and SN (AUC = 0.773, 0.662 and 0.681; all P < 0.05). Multiple linear regression analysis showed that the increased susceptibility of the ipsilateral PU was significantly associated with hypertension, of the ipsilateral GP associated with smoking, and of the ipsilateral SN associated with diabetes (all P < 0.05). Our findings provide support for abnormal iron accumulation in the GM nuclei after chronic MCA stenosis/occlusion and its correlation with some cerebrovascular disease risk factors. Therefore, iron deposition in the GM nuclei, as measured by QSM, may be a potential biomarker for long-term cerebral ischemia.
Collapse
Affiliation(s)
- Huimin Mao
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China; Shandong First Medical University, Jinan, Shandong Province 250000, China
| | - Weiqiang Dou
- MR Research, GE Healthcare, Beijing 10076, China
| | - Kunjian Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China; Shandong First Medical University, Jinan, Shandong Province 250000, China
| | - Xinyu Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China; Shandong First Medical University, Jinan, Shandong Province 250000, China
| | - Xinyi Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China.
| | - Yu Guo
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China; Shandong First Medical University, Jinan, Shandong Province 250000, China
| | - Chao Zhang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China
| |
Collapse
|
9
|
Xu A, Wen ZH, Su SX, Chen YP, Liu WC, Guo SQ, Li XF, Zhang X, Li R, Xu NB, Wang KX, Li WX, Guan DG, Duan CZ. Elucidating the Synergistic Effect of Multiple Chinese Herbal Prescriptions in the Treatment of Post-stroke Neurological Damage. Front Pharmacol 2022; 13:784242. [PMID: 35355727 PMCID: PMC8959705 DOI: 10.3389/fphar.2022.784242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Traditional Chinese medicine (TCM) has been widely used in the treatment of human diseases. However, the synergistic effects of multiple TCM prescriptions in the treatment of stroke have not been thoroughly studied. Objective of the study: This study aimed to reveal the mechanisms underlying the synergistic effects of these TCM prescriptions in stroke treatment and identify the active compounds. Methods: Herbs and compounds in the Di-Tan Decoction (DTD), Xue-Fu Zhu-Yu Decoction (XFZYD), and Xiao-Xu-Ming Decoction (XXMD) were acquired from the TCMSP database. SEA, HitPick, and TargetNet web servers were used for target prediction. The compound-target (C-T) networks of three prescriptions were constructed and then filtered using the collaborative filtering algorithm. We combined KEGG enrichment analysis, molecular docking, and network analysis approaches to identify active compounds, followed by verification of these compounds with an oxygen-glucose deprivation and reoxygenation (OGD/R) model. Results: The filtered DTD network contained 39 compounds and 534 targets, the filtered XFZYD network contained 40 compounds and 508 targets, and the filtered XXMD network contained 55 compounds and 599 targets. The filtered C-T networks retained approximately 80% of the biological functions of the original networks. Based on the enriched pathways, molecular docking, and network analysis results, we constructed a complex network containing 3 prescriptions, 14 botanical drugs, 26 compounds, 13 targets, and 5 pathways. By calculating the synergy score, we identified the top 5 candidate compounds. The experimental results showed that quercetin, baicalin, and ginsenoside Rg1 independently and synergistically increased cell viability. Conclusion: By integrating pharmacological and chemoinformatic approaches, our study provides a new method for identifying the effective synergistic compounds of TCM prescriptions. The filtered compounds and their synergistic effects on stroke require further research.
Collapse
Affiliation(s)
- Anqi Xu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuo-Hua Wen
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shi-Xing Su
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Wen-Chao Liu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shen-Quan Guo
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xi-Feng Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ning-Bo Xu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Xin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Wen-Xing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-Zhi Duan
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Zhou Y, Lin W, Rao T, Zheng J, Zhang T, Zhang M, Lin Z. Ferroptosis and Its Potential Role in the Nervous System Diseases. J Inflamm Res 2022; 15:1555-1574. [PMID: 35264867 PMCID: PMC8901225 DOI: 10.2147/jir.s351799] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a novel regulated cell death characterized by metabolic disorders and iron-dependent oxidative destruction of the lipid bilayer. It is primarily caused by the imbalance of oxidation and anti-oxidation in the body and is precisely regulated by numerous factors and pathways inside and outside the cell. Recent studies have indicated that ferroptosis plays a vital role in the pathophysiological process of multiple systems of the body including the nervous system. Ferroptosis may be closely linked to the occurrence and development of neurodegenerative diseases, strokes, and brain tumors. It may also be involved in the development, maturation, and aging of the nervous system. Therefore, this study aims to investigate ferroptosis’s occurrence and regulatory mechanism and summarize its research progress in the pathogenesis and treatment of neurological diseases. This would allow for novel ideas for basic and clinical research of neurological diseases.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tian Rao
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Jinyu Zheng
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tianlei Zhang
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
- Correspondence: Zhenlang Lin, Email
| |
Collapse
|
11
|
CNS Redox Homeostasis and Dysfunction in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020405. [PMID: 35204286 PMCID: PMC8869494 DOI: 10.3390/antiox11020405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
A single paragraph of about 200 words maximum. Neurodegenerative diseases (ND), such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, pose a global challenge in the aging population due to the lack of treatments for their cure. Despite various disease-specific clinical symptoms, ND have some fundamental common pathological mechanisms involving oxidative stress and neuroinflammation. The present review focuses on the major causes of central nervous system (CNS) redox homeostasis imbalance comprising mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial disturbances, leading to reduced mitochondrial function and elevated reactive oxygen species (ROS) production, are thought to be a major contributor to the pathogenesis of ND. ER dysfunction has been implicated in ND in which protein misfolding evidently causes ER stress. The consequences of ER stress ranges from an increase in ROS production to altered calcium efflux and proinflammatory signaling in glial cells. Both pathological pathways have links to ferroptotic cell death, which has been implicated to play an important role in ND. Pharmacological targeting of these pathological pathways may help alleviate or slow down neurodegeneration.
Collapse
|
12
|
Wei Y, Song X, Gao Y, Gao Y, Li Y, Gu L. Iron toxicity in intracerebral hemorrhage: Physiopathological and therapeutic implications. Brain Res Bull 2021; 178:144-154. [PMID: 34838852 DOI: 10.1016/j.brainresbull.2021.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023]
Abstract
Intracerebral hemorrhage (ICH)-induced brain injury is a continuous pathological process that involves the deterioration of neurological functions, such as sensory, cognitive or motor functions. Cytotoxic byproducts of red blood cell lysis, especially free iron, appear to be a significant pathophysiologic mechanism leading to ICH-induced injury. Free iron has a crucial role in secondary brain injury after ICH. Chelating iron may attenuate iron-induced neurotoxicity and may be developed as a therapeutic candidate for ICH treatment. In this review, we focused on the potential role of iron toxicity in ICH-induced injury and iron chelation therapy in the management of ICH. It will hopefully advance our understanding of the pathogenesis of ICH and lead to new approaches for treatment.
Collapse
Affiliation(s)
- Yufei Wei
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Xiaoxiao Song
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Ying Gao
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100010, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100010, China
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100010, China
| | - Lian Gu
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China.
| |
Collapse
|
13
|
Gossypitrin, A Naturally Occurring Flavonoid, Attenuates Iron-Induced Neuronal and Mitochondrial Damage. Molecules 2021; 26:molecules26113364. [PMID: 34199597 PMCID: PMC8199700 DOI: 10.3390/molecules26113364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
The disruption of iron homeostasis is an important factor in the loss of mitochondrial function in neural cells, leading to neurodegeneration. Here, we assessed the protective action of gossypitrin (Gos), a naturally occurring flavonoid, on iron-induced neuronal cell damage using mouse hippocampal HT-22 cells and mitochondria isolated from rat brains. Gos was able to rescue HT22 cells from the damage induced by 100 µM Fe(II)-citrate (EC50 8.6 µM). This protection was linked to the prevention of both iron-induced mitochondrial membrane potential dissipation and ATP depletion. In isolated mitochondria, Gos (50 µM) elicited an almost complete protection against iron-induced mitochondrial swelling, the loss of mitochondrial transmembrane potential and ATP depletion. Gos also prevented Fe(II)-citrate-induced mitochondrial lipid peroxidation with an IC50 value (12.45 µM) that was about nine time lower than that for the tert-butylhydroperoxide-induced oxidation. Furthermore, the flavonoid was effective in inhibiting the degradation of both 15 and 1.5 mM 2-deoxyribose. It also decreased Fe(II) concentration with time, while increasing O2 consumption rate, and impairing the reduction of Fe(III) by ascorbate. Gos-Fe(II) complexes were detected by UV-VIS and IR spectroscopies, with an apparent Gos-iron stoichiometry of 2:1. Results suggest that Gos does not generally act as a classical antioxidant, but it directly affects iron, by maintaining it in its ferric form after stimulating Fe(II) oxidation. Metal ions would therefore be unable to participate in a Fenton-type reaction and the lipid peroxidation propagation phase. Hence, Gos could be used to treat neuronal diseases associated with iron-induced oxidative stress and mitochondrial damage.
Collapse
|
14
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 355] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
15
|
Mechanisms of Oxidative Stress and Therapeutic Targets following Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8815441. [PMID: 33688394 PMCID: PMC7920740 DOI: 10.1155/2021/8815441] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress (OS) is induced by the accumulation of reactive oxygen species (ROS) following intracerebral hemorrhage (ICH) and plays an important role in secondary brain injury caused by the inflammatory response, apoptosis, autophagy, and blood-brain barrier (BBB) disruption. This review summarizes the current state of knowledge regarding the pathogenic mechanisms of brain injury after ICH, markers for detecting OS, and therapeutic strategies that target OS to mitigate brain injury.
Collapse
|
16
|
Keuters MH, Keksa-Goldsteine V, Dhungana H, Huuskonen MT, Pomeshchik Y, Savchenko E, Korhonen PK, Singh Y, Wojciechowski S, Lehtonen Š, Kanninen KM, Malm T, Sirviö J, Muona A, Koistinaho M, Goldsteins G, Koistinaho J. An arylthiazyne derivative is a potent inhibitor of lipid peroxidation and ferroptosis providing neuroprotection in vitro and in vivo. Sci Rep 2021; 11:3518. [PMID: 33568697 PMCID: PMC7876050 DOI: 10.1038/s41598-021-81741-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Lipid peroxidation-initiated ferroptosis is an iron-dependent mechanism of programmed cell death taking place in neurological diseases. Here we show that a condensed benzo[b]thiazine derivative small molecule with an arylthiazine backbone (ADA-409-052) inhibits tert-Butyl hydroperoxide (TBHP)-induced lipid peroxidation (LP) and protects against ferroptotic cell death triggered by glutathione (GSH) depletion or glutathione peroxidase 4 (GPx4) inhibition in neuronal cell lines. In addition, ADA-409-052 suppresses pro-inflammatory activation of BV2 microglia and protects N2a neuronal cells from cell death induced by pro-inflammatory RAW 264.7 macrophages. Moreover, ADA-409-052 efficiently reduces infarct volume, edema and expression of pro-inflammatory genes in a mouse model of thromboembolic stroke. Targeting ferroptosis may be a promising therapeutic strategy in neurological diseases involving severe neuronal death and neuroinflammation.
Collapse
Affiliation(s)
- Meike Hedwig Keuters
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Velta Keksa-Goldsteine
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hiramani Dhungana
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Mikko T Huuskonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yuriy Pomeshchik
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Savchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paula K Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yajuvinder Singh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland.
| |
Collapse
|
17
|
Kosyakovsky J, Fine JM, Frey WH, Hanson LR. Mechanisms of Intranasal Deferoxamine in Neurodegenerative and Neurovascular Disease. Pharmaceuticals (Basel) 2021; 14:ph14020095. [PMID: 33513737 PMCID: PMC7911954 DOI: 10.3390/ph14020095] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying disease-modifying therapies for neurological diseases remains one of the greatest gaps in modern medicine. Herein, we present the rationale for intranasal (IN) delivery of deferoxamine (DFO), a high-affinity iron chelator, as a treatment for neurodegenerative and neurovascular disease with a focus on its novel mechanisms. Brain iron dyshomeostasis with iron accumulation is a known feature of brain aging and is implicated in the pathogenesis of a number of neurological diseases. A substantial body of preclinical evidence and early clinical data has demonstrated that IN DFO and other iron chelators have strong disease-modifying impacts in Alzheimer’s disease (AD), Parkinson’s disease (PD), ischemic stroke, and intracranial hemorrhage (ICH). Acting by the disease-nonspecific pathway of iron chelation, DFO targets each of these complex diseases via multifactorial mechanisms. Accumulating lines of evidence suggest further mechanisms by which IN DFO may also be beneficial in cognitive aging, multiple sclerosis, traumatic brain injury, other neurodegenerative diseases, and vascular dementia. Considering its known safety profile, targeted delivery method, robust preclinical efficacy, multiple mechanisms, and potential applicability across many neurological diseases, the case for further development of IN DFO is considerable.
Collapse
Affiliation(s)
- Jacob Kosyakovsky
- School of Medicine, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, VA 22903, USA;
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
| | - Jared M. Fine
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
- Correspondence:
| | - William H. Frey
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
| | - Leah R. Hanson
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
| |
Collapse
|