1
|
Zhang X, Xiang Z, Wang F, Pan X, Zhang Q, Wang P, Jiang L, Yuan H. 13N-NH 3 myocardial perfusion imaging with reduced scan duration: a feasibility study in the era of total-body PET/CT. EJNMMI Phys 2025; 12:18. [PMID: 40032742 DOI: 10.1186/s40658-025-00729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
PURPOSE To explore the feasibility of reducing scan duration of 13N-NH3 myocardial perfusion imaging (MPI) using a total-body PET/CT scanner. METHODS Forty-five patients with known or suspected coronary artery disease (CAD) performing rest 13N-NH3 MPI with total-body PET/CT were retrospectively included. PET data were acquired in list mode for 10 min, and reconstructed into sequence images of different scan duration: 10-min, 7-min, 5-min, 3-min, and 2-min (G10 to G2). Subjective visual evaluation including overall impression, image noise and lesion visibility was evaluated using 5-point Likert scale. Quantitative parameters including perfusion defect extent (Extent), total perfusion defect (TPD), summed rest score (SRS), end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), and myocardial blood flow (MBF) were analyzed. The full-time images (G10) were served as the reference. RESULTS There were no significant differences in subjective visual scores between G7-G5 and G10 groups (p > 0.05). A significant decrease in overall impression and image noise of G3-G2 was observed when compared to G10 (p < 0.05). However, no significant difference in lesion visibility was noted between G3 and G10 (p > 0.05). All G3 image quality was clinically acceptable (≥ 3 points). Except for EDV and ESV, other quantitative parameters showed no significant difference between G7-G3 and G10 (p > 0.05) and agreements were good (ICC = 0.974-0.998). For G2, only TPD exhibited no significant difference when compared to G10 (p > 0.05). CONCLUSION Regarding imaging quality and parametric quantification accuracy of 13N-NH3 MPI, a 3-min scan is clinically acceptable, while a 5-min scan is sufficiently reliable.
Collapse
Affiliation(s)
- Xiaochun Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Zeyin Xiang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Fanghu Wang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Xiaoqiang Pan
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Qing Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Peng Wang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Lei Jiang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China.
| | - Hui Yuan
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Renaud JM, Al-Mallah MH, Soman P, deKemp RA, Beanlands RSB, Arumugam P, Armstrong IS, Prior JO, Madamanchi C, Goonewardena SN, Poitrasson-Rivière A, Moody JB, Ficaro EP, Murthy VL. How to differentiate obstructive from non-obstructive CAD with PET: Developments in high-resolution regional quantification of MBF and MFR. J Nucl Cardiol 2024; 41:102023. [PMID: 39179097 DOI: 10.1016/j.nuclcard.2024.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Affiliation(s)
| | | | - Prem Soman
- Division of Cardiology and the Heart and Vascular Institute, University of Pittsburgh Medical Center, USA
| | - Robert A deKemp
- National Cardiac PET Centre, University of Ottawa Heart Institute, Ottawa Ontario, Canada
| | - Rob S B Beanlands
- National Cardiac PET Centre, University of Ottawa Heart Institute, Ottawa Ontario, Canada
| | - Parthiban Arumugam
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, United Kingdom
| | - Ian S Armstrong
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, United Kingdom
| | - John O Prior
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland; University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Chaitanya Madamanchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sascha N Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Health System, Ann Arbor, MI, USA
| | | | | | | | - Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Renaud JM, Poitrasson-Rivière A, Moody JB, Hagio T, Ficaro EP, Murthy VL. Improved diagnostic accuracy for coronary artery disease detection with quantitative 3D 82Rb PET myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2023; 51:147-158. [PMID: 37721579 DOI: 10.1007/s00259-023-06414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE To establish requirements for normal databases for quantitative rubidium-82 (82Rb) PET MPI analysis with contemporary 3D PET/CT technology and reconstruction methods for maximizing diagnostic accuracy of total perfusion deficit (TPD), a combined metric of defect extent and severity, versus invasive coronary angiography. METHODS In total, 1571 patients with 82Rb PET/CT MPI on a 3D scanner and stress static images reconstructed with and without time-of-flight (TOF) modeling were identified. An additional eighty low pre-test probability of disease (PTP) patients reported as normal were used to form separate sex-stratified and sex-independent iterative and TOF normal databases. 3D normal databases were applied to matched patient reconstructions to quantify TPD. Per-patient and per-vessel performance of 3D versus 2D PET normal databases was assessed with receiver operator characteristic curve analysis. Diagnostic accuracy was evaluated at optimal thresholds established from PTP patients. Results were compared against logistic regression modeling of TPD adjusted for clinical variables, and standard clinical interpretation. RESULTS TPD diagnostic accuracy was significantly higher using 3D PET normal databases (per-patient: 80.1% for 3D databases, versus 74.9% and 77.7% for 2D database applied to iterative and TOF images respectively, p < 0.05). Differences in male and female normal distributions for 3D attenuation-corrected reconstructions were not clinically meaningful; therefore, sex-independent databases were used. Logistic regression modeling including TPD demonstrated improved performance over clinical reads. CONCLUSIONS Normal databases tailored to 3D PET images provide significantly improved diagnostic accuracy for PET MPI evaluation with automated quantitative TPD. Clinical application of these techniques should be considered to support accurate image interpretation.
Collapse
Affiliation(s)
- Jennifer M Renaud
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA.
| | | | - Jonathan B Moody
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
| | - Tomoe Hagio
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
| | - Edward P Ficaro
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
| | - Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Advances in Digital PET Technology and Its Potential Impact on Myocardial Perfusion and Blood Flow Quantification. Curr Cardiol Rep 2023; 25:261-268. [PMID: 36826688 DOI: 10.1007/s11886-023-01850-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE OF REVIEW In this review, we explore the development of digital PET scanners and describe the mechanism by which they work. We dive into some technical details on what differentiates a digital PET from a conventional PET scanner and how such differences lead to better imaging characteristics. Additionally, we summarize the available evidence on the improvements in the images acquired by digital PET as well as the remaining pitfalls. Finally, we report the comparative studies available on how digital PET compares to conventional PET, particularly in the quantification of coronary blood flow. RECENT FINDINGS The advent of digital PET offers high sensitivity and time-of-flight (TOF), which allow lower activity and scan times, with much less risk of detector saturation. This allows faster patient throughput, scanning more patients per generator, and acquiring more consistent image quality across patients. The higher sensitivity captures more of the potential artifacts, particularly motion-related ones, which presents a current challenge that still needs to be tackled. The digital silicon photomultiplier (SiPM) positron emission tomography (PET) machine has been an important development in the technological advancements of non-invasive nuclear cardiovascular imaging. It has enhanced the utility for PET myocardial perfusion imaging (MPI) and myocardial blood flow (MBF) quantification.
Collapse
|
5
|
Improving Detection of CAD and Prognosis with PET/CT Quantitative Absolute Myocardial Blood Flow Measurements. Curr Cardiol Rep 2022; 24:1855-1864. [PMID: 36348147 DOI: 10.1007/s11886-022-01805-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an overview of the role of PET MPI in the detection of CAD, focussing on the added value of MBF for diagnosis and prognostication. RECENT FINDINGS Positron emission tomography (PET) myocardial perfusion imaging (MPI) is increasingly used for the risk stratification of patients with suspected or established coronary artery disease (CAD). PET MPI provides accurate and reproducible non-invasive quantification of myocardial blood flow (MBF) at rest and during hyperemia, providing incremental information over conventional myocardial perfusion alone. Inclusion of MBF in PET MPI interpretation improves both its sensitivity and specificity. Moreover, quantitative MBF measurements have repeatedly been shown to offer incremental and independent prognostic information over conventional clinical markers in a broad range of conditions, including in CAD. Quantitative MBF measurement is now an established and powerful tool enabling accurate risk stratification and guiding patients' management. The role of PET MPI and flow quantification in cardiac allograft vasculopathy (CAV), which represents a particular form of CAD, will also be reviewed.
Collapse
|
6
|
Armstrong IS, Memmott MJ, Hayden C, Arumugam P. The prevalence of image degradation due to motion in rest-stress rubidium-82 imaging on a SiPM PET-CT system. J Nucl Cardiol 2022; 29:1596-1606. [PMID: 33608851 DOI: 10.1007/s12350-021-02531-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Motion of the heart is known to affect image quality in cardiac PET. The prevalence of motion blurring in routine cardiac PET is not fully appreciated due to challenges identifying subtle motion artefacts. This study utilizes a recent prototype Data-Driven Motion Correction (DDMC) algorithm to generate corrected images that are compared with non-corrected images to identify visual differences in relative rubidium-82 perfusion images due to motion. METHODS 300 stress and 300 rest static images were reconstructed with DDMC and without correction (NMC). The 600 DDMC/NMC image pairs were assigned Visual Difference Score (VDS). The number of non-diagnostic images were noted. A "Dwell Fraction" (DF) was derived from the data to quantify motion and predict image degradation. RESULTS Motion degradation (VDS = 1 or 2) was evident in 58% of stress images and 33% of rest images. Seven NMC images were non-diagnostic-these originated from six studies giving a 2% rate of non-diagnostic studies due to motion. The DF metric was able to effectively predict image degradation. The DDMC heart identification and tracking was successful in all images. CONCLUSION Motion degradation is present in almost half of all relative perfusion images. The DDMC algorithm is a robust tool for predicting, assessing and correcting image degradation.
Collapse
Affiliation(s)
- Ian S Armstrong
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK.
| | - Matthew J Memmott
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Charles Hayden
- Siemens Medical Solutions USA, Inc., Molecular Imaging, Knoxville, TN, USA
| | - Parthiban Arumugam
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| |
Collapse
|
7
|
Garcia EV, Nye JA. Moving forward with motion reduction, detection and correction in cardiac PET. J Nucl Cardiol 2022; 29:1607-1610. [PMID: 33748937 DOI: 10.1007/s12350-021-02599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Ernest V Garcia
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Room 1203, Atlanta, GA, 30322, USA.
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Room 1203, Atlanta, GA, 30322, USA
| |
Collapse
|
8
|
Arida-Moody L, Moody JB, Renaud JM, Poitrasson-Rivière A, Hagio T, Smith AM, Ficaro EP, Murthy VL. Effects of two patient-specific dosing protocols on measurement of myocardial blood flow with 3D 82Rb cardiac PET. Eur J Nucl Med Mol Imaging 2021; 48:3835-3846. [PMID: 33982174 DOI: 10.1007/s00259-021-05385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/25/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Clinical measurement of myocardial blood flow (MBF) has emerged as an important component of routine PET-CT assessment of myocardial perfusion in patients with known or suspected coronary artery disease. Although multiple society guidelines recommend patient-specific dosing, there is a lack of studies evaluating the efficacy of patient-specific dosing for quantitative MBF accuracy. METHODS Two patient-specific dosing protocols (weight- and BMI-adjusted) were retrospectively evaluated in 435 consecutive clinical patients referred for PET myocardial perfusion assessment. MBF was estimated at rest and after regadenoson-induced hyperemia. The effect of dosing protocol on dose reduction, PET scanner saturation, relative perfusion, and image quality was compared. The effect of PET saturation on the accuracy of MBF and myocardial flow reserve (MFR) in remote myocardium was assessed with multivariable linear regression. RESULTS BMI-adjusted dosing was associated with lower administered 82Rb activities (1036.0 ± 274 vs. 1147 ± 274 MBq, p = 0.003) and lower PET scanner saturation incidence (28 vs. 38%, p = 0.006) and severity (median saturation severity index 0.219 ± 0.33 vs. 0.397 ± 0.59%, p = 0.018) compared to weight-adjusted dosing. PET saturation that occurred with either dosing protocol was moderate and resulted in modest remote MBF and MFR biases ranging from 2 to 9% after adjusting for patient age, sex, BMI, rate-pressure product, and LV ejection fraction. No adverse effects of BMI dose adjustment were observed in relative perfusion assessment or image quality. CONCLUSIONS Patient-specific dosing according to BMI is an effective method for guideline-directed dose reduction while maintaining image quality and accuracy for routine MBF and MFR quantification.
Collapse
Affiliation(s)
- Liliana Arida-Moody
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | - Edward P Ficaro
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- INVIA, LLC, Ann Arbor, MI, USA
| | - Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|