1
|
Ren W, Yu Y, Wang T, Wang X, Su K, Wang Y, Tang W, Liu M, Zhang Y, Yang L, Diao H. Comprehensive analysis of metabolism-related gene biomarkers reveals their impact on the diagnosis and prognosis of triple-negative breast cancer. BMC Cancer 2025; 25:668. [PMID: 40217479 PMCID: PMC11987350 DOI: 10.1186/s12885-025-14053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by poor prognosis and limited treatment options, which underscores the urgency of the discovery of new biomarkers. Metabolic reprogramming is a hallmark of cancer and is expected to serve as a strong predictive biomarker for breast cancer. METHODS We integrated RNA expression data and clinical information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to explore the associations between metabolism-related gene expression and TNBC prognosis. Our comprehensive approach included differential expression analysis, enrichment analysis, Cox regression analysis, machine learning, and in vitro experimental validation. RESULTS We identified five pivotal genes-SDS, RDH12, IDO1, GLDC, and ALOX12B-that were significantly correlated with the prognosis of TNBC patients. A prognostic model incorporating these genes was developed and validated in an independent patient cohort. The model demonstrated predictive validity, as TNBC patients classified into the high-risk group exhibited significantly poorer prognoses. Additionally, utilizing the risk model, we evaluated the mutational landscape, immune infiltration, immunotherapy response, and drug sensitivity in TNBC, providing insights into potential therapeutic strategies. CONCLUSIONS This study established a robust prognostic model capable of accurately predicting clinical outcomes and metastasis, which could aid in personalized clinical decision-making.
Collapse
Affiliation(s)
- Weibin Ren
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
| | - Yuyun Yu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
| | - Kunkai Su
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanbo Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
| | - Wenjie Tang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
| | - Miaomiao Liu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
| | - Yanhui Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
| | - Long Yang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
| | - Hongyan Diao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China.
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Nor WMFSBWM, Kwong SC, Fuzi AAM, Said NABM, Jamil AHA, Lee YY, Lee SC, Lim YAL, Chung I. Linking microRNA to metabolic reprogramming and gut microbiota in the pathogenesis of colorectal cancer (Review). Int J Mol Med 2025; 55:46. [PMID: 39820715 PMCID: PMC11759585 DOI: 10.3892/ijmm.2025.5487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Colorectal cancer (CRC), an emerging public health concern, is one of the leading causes of cancer morbidity and mortality worldwide. An increasing body of evidence shows that dysfunction in metabolic reprogramming is a crucial characteristic of CRC progression. Specifically, metabolic reprogramming abnormalities in glucose, glutamine and lipid metabolism provide the tumour with energy and nutrients to support its rapid cell proliferation and survival. More recently, microRNAs (miRNAs) appear to be involved in the pathogenesis of CRC, including regulatory roles in energy metabolism. In addition, it has been revealed that dysbiosis in CRC might play a key role in impairing the host metabolic reprogramming processes, and while the exact interactions remain unclear, the link may lie with miRNAs. Hence, the aims of the current review include first, to delineate the metabolic reprogramming abnormalities in CRC; second, to explain how miRNAs mediate the aberrant regulations of CRC metabolic pathways; third, linking miRNAs with metabolic abnormalities and dysbiosis in CRC and finally, to discuss the roles of miRNAs as potential biomarkers.
Collapse
Affiliation(s)
| | - Soke Chee Kwong
- Centre for Population Health (CePH), Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Afiqah Alyaa Md Fuzi
- Office of Deputy Vice Chancellor (Research and Innovation), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Akmarina Binti Mohd Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Malaysia
| | - Soo Ching Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yvonne Ai-Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Zhao XH, Han MM, Yan QQ, Yue YM, Ye K, Zhang YY, Teng L, Xu L, Shi XJ, La T, Feng YC, Xu R, Narayana VK, De Souza DP, Quek LE, Holst J, Liu T, Baker MA, Thorne RF, Zhang XD, Jin L. DNA replication stress underpins the vulnerability to oxidative phosphorylation inhibition in colorectal cancer. Cell Death Dis 2025; 16:16. [PMID: 39809754 PMCID: PMC11733219 DOI: 10.1038/s41419-025-07334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/07/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) is a therapeutic vulnerability in glycolysis-deficient cancers. Here we show that inhibiting OXPHOS similarly suppresses the proliferation and tumorigenicity of glycolytically competent colorectal cancer (CRC) cells in vitro and in patient-derived CRC xenografts. While the increased glycolytic activity rapidly replenished the ATP pool, it did not restore the reduced production of aspartate upon OXPHOS inhibition. This shortage in aspartate, in turn, caused nucleotide deficiencies, leading to S phase cell cycle arrest, replication fork stalling, and enrichment of the p53 pathway, manifestations of replication stress. The addition of purine nucleobases adenine and guanine along with the pyrimidine nucleoside uridine restored replication fork progression and cell proliferation, whereas the supplementation of exogenous aspartate recovered the nucleotide pool, demonstrating a causal role of the aspartate shortage in OXPHOS inhibition-induced nucleotide deficiencies and consequently replication stress and reductions in proliferation. Moreover, we demonstrate that glutamic-oxaloacetic transaminase 1 (GOT1) is critical for maintaining the minimum aspartate pool when OXPHOS is inhibited, as knockdown of GOT1 further reduced aspartate levels and rendered CRC cells more sensitive to OXPHOS inhibition both in vitro and in vivo. These results propose GOT1 targeting as a potential avenue to sensitize cancer cells to OXPHOS inhibitors, thus lowering the necessary doses to efficiently inhibit cancer growth while alleviating their adverse effects.
Collapse
Affiliation(s)
- Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Man Man Han
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Noncoding RNA and Cancer Metabolism, Henan International Join Laboratory of Noncoding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Qian Yan
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Noncoding RNA and Cancer Metabolism, Henan International Join Laboratory of Noncoding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Meng Yue
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Noncoding RNA and Cancer Metabolism, Henan International Join Laboratory of Noncoding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Kaihong Ye
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Noncoding RNA and Cancer Metabolism, Henan International Join Laboratory of Noncoding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Liu Teng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Noncoding RNA and Cancer Metabolism, Henan International Join Laboratory of Noncoding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Xu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Xiao-Jing Shi
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Chen Feng
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Ran Xu
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Vinod K Narayana
- Bio21 Institute and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Metabolomics Australia, University of Melbourne, Parkville, VIC, Australia
| | - David P De Souza
- Bio21 Institute and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Metabolomics Australia, University of Melbourne, Parkville, VIC, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Tao Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Noncoding RNA and Cancer Metabolism, Henan International Join Laboratory of Noncoding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, NSW, Australia
| | - Mark A Baker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Rick F Thorne
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Noncoding RNA and Cancer Metabolism, Henan International Join Laboratory of Noncoding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Noncoding RNA and Cancer Metabolism, Henan International Join Laboratory of Noncoding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China.
| | - Lei Jin
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Noncoding RNA and Cancer Metabolism, Henan International Join Laboratory of Noncoding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China.
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
4
|
Rauth S, Malafa M, Ponnusamy MP, Batra SK. Emerging Trends in Gastrointestinal Cancer Targeted Therapies: Harnessing Tumor Microenvironment, Immune Factors, and Metabolomics Insights. Gastroenterology 2024; 167:867-884. [PMID: 38759843 PMCID: PMC11793124 DOI: 10.1053/j.gastro.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Gastrointestinal (GI) cancers are the leading cause of new cancer cases and cancer-related deaths worldwide. The treatment strategies for patients with GI tumors have focused on oncogenic molecular profiles associated with tumor cells. Recent evidence has demonstrated that the tumor cell functions are modulated by its microenvironment, compromising fibroblasts, extracellular matrices, microbiome, immune cells, and the enteric nervous system. Along with the tumor microenvironment components, alterations in key metabolic pathways have emerged as a hallmark of tumor cells. From these perspectives, this review will highlight the functions of different cellular components of the GI tumor microenvironment and their implications for treatment. Furthermore, we discuss the major metabolic reprogramming in GI tumor cells and how understanding metabolic rewiring could lead to new therapeutic strategies. Finally, we briefly summarize the targeted agents currently being studied in GI cancers. Understanding the complex interplay between tumor cell-intrinsic and -extrinsic factors during tumor progression is critical for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| |
Collapse
|
5
|
Wang M, Qu L, Du X, Song P, Ng JPL, Wong VKW, Law BYK, Fu X. Natural Products and Derivatives Targeting Metabolic Reprogramming in Colorectal Cancer: A Comprehensive Review. Metabolites 2024; 14:490. [PMID: 39330497 PMCID: PMC11433951 DOI: 10.3390/metabo14090490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Metabolic reprogramming is a critical pathogenesis of colorectal cancer (CRC), referring to metabolic disorders that cancer cells make in response to the stimulating pressure. Metabolic reprogramming induces changes in genetic material and promotes CRC progression and has been proven to be an efficient target of CRC. As natural products have garnered interest due to notable pharmacological effects and potential in counteracting chemoresistance, an increasing body of research is delving into the impact of these natural products on the metabolic reprogramming associated with CRC. In this review, we collected published data from the Web of Science and PubMed, covering the period from January 1980 to October 2023. This article focuses on five central facets of metabolic alterations in cancer cells, glucose metabolism, mitochondrial oxidative phosphorylation (OXPHOS), amino acid metabolism, fatty acid synthesis, and nucleotide metabolism, to provide an overview of recent advancements in natural product interventions targeting metabolic reprogramming in CRC. Our analysis underscores the potential of natural products in disrupting the metabolic pathways of CRC, suggesting promising therapeutic targets for CRC and expanding treatment options for metabolic-associated ailments.
Collapse
Affiliation(s)
- Mengyu Wang
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Liqun Qu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| | - Xinying Du
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| | - Peng Song
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jerome P. L. Ng
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Vincent Kam Wai Wong
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Betty Yuen Kwan Law
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Xianjun Fu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| |
Collapse
|
6
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
7
|
Zamer BA, Cui ZG, Eladl MA, Hamad M, Muhammad JS. Estrogen treatment in combination with pyruvate kinase M2 inhibition precipitate significant cumulative antitumor effects in colorectal cancer. J Biochem Mol Toxicol 2024; 38:e23799. [PMID: 39132768 DOI: 10.1002/jbt.23799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
It is well established that pyruvate kinase M2 (PKM2) activity contributes to metabolic reprogramming in various cancers, including colorectal cancer (CRC). Estrogen or 17β-estradiol (E2) signaling is also known to modulate glycolysis markers in cancer cells. However, whether the inhibition of PKM2 combined with E2 treatment could adversely affect glucose metabolism in CRC cells remains to be investigated. First, we confirmed the metabolic plasticity of CRC cells under varying environmental conditions. Next, we identified glycolysis markers that were upregulated in CRC patients and assessed in vitro mRNA levels following E2 treatment. We found that PKM2 expression, which is highly upregulated in CRC clinical samples, is not altered by E2 treatment in CRC cells. In this study, glucose uptake, generation of reactive oxygen species (ROS), lactate production, cell viability, and apoptosis were evaluated in CRC cells following E2 treatment, PKM2 silencing, or a combination of both. Compared to individual treatments, combination therapy resulted in a significant reduction in cell viability and enhanced apoptosis. Glucose uptake and ROS production were markedly reduced in PKM2-silenced E2-treated cells. The data presented here suggest that E2 signaling combined with PKM2 inhibition cumulatively targets glucose metabolism in a manner that negatively impacts CRC cell growth. These findings hold promise for novel therapeutic strategies targeting altered metabolic pathways in CRC.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research, Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Zheng-Guo Cui
- Department of Environmental Health, School of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mohamed Ahmed Eladl
- Research, Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research, Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research, Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Kang ZR, Jiang S, Han JX, Gao Y, Xie Y, Chen J, Liu Q, Yu J, Zhao X, Hong J, Chen H, Chen YX, Chen H, Fang JY. Deficiency of BCAT2-mediated branched-chain amino acid catabolism promotes colorectal cancer development. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166941. [PMID: 37926361 DOI: 10.1016/j.bbadis.2023.166941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Branched-chain amino acid (BCAA) metabolism is involved in the development of colorectal cancer (CRC); however, the underlying mechanism remains unclear. Therefore, this study investigates the role of BCAA metabolism in CRC progression. METHODS Dietary BCAA was administered to both azoxymethane-induced and azoxymethane/dextran sodium sulfate-induced CRC mouse models. The expression of genes related to BCAA metabolism was determined using RNA sequencing. Adjacent tissue samples, obtained from 58 patients with CRC, were subjected to quantitative real-time PCR and immunohistochemical analysis. Moreover, the suppressive role of branched-chain aminotransferase 2 (BCAT2) in cell proliferation, apoptosis, and xenograft mouse models was investigated. Alterations in BCAAs and activation of downstream pathways were also assessed using metabolic analysis and western blotting. RESULTS High levels of dietary BCAA intake promoted CRC tumorigenesis in chemical-induced CRC and xenograft mouse models. Both the mRNA and protein levels of BCAT2 were decreased in tumor tissues of patients with CRC compared to those in normal tissues. Proliferation assays and xenograft models confirmed the suppressive role of BCAT2 in CRC progression. Furthermore, the accumulation of BCAAs caused by BCAT2 deficiency facilitated the chronic activation of mTORC1, thereby mediating the oncogenic effect of BCAAs. CONCLUSION BCAT2 deficiency promotes CRC progression through inhibition of BCAAs metabolism and chronic activation of mTORC1.
Collapse
Affiliation(s)
- Zi-Ran Kang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Xuan Han
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqi Gao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yile Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinxian Chen
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
Jovičić SM. Uncovering novel therapeutic targets in glucose, nucleotides and lipids metabolism during cancer and neurological diseases. Int J Immunopathol Pharmacol 2024; 38:3946320241250293. [PMID: 38712748 PMCID: PMC11080811 DOI: 10.1177/03946320241250293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Cell metabolism functions without a stop in normal and pathological cells. Different metabolic changes occur in the disease. Cell metabolism influences biochemical and metabolic processes, signaling pathways, and gene regulation. Knowledge regarding disease metabolism is limited. OBJECTIVE The review examines the cell metabolism of glucose, nucleotides, and lipids during homeostatic and pathological conditions of neurotoxicity, neuroimmunological disease, Parkinson's disease, thymoma in myasthenia gravis, and colorectal cancer. METHODS Data collection includes electronic databases, the National Center for Biotechnology Information, and Google Scholar, with several inclusion criteria: cell metabolism, glucose metabolism, nucleotide metabolism, and lipid metabolism in health and disease patients suffering from neurotoxicity, neuroinflammation, Parkinson's disease, thymoma in myasthenia gravis. The initial number of collected and analyzed papers is 250. The final analysis included 150 studies out of 94 selected papers. After the selection process, 62.67% remains useful. RESULTS AND CONCLUSION A literature search shows that signaling molecules are involved in metabolic changes in cells. Differences between cancer and neuroimmunological diseases are present in the result section. Our finding enables insight into novel therapeutic targets and the development of scientific approaches for cancer and neurological disease onset, outcome, progression, and treatment, highlighting the importance of metabolic dysregulation. Current understanding, emerging research technologies and potential therapeutic interventions in metabolic programming is disucussed and highlighted.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Holt AK, Najumudeen AK, Collard TJ, Li H, Millett LM, Hoskin AJ, Legge DN, Mortensson EMH, Flanagan DJ, Jones N, Kollareddy M, Timms P, Hitchings MD, Cronin J, Sansom OJ, Williams AC, Vincent EE. Aspirin reprogrammes colorectal cancer cell metabolism and sensitises to glutaminase inhibition. Cancer Metab 2023; 11:18. [PMID: 37858256 PMCID: PMC10588174 DOI: 10.1186/s40170-023-00318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND To support proliferation and survival within a challenging microenvironment, cancer cells must reprogramme their metabolism. As such, targeting cancer cell metabolism is a promising therapeutic avenue. However, identifying tractable nodes of metabolic vulnerability in cancer cells is challenging due to their metabolic plasticity. Identification of effective treatment combinations to counter this is an active area of research. Aspirin has a well-established role in cancer prevention, particularly in colorectal cancer (CRC), although the mechanisms are not fully understood. METHODS We generated a model to investigate the impact of long-term (52 weeks) aspirin exposure on CRC cells, which has allowed us comprehensively characterise the metabolic impact of long-term aspirin exposure (2-4mM for 52 weeks) using proteomics, Seahorse Extracellular Flux Analysis and Stable Isotope Labelling (SIL). Using this information, we were able to identify nodes of metabolic vulnerability for further targeting, investigating the impact of combining aspirin with metabolic inhibitors in vitro and in vivo. RESULTS We show that aspirin regulates several enzymes and transporters of central carbon metabolism and results in a reduction in glutaminolysis and a concomitant increase in glucose metabolism, demonstrating reprogramming of nutrient utilisation. We show that aspirin causes likely compensatory changes that render the cells sensitive to the glutaminase 1 (GLS1) inhibitor-CB-839. Of note given the clinical interest, treatment with CB-839 alone had little effect on CRC cell growth or survival. However, in combination with aspirin, CB-839 inhibited CRC cell proliferation and induced apoptosis in vitro and, importantly, reduced crypt proliferation in Apcfl/fl mice in vivo. CONCLUSIONS Together, these results show that aspirin leads to significant metabolic reprogramming in colorectal cancer cells and raises the possibility that aspirin could significantly increase the efficacy of metabolic cancer therapies in CRC.
Collapse
Affiliation(s)
- Amy K Holt
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Arafath K Najumudeen
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tracey J Collard
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Hao Li
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Ashley J Hoskin
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Danny N Legge
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Eleanor M H Mortensson
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | | | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Madhu Kollareddy
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Penny Timms
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Matthew D Hitchings
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - James Cronin
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ann C Williams
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Emma E Vincent
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
- MRC Integrative Epidemiology Unit, Oakfield House, University of Bristol, Bristol, BS8 2BN, UK.
| |
Collapse
|
11
|
Hirose Y, Taniguchi K. Intratumoral metabolic heterogeneity of colorectal cancer. Am J Physiol Cell Physiol 2023; 325:C1073-C1084. [PMID: 37661922 DOI: 10.1152/ajpcell.00139.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Although the metabolic phenotype within tumors is known to differ significantly from that of the surrounding normal tissue, the importance of this heterogeneity is just becoming widely recognized. Colorectal cancer (CRC) is often classified as the Warburg phenotype, a metabolic type in which the glycolytic system is predominant over oxidative phosphorylation (OXPHOS) in mitochondria for energy production. However, this dichotomy (glycolysis vs. OXPHOS) may be too simplistic and not accurately represent the metabolic characteristics of CRC. Therefore, in this review, we decompose metabolic phenomena into factors based on their source/origin and reclassify them into two categories: extrinsic and intrinsic. In the CRC context, extrinsic factors include those based on the environment, such as hypoxia, nutrient deprivation, and the tumor microenvironment, whereas intrinsic factors include those based on subpopulations, such as pathological subtypes and cancer stem cells. These factors form multiple layers inside and outside the tumor, affecting them additively, dominantly, or mutually exclusively. Consequently, the metabolic phenotype is a heterogeneous and fluid phenomenon reflecting the spatial distribution and temporal continuity of these factors. This allowed us to redefine the characteristics of specific metabolism-related factors in CRC and summarize and update our accumulated knowledge of their heterogeneity. Furthermore, we positioned tumor budding in CRC as an intrinsic factor and a novel form of metabolic heterogeneity, and predicted its metabolic dynamics, noting its similarity to circulating tumor cells and epithelial-mesenchymal transition. Finally, the possibilities and limitations of using human tumor tissue as research material to investigate and assess metabolic heterogeneity are discussed.
Collapse
Affiliation(s)
- Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kohei Taniguchi
- Division of Translational Research, Center for Medical Research & Development, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
12
|
Bian Y, Yin G, Wang G, Liu T, Liang L, Yang X, Zhang W, Tang D. Degradation of HIF-1α induced by curcumol blocks glutaminolysis and inhibits epithelial-mesenchymal transition and invasion in colorectal cancer cells. Cell Biol Toxicol 2023; 39:1957-1978. [PMID: 35083610 DOI: 10.1007/s10565-021-09681-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Colorectal cancer (CRC) has high morbidity and mortality. Epithelial-mesenchymal transition (EMT) is associated with CRC progression and metastasis. Glutaminolysis is essential for malignancy of cancer cells. Here, we examined the effects of curcumol on CRC EMT. We observed that curcumol suppressed invasion and migration in human CRC cells associated with upregulation of epithelial markers E-cadherin and Zonula occludens 1 and downregulation of mesenchymal markers N-cadherin and Vimentin as well as EMT-related transcription factors Snail and Twist. Curcumol increased intracellular levels of glutamine but decreased intracellular levels of glutamate, α-ketoglutarate, ATP, glutathione, and tricarboxylic acid cycle metabolites, suggesting interruption of glutaminolysis. Next, curcumol repressed glutaminase 1 (Gls1) mRNA and protein expression, and overexpression of Gls1 promoted EMT and abolished curcumol effects on CRC cell EMT. Molecular examinations showed that curcumol stimulated protein degradation of hypoxia-inducible factor-1α (HIF-1α) and prevented its nuclear accumulation in CRC cells. HIF-1α agonist deferoxamine (DFO) promoted HIF-1α binding to Gls1 promoter and increased Gls1 expression but abolished curcumol's inhibitory effects on Gls1 expression. DFO also enhanced EMT and invasion and migration in CRC cells and eliminated curcumol effects. Furthermore, mouse CRC models were established with in vivo overexpression of HIF-1α and Gls1. Curcumol effectively inhibited CRC growth, metastasis, and EMT in mice, which was abrogated by overexpression of HIF-1α or Gls1. Altogether, stimulation of HIF-1α degradation was required for curcumol to disrupt EMT and repress invasion and migration in CRC cells through inhibiting Gls1-mediated glutaminolysis. Curcumol could be a promising candidate for intervention of CRC metastasis. • Curcumol inhibits EMT and blocks glutaminolysis in CRC cells. • Inhibition of Gls1 is required for curcumol blockade of glutaminolysis and EMT. • Curcumol induces HIF-1α degradation leading to inhibition of Gls1 and blockade of glutaminolysis and EMT. • Curcumol suppresses CRC growth and metastasis via inhibiting HIF-1α, glutaminolysis and EMT in mice.
Collapse
Affiliation(s)
- Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Gang Yin
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Gang Wang
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tiantian Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyue Yang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 211166, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
13
|
Parsazad E, Esrafili F, Yazdani B, Ghafarzadeh S, Razmavar N, Sirous H. Integrative bioinformatics analysis of ACS enzymes as candidate prognostic and diagnostic biomarkers in colon adenocarcinoma. Res Pharm Sci 2023; 18:413-429. [PMID: 37614614 PMCID: PMC10443664 DOI: 10.4103/1735-5362.378088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 05/06/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose Acyl-CoA synthetase (ACS) enzymes play an important role in the activation of fatty acids. While many studies have found correlations between the expression levels of ACS enzymes with the progression, growth, and survival of cancer cells, their role and expression patterns in colon adenocarcinoma are still greatly unknown and demand further investigation. Experimental approach The expression data of colon adenocarcinoma samples were downloaded from the Cancer Genome Atlas (TCGA) database. Normalization and differential expression analysis were performed to identify differentially expressed genes (DEGs). Gene set enrichment analysis was applied to identify top enriched genes from ACS enzymes in cancer samples. Gene ontology and protein-protein interaction analyses were performed for the prediction of molecular functions and interactions. Survival analysis and receiver operating characteristic test (ROC) were performed to find potential prognostic and diagnostic biomarkers. Findings/Results ACSL6 and ACSM5 genes demonstrated more significant differential expression and LogFC value compared to other ACS enzymes and also achieved the highest enrichment scores. Gene ontology analysis predicted the involvement of top DEGs in fatty acids metabolism, while protein-protein interaction network analysis presented strong interactions between ACSLs, ACSSs, ACSMs, and ACSBG enzymes with each other. Survival analysis suggested ACSM3 and ACSM5 as potential prognostic biomarkers, while the ROC test predicted stronger diagnostic potential for ACSM5, ACSS2, and ACSF2 genes. Conclusion and implications Our findings revealed the expression patterns, prognostic, and diagnostic biomarker potential of ACS enzymes in colon adenocarcinoma. ACSM3, ACSM5, ACSS2, and ACSF2 genes are suggested as possible prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Ehsan Parsazad
- Department of Bioscience and Biotechnology, Malek Ashtar University, Tehran, I.R. Iran
- Medvac Biopharma Company, Alborz Province, I.R. Iran
| | - Farina Esrafili
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, I.R. Iran
| | - Behnaz Yazdani
- Department of Tissue Engineering, Najafabad Branch, Islamic Azad University, Najafabad, I.R. Iran
| | - Saghi Ghafarzadeh
- Department of Royan Institute, University of Science and Culture, Tehran, I.R. Iran
| | - Namdar Razmavar
- Department of Biology, University of Guilan, Rasht, I.R. Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
14
|
Iyer AS, Shaik MR, Raufman JP, Xie G. The Roles of Zinc Finger Proteins in Colorectal Cancer. Int J Mol Sci 2023; 24:10249. [PMID: 37373394 DOI: 10.3390/ijms241210249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite colorectal cancer remaining a leading worldwide cause of cancer-related death, there remains a paucity of effective treatments for advanced disease. The molecular mechanisms underlying the development of colorectal cancer include altered cell signaling and cell cycle regulation that may result from epigenetic modifications of gene expression and function. Acting as important transcriptional regulators of normal biological processes, zinc finger proteins also play key roles in regulating the cellular mechanisms underlying colorectal neoplasia. These actions impact cell differentiation and proliferation, epithelial-mesenchymal transition, apoptosis, homeostasis, senescence, and maintenance of stemness. With the goal of highlighting promising points of therapeutic intervention, we review the oncogenic and tumor suppressor roles of zinc finger proteins with respect to colorectal cancer tumorigenesis and progression.
Collapse
Affiliation(s)
- Aishwarya S Iyer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Guofeng Xie
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Al Hadeethi S, El-Baba C, Araji K, Hayar B, Cheikh IA, El-Khoury R, Usta J, Darwiche N. Mannose Inhibits the Pentose Phosphate Pathway in Colorectal Cancer and Enhances Sensitivity to 5-Fluorouracil Therapy. Cancers (Basel) 2023; 15:cancers15082268. [PMID: 37190196 DOI: 10.3390/cancers15082268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancers and causes of death in patients. 5-fluorouracil (5-FU) is the therapy of choice for CRC, but it exhibits high toxicity and drug resistance. Tumorigenesis is characterized by a deregulated metabolism, which promotes cancer cell growth and survival. The pentose phosphate pathway (PPP) is required for the synthesis of ribonucleotides and the regulation of reactive oxygen species and is upregulated in CRC. Mannose was recently reported to halt tumor growth and impair the PPP. Mannose inhibitory effects on tumor growth are inversely related to the levels of phosphomannose isomerase (PMI). An in silico analysis showed low PMI levels in human CRC tissues. We, therefore, investigated the effect of mannose alone or in combination with 5-FU in human CRC cell lines with different p53 and 5-FU resistance statuses. Mannose resulted in a dose-dependent inhibition of cell growth and synergized with 5-FU treatment in all tested cancer cell lines. Mannose alone or in combination with 5-FU reduced the total dehydrogenase activity of key PPP enzymes, enhanced oxidative stress, and induced DNA damage in CRC cells. Importantly, single mannose or combination treatments with 5-FU were well tolerated and reduced tumor volumes in a mouse xenograft model. In summary, mannose alone or in combination with 5-FU may represent a novel therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Sadaf Al Hadeethi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Khaled Araji
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Berthe Hayar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Israa Ahmad Cheikh
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Riyad El-Khoury
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Julnar Usta
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
16
|
Ghodousi-Dehnavi E, Arjmand M, Akbari Z, Aminzadeh M, Haji Hosseini R. Anti-Cancer Effect of Dorema Ammoniacum Gum by Targeting Metabolic Reprogramming by Regulating APC, P53, KRAS Gene Expression in HT-29 Human Colon Cancer Cells. Rep Biochem Mol Biol 2023; 12:127-135. [PMID: 37724146 PMCID: PMC10505474 DOI: 10.52547/rbmb.12.1.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/16/2023] [Indexed: 09/20/2023]
Abstract
Background Colorectal cancer is a heterogeneous disease that leads to metabolic disorders due to multiple upstream genetic and molecular changes and interactions. The development of new therapies, especially herbal medicines, has received much global attention. Dorema ammoniacum is a medicinal plant. Its gum is used in healing known ailments. Studying metabolome profiles based on nuclear magnetic resonance 1HNMR as a non-invasive and reproducible tool can identify metabolic changes as a reflection of intracellular fluxes, especially in drug responses. This study aimed to investigate the anti-cancer effects of different gum extracts on metabolic changes and their impact on gene expression in HT-29 cell. Methods Extraction of Dorema ammoniacum gum with hexane, chloroform, and dichloromethane organic solvents was performed. Cell inhibition growth percentage and IC50 were assessed. Following treating the cells with dichloromethane extract, p53, APC, and KRAS gene expression were determined. 1HNMR spectroscopy was conducted. Eventually, systems biology software tools interpreted combined metabolites and genes simultaneously. Results The lowest determined IC50 concentration was related to dichloromethane solvent, and the highest was hexane and chloroform. The expression of the KRAS oncogene gene decreased significantly after treatment with dichloromethane extract compared to the control group, and the expression of tumor suppressor gene p53 and APC increased significantly. Most gene-altered convergent metabolic phenotypes. Conclusion This study's results indicate that the dichloromethane solvent of Dorema ammoniacum gum exhibits its antitumor properties by altering the expression of genes involved in HT-29 cells and the consequent change in downstream metabolic reprogramming.
Collapse
Affiliation(s)
| | - Mohammad Arjmand
- Metabolomics Lab. Department of Biochemistry, Pasteur Institute of Iran, Pasteur Avenue, Tehran, Iran.
| | - Ziba Akbari
- Metabolomics Lab. Department of Biochemistry, Pasteur Institute of Iran, Pasteur Avenue, Tehran, Iran.
| | - Mansour Aminzadeh
- Metabolomics Lab. Department of Biochemistry, Pasteur Institute of Iran, Pasteur Avenue, Tehran, Iran.
| | - Reza Haji Hosseini
- Department of Biology, Faculty of Science, Payame Noor University, Tehran, Iran.
| |
Collapse
|
17
|
Guardamagna I, Iaria O, Lonati L, Mentana A, Previtali A, Uggè V, Ivaldi GB, Liotta M, Tabarelli de Fatis P, Scotti C, Pessino G, Maggi M, Baiocco G. Asparagine and Glutamine Deprivation Alters Ionizing Radiation Response, Migration and Adhesion of a p53 null Colorectal Cancer Cell Line. Int J Mol Sci 2023; 24:ijms24032983. [PMID: 36769302 PMCID: PMC9917910 DOI: 10.3390/ijms24032983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the most prominent form of colon cancer for both incidence (38.7 per 100,000 people) and mortality (13.9 per 100,000 people). CRC's poor response to standard therapies is linked to its high heterogeneity and complex genetic background. Dysregulation or depletion of the tumor suppressor p53 is involved in CRC transformation and its capability to escape therapy, with p53null cancer subtypes known, in fact, to have a poor prognosis. In such a context, new therapeutic approaches aimed at reducing CRC proliferation must be investigated. In clinical practice, CRC chemotherapy is often combined with radiation therapy with the aim of blocking the expansion of the tumor mass or removing residual cancer cells, though contemporary targeting of amino acid metabolism has not yet been explored. In the present study, we used the p53null Caco-2 model cell line to evaluate the effect of a possible combination of radiation and L-Asparaginase (L-ASNase), a protein drug that blocks cancer proliferation by impairing asparagine and glutamine extracellular supply. When L-ASNase was administered immediately after IR, we observed a reduced proliferative capability, a delay in DNA-damage response and a reduced capability to adhere and migrate. Our data suggest that a correctly timed combination of X-rays and L-ASNase treatment could represent an advantage in CRC therapy.
Collapse
Affiliation(s)
- Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Ombretta Iaria
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Alice Mentana
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | - Andrea Previtali
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Virginia Uggè
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| | | | - Marco Liotta
- Unit of Medical Physics, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | | | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Correspondence:
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
18
|
He X, Wu N, Li R, Zhang H, Zhao Y, Nie Y, Wu J. IDH2, a novel target of OGT, facilitates glucose uptake and cellular bioenergy production via NF-κB signaling to promote colorectal cancer progression. Cell Oncol (Dordr) 2023; 46:145-164. [PMID: 36401762 DOI: 10.1007/s13402-022-00740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Although isocitrate dehydrogenase 2 (IDH2) mutations have been the hotspots in recent anticancer studies, the impact of wild-type IDH2 on cancer cell growth and metabolic alterations is still elusive. METHODS IDH2 expression in CRC tissues was evaluated by immunohistochemistry, and the correlation between the expression level and the patient's survival rate was analyzed. Cell functional assays included CCK8 and colony formation for cell proliferation in vitro and ectopic xenograft as in vivo experimental model for tumor progression. A targeted metabolomic procedure was performed by liquid chromatography/tandem mass spectrometry to profile the metabolites from glycolysis and tricarboxylic acid (TCA) cycle. Mitochondrial function was assessed by measuring cellular oxygen consumption (OCR) and mitochondrial membrane potential (ΔΨ). Confocal microscope analysis and Western blotting were applied to detect the expression of GLUT1 and NF-κB signaling. O-GlcNAcylation and the interaction of IDH2 with OGT were confirmed by co-immunoprecipitation, followed by Western blotting analysis. RESULTS IDH2 protein was highly expressed in CRC tissues, and correlated with poor survival of CRC patients. Wild-type IDH2 promoted CRC cell growth in vitro and tumor progression in xenograft mice. Overexpression of wild-type IDH2 significantly increased glycolysis and TCA cycle metabolites, the ratios of NADH/NAD+ and ATP/ADP, OCR and mitochondrial membrane potential (ΔΨ) in CRC cells. Furthermore, α-KG activated NF-κB signaling to promote glucose uptake by upregulating GLUT1. Interesting, O-GlcNAcylation enhanced the protein half-time of IDH2 by inhibiting ubiquitin-mediated proteasome degradation. The O-GlcNAc transferase (OGT)-IDH2 axis promoted CRC progression. CONCLUSION Wild-type IDH2 reprogrammed glucose metabolism and bioenergetic production via the NF-κB signaling pathway to promote CRC development and progression. O-GlcNAcylation of IDH2 elevated the stability of IDH2 protein. And the axis of OGT-IDH2 played an essential promotive role in tumor progression, suggesting a novel potential therapeutic strategy in CRC treatment.
Collapse
Affiliation(s)
- Xiaoli He
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, Shaanxi, China
| | - Nan Wu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
| | - Renlong Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Haohao Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yu Zhao
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Jing Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, Shaanxi, China.
| |
Collapse
|
19
|
McCauley HA, Riedman AM, Enriquez JR, Zhang X, Watanabe-Chailland M, Sanchez JG, Kechele DO, Paul EF, Riley K, Burger C, Lang RA, Wells JM. Enteroendocrine Cells Protect the Stem Cell Niche by Regulating Crypt Metabolism in Response to Nutrients. Cell Mol Gastroenterol Hepatol 2023; 15:1293-1310. [PMID: 36608902 PMCID: PMC10140799 DOI: 10.1016/j.jcmgh.2022.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS The intestinal stem cell niche is exquisitely sensitive to changes in diet, with high-fat diet, caloric restriction, and fasting resulting in altered crypt metabolism and intestinal stem cell function. Unlike cells on the villus, cells in the crypt are not immediately exposed to the dynamically changing contents of the lumen. We hypothesized that enteroendocrine cells (EECs), which sense environmental cues and in response release hormones and metabolites, are essential for relaying the luminal and nutritional status of the animal to cells deep in the crypt. METHODS We used the tamoxifen-inducible VillinCreERT2 mouse model to deplete EECs (Neurog3fl/fl) from adult intestinal epithelium and we generated human intestinal organoids from wild-type and NEUROGENIN 3 (NEUROG3)-null human pluripotent stem cells. We used indirect calorimetry, 1H-Nuclear Magnetic Resonance (NMR) metabolomics, mitochondrial live imaging, and the Seahorse bioanalyzer (Agilent Technologies) to assess metabolism. Intestinal stem cell activity was measured by proliferation and enteroid-forming capacity. Transcriptional changes were assessed using 10x Genomics single-cell sequencing. RESULTS Loss of EECs resulted in increased energy expenditure in mice, an abundance of active mitochondria, and a shift of crypt metabolism to fatty acid oxidation. Crypts from mouse and human intestinal organoids lacking EECs displayed increased intestinal stem cell activity and failed to activate phosphorylation of downstream target S6 kinase ribosomal protein, a marker for activity of the master metabolic regulator mammalian target of rapamycin (mTOR). These phenotypes were similar to those observed when control mice were deprived of nutrients. CONCLUSIONS EECs are essential regulators of crypt metabolism. Depletion of EECs recapitulated a fasting metabolic phenotype despite normal levels of ingested nutrients. These data suggest that EECs are required to relay nutritional information to the stem cell niche and are essential regulators of intestinal metabolism.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina.
| | - Anne Marie Riedman
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jacob R Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xinghao Zhang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Miki Watanabe-Chailland
- Nuclear Magnetic Resonance-Based Metabolomics Core Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - J Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Daniel O Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Emily F Paul
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kayle Riley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Postbaccalaureate Research Education Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Courtney Burger
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Richard A Lang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
20
|
Torres-Quesada O, Doerrier C, Strich S, Gnaiger E, Stefan E. Physiological Cell Culture Media Tune Mitochondrial Bioenergetics and Drug Sensitivity in Cancer Cell Models. Cancers (Basel) 2022; 14:3917. [PMID: 36010911 PMCID: PMC9405899 DOI: 10.3390/cancers14163917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Two-dimensional cell cultures are established models in research for studying and perturbing cell-type specific functions. However, many limitations apply to the cell growth in a monolayer using standard cell culture media. Although they have been used for decades, their formulations do not mimic the composition of the human cell environment. In this study, we analyzed the impact of a newly formulated human plasma-like media (HPLM) on cell proliferation, mitochondrial bioenergetics, and alterations of drug efficacies using three distinct cancer cell lines. Using high-resolution respirometry, we observed that cells grown in HPLM displayed significantly altered mitochondrial bioenergetic profiles, particularly related to mitochondrial density and mild uncoupling of respiration. Furthermore, in contrast to standard media, the growth of cells in HPLM unveiled mitochondrial dysfunction upon exposure to the FDA-approved kinase inhibitor sunitinib. This seemingly context-dependent side effect of this drug highlights that the selection of the cell culture medium influences the assessment of cancer drug sensitivities. Thus, we suggest to prioritize media with a more physiological composition for analyzing bioenergetic profiles and to take it into account for assigning drug efficacies in the cell culture model of choice.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | | | - Sophie Strich
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
| | - Erich Gnaiger
- Oroboros Instruments, Schoepfstrasse 18, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Chun SK, Fortin BM, Fellows RC, Habowski AN, Verlande A, Song WA, Mahieu AL, Lefebvre AEYT, Sterrenberg JN, Velez LM, Digman MA, Edwards RA, Pannunzio NR, Seldin MM, Waterman ML, Masri S. Disruption of the circadian clock drives Apc loss of heterozygosity to accelerate colorectal cancer. SCIENCE ADVANCES 2022; 8:eabo2389. [PMID: 35947664 PMCID: PMC9365282 DOI: 10.1126/sciadv.abo2389] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/23/2022] [Indexed: 05/12/2023]
Abstract
An alarming rise in young onset colorectal cancer (CRC) has been reported; however, the underlying molecular mechanism remains undefined. Suspected risk factors of young onset CRC include environmental aspects, such as lifestyle and dietary factors, which are known to affect the circadian clock. We find that both genetic disruption and environmental disruption of the circadian clock accelerate Apc-driven CRC pathogenesis in vivo. Using an intestinal organoid model, we demonstrate that clock disruption promotes transformation by driving Apc loss of heterozygosity, which hyperactivates Wnt signaling. This up-regulates c-Myc, a known Wnt target, which drives heightened glycolytic metabolism. Using patient-derived organoids, we show that circadian rhythms are lost in human tumors. Last, we identify that variance between core clock and Wnt pathway genes significantly predicts the survival of patients with CRC. Overall, our findings demonstrate a previously unidentified mechanistic link between clock disruption and CRC, which has important implications for young onset cancer prevention.
Collapse
Affiliation(s)
- Sung Kook Chun
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Bridget M. Fortin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rachel C. Fellows
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Amber N. Habowski
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Amandine Verlande
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Wei A. Song
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Alisa L. Mahieu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | - Leandro M. Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Michelle A. Digman
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Marcus M. Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Marian L. Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
22
|
Game-theoretic link relevance indexing on genome-wide expression dataset identifies putative salient genes with potential etiological and diapeutics role in colorectal cancer. Sci Rep 2022; 12:13409. [PMID: 35927308 PMCID: PMC9352798 DOI: 10.1038/s41598-022-17266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Diapeutics gene markers in colorectal cancer (CRC) can help manage mortality caused by the disease. We applied a game-theoretic link relevance Index (LRI) scoring on the high-throughput whole-genome transcriptome dataset to identify salient genes in CRC and obtained 126 salient genes with LRI score greater than zero. The biomarkers database lacks preliminary information on the salient genes as biomarkers for all the available cancer cell types. The salient genes revealed eleven, one and six overrepresentations for major Biological Processes, Molecular Function, and Cellular components. However, no enrichment with respect to chromosome location was found for the salient genes. Significantly high enrichments were observed for several KEGG, Reactome and PPI terms. The survival analysis of top protein-coding salient genes exhibited superior prognostic characteristics for CRC. MIR143HG, AMOTL1, ACTG2 and other salient genes lack sufficient information regarding their etiological role in CRC. Further investigation in LRI methodology and salient genes to augment the existing knowledge base may create new milestones in CRC diapeutics.
Collapse
|
23
|
Taylor SR, Falcone JN, Cantley LC, Goncalves MD. Developing dietary interventions as therapy for cancer. Nat Rev Cancer 2022; 22:452-466. [PMID: 35614234 DOI: 10.1038/s41568-022-00485-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells acquire distinct metabolic preferences based on their tissue of origin, genetic alterations and degree of interaction with systemic hormones and metabolites. These adaptations support the increased nutrient demand required for increased growth and proliferation. Diet is the major source of nutrients for tumours, yet dietary interventions lack robust evidence and are rarely prescribed by clinicians for the treatment of cancer. Well-controlled diet studies in patients with cancer are rare, and existing studies have been limited by nonspecific enrolment criteria that inappropriately grouped together subjects with disparate tumour and host metabolic profiles. This imprecision may have masked the efficacy of the intervention for appropriate candidates. Here, we review the metabolic alterations and key vulnerabilities that occur across multiple types of cancer. We describe how these vulnerabilities could potentially be targeted using dietary therapies including energy or macronutrient restriction and intermittent fasting regimens. We also discuss recent trials that highlight how dietary strategies may be combined with pharmacological therapies to treat some cancers, potentially ushering a path towards precision nutrition for cancer.
Collapse
Affiliation(s)
- Samuel R Taylor
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, NY, USA
| | - John N Falcone
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Han P, Yang X, Li L, Bao J, Zhang W, Zai S, Zhu Z, Wu M. Identification and validation of a metabolism-related gene signature for the prognosis of colorectal cancer: a multicenter cohort study. Jpn J Clin Oncol 2022; 52:1327-1336. [PMID: 35848857 DOI: 10.1093/jjco/hyac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Cell metabolism plays a vital role in the proliferation, metastasis and sensitivity to chemotherapy drugs of colorectal cancer. The purpose of this multicenter cohort study is to investigate the potential genes indicating clinical outcomes in colorectal cancer patients. METHODS We analyzed gene expression profiles of colorectal cancer to identify differentially expressed genes then used these differentially expressed genes to construct prognostic signature based on the least absolute shrink-age and selection operator Cox regression model. In addition, the multi-gene signature was validated in independent datasets including our multicenter cohort. Finally, nomograms were set up to evaluate the prognosis of colorectal cancer patients. RESULTS Seventeen metabolism-related genes were determined in the least absolute shrink-age and selection operator model to construct signature, with area under receiver operating characteristic curve for relapse-free survival, 0.741, 0.755 and 0.732 at 1, 3 and 5 year, respectively. External validation datasets, GSE14333, GSE37892, GSE17538 and the Cancer Genome Atlas cohorts, were analyzed and stratified, indicating that the metabolism-related signature was reliable in discriminating high- and low-risk colorectal cancer patients. Area under receiver operating characteristic curves for relapse-free survival in our multicenter validation cohort were 0.801, 0.819 and 0.857 at 1, 3 and 5 year, respectively. Nomograms incorporating the genetic biomarkers and clinical pathological features were set up, which yielded good discrimination and calibration in the prediction of prognosis for colorectal cancer patients. CONCLUSION An original metabolism-related signature was developed as a predictive model for the prognosis of colorectal cancer patients. A nomogram based on the signature was advantageous to facilitate personalized counselling and treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Ping Han
- Department of Pharmacy, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiudeng Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Shaoyang University, Shaoyang, China
| | - Lina Li
- Pediatric Department, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jie Bao
- Department of Pharmacy, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei, China
| | - Wenqiong Zhang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shubei Zai
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Minle Wu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Hall DCN, Benndorf RA. Aspirin sensitivity of PIK3CA-mutated Colorectal Cancer: potential mechanisms revisited. Cell Mol Life Sci 2022; 79:393. [PMID: 35780223 PMCID: PMC9250486 DOI: 10.1007/s00018-022-04430-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
PIK3CA mutations are amongst the most prevalent somatic mutations in cancer and are associated with resistance to first-line treatment along with low survival rates in a variety of malignancies. There is evidence that patients carrying PIK3CA mutations may benefit from treatment with acetylsalicylic acid, commonly known as aspirin, particularly in the setting of colorectal cancer. In this regard, it has been clarified that Class IA Phosphatidylinositol 3-kinases (PI3K), whose catalytic subunit p110α is encoded by the PIK3CA gene, are involved in signal transduction that regulates cell cycle, cell growth, and metabolism and, if disturbed, induces carcinogenic effects. Although PI3K is associated with pro-inflammatory cyclooxygenase-2 (COX-2) expression and signaling, and COX-2 is among the best-studied targets of aspirin, the mechanisms behind this clinically relevant phenomenon are still unclear. Indeed, there is further evidence that the protective, anti-carcinogenic effect of aspirin in this setting may be mediated in a COX-independent manner. However, until now the understanding of aspirin's prostaglandin-independent mode of action is poor. This review will provide an overview of the current literature on this topic and aims to analyze possible mechanisms and targets behind the aspirin sensitivity of PIK3CA-mutated cancers.
Collapse
Affiliation(s)
- Daniella C N Hall
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
26
|
Batjargal A, Solek P, Kukula-Koch W, Urjin B, Koch W, Koman D, Dudzinska E. Gurgem-7 toxicity assessment: Regulation of cell survival or death by traditional Mongolian prescription. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113660. [PMID: 35605329 DOI: 10.1016/j.ecoenv.2022.113660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Surgical treatments and chemotherapy are the most commonly used methods of colorectal cancer treatment (CRC), unfortunately, these therapies have many side effects. Moreover, despite advances in primary and adjuvant treatments, the survival time in CRC patients is still unsatisfactory. Treatment options for patients with CRC continue to advance and recent research has shown that colorectal cancer is sensitive to plant-derived substances. The use of natural compounds contained in herbal extracts for the treatment of colon cancer or as adjunctive therapy for CRC gives patients a wide range of treatment options. In this study, we evaluate the potential toxicity of the Mongolian preparation - Gurgem-7 composed of Crocus sativus, Veronica officinalis, Capsella bursa-pastoris, Arctostaphylos uva-ursi, Calendula officinalis, Gentiana lutea, and Terminalia chebula. Therefore, the aim of this study was to determine its biological activities, biochemical and molecular features in vitro and composition analysis by HPLC-ESI-QTOF-MS/MS platform. We identified 18 metabolites and 8 of them were quantified. Majority of the secondary metabolites belonged to the group of phenolic constituents with taxifolin, chlorogenic acids' family, hydroxysafflor yellow A and hydroxybenzoic acid as leading compounds. In turn, our in vitro results suggest that the preparation inhibits cell metabolic activity through oxidative stress, numerous DNA damage and cell cycle arrest. Simultaneously enzymatic and non-enzymatic cell protection mechanisms mediated by TP53/Keap1 and Nrf2/HO-1 pathways may be activated in a cell-specific manner in vitro. In conclusion, we provide preliminary molecular evidence of the toxic properties of Gurgem-7 preparation to Caco-2 and CT26. WT cells related to insufficient action of their repair and adaptive mechanisms to stress conditions.
Collapse
Affiliation(s)
- Ariunzaya Batjargal
- Mon-Intra CO., LTD, 23 sh/h 166 Mongolian, Ulaanbaatar, Mongolia; Department of Food and Nutrition, Medical University of Lublin, 20-093 Lublin, Poland
| | - Przemyslaw Solek
- Department of Biopharmacy, Medical University of Lublin, Lublin 20-093, Poland; Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow 35-310, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 20-093 Lublin, Poland
| | - Baigalmaa Urjin
- Mon-Intra CO., LTD, 23 sh/h 166 Mongolian, Ulaanbaatar, Mongolia
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 20-093 Lublin, Poland
| | - Dorota Koman
- Mon-Intra CO., LTD, 23 sh/h 166 Mongolian, Ulaanbaatar, Mongolia
| | - Ewa Dudzinska
- Department of Food and Nutrition, Medical University of Lublin, 20-093 Lublin, Poland.
| |
Collapse
|
27
|
Smolanka II, Bagmut IY, Sheremet MI, Movchan OV, Oleksandrovich LA, Smolanka Jr II, Leonidovich KI, Lazaruk OV, Maksymyuk VV, Tarabanchuk VV. Phosphorus metabolism disorders in erythrocytes and lymphocytes among patients with inflammatory breast cancer, infiltrative stomach and colorectal cancer. J Med Life 2022; 15:747-750. [PMID: 35928359 PMCID: PMC9321504 DOI: 10.25122/jml-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Energy and plastic potential dysfunction of erythrocytes and lymphocytes among people with inflammatory breast cancer, infiltrative stomach cancer, and infiltrative colon cancer is characterized by a more aggressive clinical course and poor prognosis. We explored the features of energy metabolism and phosphorus metabolism disorders in the erythrocytes and lymphocytes of patients with inflammatory breast cancer, infiltrative stomach cancer, and infiltrative colon cancer as a predicting factor in the course of the disease. 49 people were examined; the 1st group had infiltrative stomach cancer (n=17); the 2nd group had infiltrative colon cancer (n=11); the 3rd group had inflammatory breast cancer (n=21). Glycerol-3-phosphate dehydrogenase activity was 1.8 times reduced (p≤0.005), and the activity of glyceraldehyde-3-phosphate dehydrogenase in erythrocytes of patients with cancer at the main localization increased 2.5 times, compared with normal. Inflammatory breast cancer patients had a statistically significant decrease (p<0.005) in erythrocytes adenosine triphosphate content by an average of 56.5% compared with the normal ratio, and in cases of patients with gastric and colorectal cancer, a decrease of 67%. Excessive use of phosphorus for energy metabolism and adenosine triphosphate production destroys the balance of energetic and plastic potentials of erythrocytes and lymphocytes in inflammatory breast cancer, infiltrative stomach, and infiltrative colorectal cancers patients.
Collapse
Affiliation(s)
| | | | - Michael Ivanovich Sheremet
- Surgical department No.1, Bukovinian State Medical University, Chernivtsi, Ukraine,Corresponding Author: Michael Ivanovich Sheremet, Surgical department No.1, Bukovinian State Medical University, Chernivtsi, Ukraine. Lyashenko Andriy Oleksandrovich, National Cancer Institute, Ministry of Health, Kyiv, Ukraine. E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Circular RNA sterile alpha motif domain containing 4A contributes to cell 5-fluorouracil resistance in colorectal cancer by regulating the miR-545-3p/6-phosphofructo-2-kinase/fructose-2,6-bisphosphataseisotype 3 axis. Anticancer Drugs 2022; 33:553-563. [PMID: 35276696 DOI: 10.1097/cad.0000000000001285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Colorectal cancer (CRC) is one of the most fatal cancers in the world. Circular RNA sterile alpha motif domain containing 4A (circSAMD4A) was found to be highly expressed in CRC and promoted the tumorigenesis of CRC. However, the role of circSAMD4A in 5-fluorouracil (5-Fu) resistance of CRC is yet to be clarified. This study is designed to investigate the function of circSAMD4A in 5-Fu resistance of CRC and its potential molecular mechanism. Quantitative real-time PCR was used to detect the expression levels of circSAMD4A, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isotype 3 (PFKFB3) mRNA, and miR-545-3p, and western blot was used to detect the protein expression. For functional analysis, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, colony formation/5-ethynyl-2'-deoxyuridine assay, flow cytometry analysis, and glycolysis metabolism analysis were used to assess the capacities of cell viability, proliferation, apoptosis, and glycolysis in 5-Fu-resistant cells of CRC. The dual-luciferase reporter assay was used to verify the interaction between miR-545-3p and circSAMD4A or PFKFB3. Xenograft tumor model was established to confirm the biological role of circSAMD4A in 5-Fu resistance of CRC in vivo. CircSAMD4A was upregulated in 5-Fu-resistant CRC tissues and cells. Functionally, circSAMD4A knockdown inhibited the proliferation and glycolysis mechanism but promoted apoptosis in 5-Fu-resistant cells of CRC. CircSAMD4A was identified as a molecular sponge of miR-545-3p to upregulate PFKFB3 expression. Mechanistically, circSAMD4A knockdown-induced 5-Fu sensitivity was mediated by miR-545-3p/PFKFB3 axis. Moreover, circSAMD4A knockdown improved 5-Fu sensitivity of CRC in vivo. CircSAMD4A contributed to 5-Fu resistance of CRC cells partly through upregulating PFKFB3 expression by sponging miR-545-3p, providing a possible circRNA-targeted therapy for CRC.
Collapse
|
29
|
Krauß D, Fari O, Sibilia M. Lipid Metabolism Interplay in CRC—An Update. Metabolites 2022; 12:metabo12030213. [PMID: 35323656 PMCID: PMC8951276 DOI: 10.3390/metabo12030213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) to date still ranks as one of the deadliest cancer entities globally, and despite recent advances, the incidence in young adolescents is dramatically increasing. Lipid metabolism has recently received increased attention as a crucial element for multiple aspects of carcinogenesis and our knowledge of the underlying mechanisms is steadily growing. However, the mechanism how fatty acid metabolism contributes to CRC is still not understood in detail. In this review, we aim to summarize our vastly growing comprehension and the accompanied complexity of cellular fatty acid metabolism in CRC by describing inputs and outputs of intracellular free fatty acid pools and how these contribute to cancer initiation, disease progression and metastasis. We highlight how different lipid pathways can contribute to the aggressiveness of tumors and affect the prognosis of patients. Furthermore, we focus on the role of lipid metabolism in cell communication and interplay within the tumor microenvironment (TME) and beyond. Understanding these interactions in depth might lead to the discovery of novel markers and new therapeutic interventions for CRC. Finally, we discuss the crucial role of fatty acid metabolism as new targetable gatekeeper in colorectal cancer.
Collapse
|
30
|
Alderweireldt E, Grootaert C, De Wever O, Van Camp J. A two-front nutritional environment fuels colorectal cancer: perspectives for dietary intervention. Trends Endocrinol Metab 2022; 33:105-119. [PMID: 34887164 DOI: 10.1016/j.tem.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) develops and progresses in a nutritional environment comprising a continuously changing luminal cocktail of external dietary and microbial factors on the apical side, and a dynamic host-related pool of systemic factors on the serosal side. In this review, we highlight how this two-front environment influences the bioenergetic status of colonocytes throughout CRC development from (cancer) stem cells to cancer cells in nutrient-rich and nutrient-poor conditions, and eventually to metastatic cells, which, upon entry to the circulation and during metastatic seeding, are forced to metabolically adapt. Furthermore, given the influence of diet on the two-front nutritional environment, we discuss dietary strategies that target the specific metabolic preferences of these cells, with a possible impact on colon cancer cell bioenergetics and CRC outcome.
Collapse
Affiliation(s)
- Elien Alderweireldt
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
31
|
Siddiqui S, Glauben R. Fatty Acid Metabolism in Myeloid-Derived Suppressor Cells and Tumor-Associated Macrophages: Key Factor in Cancer Immune Evasion. Cancers (Basel) 2022; 14:250. [PMID: 35008414 PMCID: PMC8750448 DOI: 10.3390/cancers14010250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The tumor microenvironment (TME) comprises various cell types, soluble factors, viz, metabolites or cytokines, which together play in promoting tumor metastasis. Tumor infiltrating immune cells play an important role against cancer, and metabolic switching in immune cells has been shown to affect activation, differentiation, and polarization from tumor suppressive into immune suppressive phenotypes. Macrophages represent one of the major immune infiltrates into TME. Blood monocyte-derived macrophages and myeloid derived suppressor cells (MDSCs) infiltrating into the TME potentiate hostile tumor progression by polarizing into immunosuppressive tumor-associated macrophages (TAMs). Recent studies in the field of immunometabolism focus on metabolic reprogramming at the TME in polarizing tumor-associated macrophages (TAMs). Lipid droplets (LD), detected in almost every eukaryotic cell type, represent the major source for intra-cellular fatty acids. Previously, LDs were mainly described as storage sites for fatty acids. However, LDs are now recognized to play an integral role in cellular signaling and consequently in inflammation and metabolism-mediated phenotypical changes in immune cells. In recent years, the role of LD dependent metabolism in macrophage functionality and phenotype has been being investigated. In this review article, we discuss fatty acids stored in LDs, their role in modulating metabolism of tumor-infiltrating immune cells and, therefore, in shaping the cancer progression.
Collapse
Affiliation(s)
| | - Rainer Glauben
- Medical Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
| |
Collapse
|
32
|
Ma Y, Ma Y. Hypergraph-based logistic matrix factorization for metabolite-disease interaction prediction. Bioinformatics 2022; 38:435-443. [PMID: 34499104 DOI: 10.1093/bioinformatics/btab652] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/08/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Function-related metabolites, the terminal products of the cell regulation, show a close association with complex diseases. The identification of disease-related metabolites is critical to the diagnosis, prevention and treatment of diseases. However, most existing computational approaches build networks by calculating pairwise relationships, which is inappropriate for mining higher-order relationships. RESULTS In this study, we presented a novel approach with hypergraph-based logistic matrix factorization, HGLMF, to predict the potential interactions between metabolites and disease. First, the molecular structures and gene associations of metabolites and the hierarchical structures and GO functional annotations of diseases were extracted to build various similarity measures of metabolites and diseases. Next, the kernel neighborhood similarity of metabolites (or diseases) was calculated according to the completed interactive network. Second, multiple networks of metabolites and diseases were fused, respectively, and the hypergraph structures of metabolites and diseases were built. Finally, a logistic matrix factorization based on hypergraph was proposed to predict potential metabolite-disease interactions. In computational experiments, HGLMF accurately predicted the metabolite-disease interaction, and performed better than other state-of-the-art methods. Moreover, HGLMF could be used to predict new metabolites (or diseases). As suggested from the case studies, the proposed method could discover novel disease-related metabolites, which has been confirmed in existing studies. AVAILABILITY AND IMPLEMENTATION The codes and dataset are available at: https://github.com/Mayingjun20179/HGLMF. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yingjun Ma
- School of Applied Mathematics, Xiamen University of Technology, Xiamen 361024, China
| | - Yuanyuan Ma
- School of Computer & Information Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
33
|
Abumustafa W, Zamer BA, Khalil BA, Hamad M, Maghazachi AA, Muhammad JS. Protein arginine N-methyltransferase 5 in colorectal carcinoma: Insights into mechanisms of pathogenesis and therapeutic strategies. Biomed Pharmacother 2022; 145:112368. [PMID: 34794114 DOI: 10.1016/j.biopha.2021.112368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Protein arginine N-methyltransferase 5 (PRMT5) enzyme is one of the eight canonical PRMTs, classified as a type II PRMT, induces arginine monomethylation and symmetric dimethylation. PRMT5 is known to be overexpressed in multiple cancer types, including colorectal cancer (CRC), where its overexpression is associated with poor survival. Recent studies have shown that upregulation of PRMT5 induces tumor growth and metastasis in CRC. Moreover, various novel PRMT5 inhibitors tested on CRC cell lines showed promising anticancer effects. Also, it was suggested that PRMT5 could be a valid biomarker for CRC diagnosis and prognosis. Hence, a deeper understanding of PRMT5-mediated CRC carcinogenesis could provide new avenues towards developing a targeted therapy. In this study, we started with in silico analysis correlating PRMT5 expression in CRC patients as a prelude to further our investigation of its role in CRC. We then carried out a comprehensive review of the scientific literature that dealt with the role(s) of PRMT5 in CRC pathogenesis, diagnosis, and prognosis. Also, we have summarized key findings from in vitro research using various therapeutic agents and strategies directly targeting PRMT5 or disrupting its function. In conclusion, PRMT5 seems to play a significant role in the pathogenesis of CRC; therefore, its prognostic and therapeutic potential merits further investigation.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
34
|
Xiao Y, Zhang G, Wang L, Liang M. Exploration and validation of a combined immune and metabolism gene signature for prognosis prediction of colorectal cancer. Front Endocrinol (Lausanne) 2022; 13:1069528. [PMID: 36518242 PMCID: PMC9742469 DOI: 10.3389/fendo.2022.1069528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is still one of the most frequently diagnosed malignancy around the world. The complex etiology and high heterogeneity of CRC necessitates the identification of new reliable signature to identify different tumor prognosis, which may help more precise understanding of the molecular properties of CRC and identify the appropriate treatment for CRC patients. In this study, we aimed to identify a combined immune and metabolism gene signature for prognosis prediction of CRC from large volume of CRC transcriptional data. METHODS Gene expression profiling and clinical data of HCC samples was retrieved from the from public datasets. IRGs and MRGs were identified from differential expression analysis. Univariate and multivariate Cox regression analysis were applied to establish the prognostic metabolism-immune status-related signature. Kaplan-Meier survival and receiver operating characteristic (ROC) curves were generated for diagnostic efficacy estimation. Real-time polymerase chain reaction (RT-PCR), Western blot and immunohistochemistry (IHC) was conducted to verified the expression of key genes in CRC cells and tissues. RESULTS A gene signature comprising four genes (including two IRGs and two MRGs) were identified and verified, with superior predictive performance in discriminating the overall survival (OS) of high-risk and low-risk compared to existing signatures. A prognostic nomogram based on the four-gene signature exhibited a best predictive performance, which enabled the prognosis prediction of CRC patients. The hub gene ESM1 related to CRC were selected via the machine learning and prognostic analysis. RT-PCR, Western blot and IHC indicated that ESM1 was high expressed in tumor than normal with superior predictive performance of CRC survival. CONCLUSIONS A novel combined MRGs and IRGs-related prognostic signature that could stratify CRC patients into low-and high- risk groups of unfavorable outcomes for survival, was identified and verified. This might help, to some extent, to individualized treatment and prognosis assessment of CRC patients. Similarly, the mining of key genes provides a new perspective to explore the molecular mechanisms and targeted therapies of CRC.
Collapse
Affiliation(s)
- Yitai Xiao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- *Correspondence: Yitai Xiao, ; Mingzhu Liang,
| | - Guixiong Zhang
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lizhu Wang
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Mingzhu Liang
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- *Correspondence: Yitai Xiao, ; Mingzhu Liang,
| |
Collapse
|
35
|
Donadio JLS, Prado SBRD, Rogero MM, Fabi JP. Effects of pectins on colorectal cancer: targeting hallmarks as a support for future clinical trials. Food Funct 2022; 13:11438-11454. [DOI: 10.1039/d2fo01995g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intake of dietary fibers has been associated with a reduction in the risk of colorectal cancer.
Collapse
Affiliation(s)
- Janaina L. S. Donadio
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | | | - Marcelo M. Rogero
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
- Department of Nutrition, School of Public Health University of São Paulo, Sao Paulo, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
A Metabolomic Investigation of Eugenol on Colorectal Cancer Cell Line HT-29 by Modifying the Expression of APC, p53, and KRAS Genes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1448206. [PMID: 34840582 PMCID: PMC8616688 DOI: 10.1155/2021/1448206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the most lethal cancers with a high mortality rate. Chemotherapy results in drug resistance in some cases; hence, herbal medicines are sometimes used in adjunct with it. Eugenol has been reported to have anti-inflammatory, antioxidant, and anticancer properties. Metabolomics is a study of metabolic changes within an organism using high-throughput technology. The purpose of this research was to investigate the anticancer effects of eugenol and variations in p53, KRAS, and APC gene expression and metabolic changes associated with the abovementioned gene expressions using 1HNMR spectroscopy. The MTT method was used to determine cell viability and its IC50 detected. After treating HT-29 cells with IC50 concentration of eugenol, RNA was extracted and cDNA was obtained from them and the expression of p53, KRAS, and APC genes was measured using the qRT-PCR technique. Metabolites were extracted using the chloroform-ethanol method, lyophilized, and sent for 1HNMR spectroscopy using the 1D-NOESY protocol. Chemometrics analysis such as PLS-DA was performed, and differentiated metabolites were identified using the Human Metabolome Database. Integrated metabolic analysis using the metabolites and gene expression was performed by the MetaboAnalyst website. The observed IC50 for eugenol was 500 μM, and the relative expression of APC and p53 genes in the treated cells increased compared to the control group, and the expression of KRAS oncogene gene decreased significantly. The crucial changes in convergent metabolic phenotype with genes were identified. The results indicate that eugenol exhibits its antitumor properties by targeting a specific biochemical pathway in the cell's metabolome profile due to changes in genes involved in colon cancer.
Collapse
|
37
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
38
|
Ohshima K, Oi R, Nojima S, Morii E. Mitochondria govern histone acetylation in colorectal cancer. J Pathol 2021; 256:164-173. [PMID: 34698384 DOI: 10.1002/path.5818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/25/2021] [Accepted: 10/23/2021] [Indexed: 01/01/2023]
Abstract
Cancer cells have an altered metabolic state that supports their growth, for example, aerobic glycolysis, known as the Warburg effect. Colorectal cancer cells have been reported to exhibit the Warburg effect and mainly rely on glycolysis for progression and have dysfunctional mitochondria. So far, how mitochondrial function influences the properties of colorectal cancer cells is unclear. Here, we demonstrated that mitochondria maintain histone acetylation, in particular acetylated histone H3 lysine 27 (H3K27ac), a surrogate epigenomic marker of active super-enhancers, in colorectal cancer cells. Immunohistochemistry was used on human colorectal adenocarcinoma specimens and showed that mitochondrial mass and H3K27ac marks were increased in adenocarcinoma lesions compared with adjacent non-neoplastic mucosa. Immunoblotting after using inhibitors of the mitochondrial respiratory complex or mitochondrial DNA-depleted human colorectal cancer cells revealed that mitochondria maintained pan-histone acetylation and H3K27ac marks. Notably, anchorage-independent growth, a feature of cancer, increased mitochondrial mass and H3K27ac marks in human colorectal cancer cells. These findings indicate that mitochondria in human colorectal cancer cells are not dysfunctional, as formerly believed, but function as inducers of histone acetylation. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kenji Ohshima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryo Oi
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
39
|
Interplay between Epigenetics and Cellular Metabolism in Colorectal Cancer. Biomolecules 2021; 11:biom11101406. [PMID: 34680038 PMCID: PMC8533383 DOI: 10.3390/biom11101406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/30/2023] Open
Abstract
Cellular metabolism alterations have been recognized as one of the most predominant hallmarks of colorectal cancers (CRCs). It is precisely regulated by many oncogenic signaling pathways in all kinds of regulatory levels, including transcriptional, post-transcriptional, translational and post-translational levels. Among these regulatory factors, epigenetics play an essential role in the modulation of cellular metabolism. On the one hand, epigenetics can regulate cellular metabolism via directly controlling the transcription of genes encoding metabolic enzymes of transporters. On the other hand, epigenetics can regulate major transcriptional factors and signaling pathways that control the transcription of genes encoding metabolic enzymes or transporters, or affecting the translation, activation, stabilization, or translocation of metabolic enzymes or transporters. Interestingly, epigenetics can also be controlled by cellular metabolism. Metabolites not only directly influence epigenetic processes, but also affect the activity of epigenetic enzymes. Actually, both cellular metabolism pathways and epigenetic processes are controlled by enzymes. They are highly intertwined and are essential for oncogenesis and tumor development of CRCs. Therefore, they are potential therapeutic targets for the treatment of CRCs. In recent years, both epigenetic and metabolism inhibitors are studied for clinical use to treat CRCs. In this review, we depict the interplay between epigenetics and cellular metabolism in CRCs and summarize the underlying molecular mechanisms and their potential applications for clinical therapy.
Collapse
|
40
|
Abi Zamer B, Abumustafa W, Hamad M, Maghazachi AA, Muhammad JS. Genetic Mutations and Non-Coding RNA-Based Epigenetic Alterations Mediating the Warburg Effect in Colorectal Carcinogenesis. BIOLOGY 2021; 10:847. [PMID: 34571724 PMCID: PMC8472255 DOI: 10.3390/biology10090847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) development is a gradual process defined by the accumulation of numerous genetic mutations and epigenetic alterations leading to the adenoma-carcinoma sequence. Despite significant advances in the diagnosis and treatment of CRC, it continues to be a leading cause of cancer-related deaths worldwide. Even in the presence of oxygen, CRC cells bypass oxidative phosphorylation to produce metabolites that enable them to proliferate and survive-a phenomenon known as the "Warburg effect". Understanding the complex glucose metabolism in CRC cells may support the development of new diagnostic and therapeutic approaches. Here we discuss the most recent findings on genetic mutations and epigenetic modulations that may positively or negatively regulate the Warburg effect in CRC cells. We focus on the non-coding RNA (ncRNA)-based epigenetics, and we present a perspective on the therapeutic relevance of critical molecules and ncRNAs mediating the Warburg effect in CRC cells. All the relevant studies were identified and assessed according to the genes and enzymes mediating the Warburg effect. The findings summarized in this review should provide a better understanding of the relevance of genetic mutations and the ncRNA-based epigenetic alterations to CRC pathogenesis to help overcome chemoresistance.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.A.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
| | - Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.A.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Azzam A. Maghazachi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.A.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
| |
Collapse
|
41
|
Herrmann HA, Rusz M, Baier D, Jakupec MA, Keppler BK, Berger W, Koellensperger G, Zanghellini J. Thermodynamic Genome-Scale Metabolic Modeling of Metallodrug Resistance in Colorectal Cancer. Cancers (Basel) 2021; 13:4130. [PMID: 34439283 PMCID: PMC8391396 DOI: 10.3390/cancers13164130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mass spectrometry-based metabolomics approaches provide an immense opportunity to enhance our understanding of the mechanisms that underpin the cellular reprogramming of cancers. Accurate comparative metabolic profiling of heterogeneous conditions, however, is still a challenge. METHODS Measuring both intracellular and extracellular metabolite concentrations, we constrain four instances of a thermodynamic genome-scale metabolic model of the HCT116 colorectal carcinoma cell line to compare the metabolic flux profiles of cells that are either sensitive or resistant to ruthenium- or platinum-based treatments with BOLD-100/KP1339 and oxaliplatin, respectively. RESULTS Normalizing according to growth rate and normalizing resistant cells according to their respective sensitive controls, we are able to dissect metabolic responses specific to the drug and to the resistance states. We find the normalization steps to be crucial in the interpretation of the metabolomics data and show that the metabolic reprogramming in resistant cells is limited to a select number of pathways. CONCLUSIONS Here, we elucidate the key importance of normalization steps in the interpretation of metabolomics data, allowing us to uncover drug-specific metabolic reprogramming during acquired metal-drug resistance.
Collapse
Affiliation(s)
- Helena A. Herrmann
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (H.A.H.); (M.R.)
| | - Mate Rusz
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (H.A.H.); (M.R.)
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria; (D.B.); (M.A.J.); (B.K.K.)
| | - Dina Baier
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria; (D.B.); (M.A.J.); (B.K.K.)
| | - Michael A. Jakupec
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria; (D.B.); (M.A.J.); (B.K.K.)
- Research Cluster Translational Cancer Therapy Research, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria;
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria; (D.B.); (M.A.J.); (B.K.K.)
- Research Cluster Translational Cancer Therapy Research, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria;
| | - Walter Berger
- Research Cluster Translational Cancer Therapy Research, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria;
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (H.A.H.); (M.R.)
- Vienna Metabolomics Center (VIME), University of Vienna, 1090 Vienna, Austria
- Research Network Chemistry Meets Microbiology, University of Vienna, 1090 Vienna, Austria
| | - Jürgen Zanghellini
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; (H.A.H.); (M.R.)
| |
Collapse
|
42
|
Employing bioinformatics analysis to identify hub genes and microRNAs involved in colorectal cancer. Med Oncol 2021; 38:114. [PMID: 34390411 DOI: 10.1007/s12032-021-01543-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/26/2021] [Indexed: 12/19/2022]
Abstract
The third leading cause of cancer-related deaths in the world, colorectal cancer (CRC) is a global health issue that should be addressed in both diagnostics and therapeutics to improve patient survival rate. Today, microarray data analysis is increasingly being used as a novel and effective method for classification of malignancies and making prognostic assessments. Built upon the concept of microarray data analysis and aimed at the identification of CRC-associated genes, our study has adopted an integrative analysis for the gene expression patterns of four microarray datasets in gene expression omnibus (GEO) and microRNAs (miRNAs) expression profiles. We downloaded four gene expression profiles, i.e., GSE37182, GSE25070, GSE10950, and GSE113513, miRNAs gene expression profiles and differentially expressed genes (DEGs). We used R software, the DAVID database, protein-protein interaction (PPI) networks, the Cytoscape program and receiver operating characteristic (ROC) curve for data analysis. Out of the four gene expression profiles, a total of 43 common DEGs were identified, including 10 hub genes, SLC26A3, CLCA1, GUCA2A, MS4A12, CLCA4, GUCA2B, KRT20, AQP8, MAOA, and ADH1A, and four differentially expressed miRNAs, miR-552, miR-423-5p, miR-502-3p, and miR-490-5p. The highly enriched modes of the signaling pathways among these DEGs were speculated to be involved in various processes including nitrogen metabolism, mineral absorption, pancreatic secretions, and tyrosine metabolism in Kyoto encyclopedia of genes and genomes (KEGG) database. According to our bioinformatics analysis, the DEGs identified in the present study could be considered as significant hallmarks in the molecular mechanisms of CRC development. Our findings may assist scientists with developing novel strategies not only for prediction of CRC, but also for screening and early diagnosis, and treatment of CRC patients.
Collapse
|
43
|
Reinsalu L, Puurand M, Chekulayev V, Miller S, Shevchuk I, Tepp K, Rebane-Klemm E, Timohhina N, Terasmaa A, Kaambre T. Energy Metabolic Plasticity of Colorectal Cancer Cells as a Determinant of Tumor Growth and Metastasis. Front Oncol 2021; 11:698951. [PMID: 34381722 PMCID: PMC8351413 DOI: 10.3389/fonc.2021.698951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022] Open
Abstract
Metabolic plasticity is the ability of the cell to adjust its metabolism to changes in environmental conditions. Increased metabolic plasticity is a defining characteristic of cancer cells, which gives them the advantage of survival and a higher proliferative capacity. Here we review some functional features of metabolic plasticity of colorectal cancer cells (CRC). Metabolic plasticity is characterized by changes in adenine nucleotide transport across the outer mitochondrial membrane. Voltage-dependent anion channel (VDAC) is the main protein involved in the transport of adenine nucleotides, and its regulation is impaired in CRC cells. Apparent affinity for ADP is a functional parameter that characterizes VDAC permeability and provides an integrated assessment of cell metabolic state. VDAC permeability can be adjusted via its interactions with other proteins, such as hexokinase and tubulin. Also, the redox conditions inside a cancer cell may alter VDAC function, resulting in enhanced metabolic plasticity. In addition, a cancer cell shows reprogrammed energy transfer circuits such as adenylate kinase (AK) and creatine kinase (CK) pathway. Knowledge of the mechanism of metabolic plasticity will improve our understanding of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Leenu Reinsalu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.,Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Sten Miller
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.,Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.,Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Anton Terasmaa
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
44
|
Rio-Vilariño A, del Puerto-Nevado L, García-Foncillas J, Cebrián A. Ras Family of Small GTPases in CRC: New Perspectives for Overcoming Drug Resistance. Cancers (Basel) 2021; 13:3757. [PMID: 34359657 PMCID: PMC8345156 DOI: 10.3390/cancers13153757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer remains among the cancers with the highest incidence, prevalence, and mortality worldwide. Although the development of targeted therapies against the EGFR and VEGFR membrane receptors has considerably improved survival in these patients, the appearance of resistance means that their success is still limited. Overactivation of several members of the Ras-GTPase family is one of the main actors in both tumour progression and the lack of response to cytotoxic and targeted therapies. This fact has led many resources to be devoted over the last decades to the development of targeted therapies against these proteins. However, they have not been as successful as expected in their move to the clinic so far. In this review, we will analyse the role of these Ras-GTPases in the emergence and development of colorectal cancer and their relationship with resistance to targeted therapies, as well as the status and new advances in the design of targeted therapies against these proteins and their possible clinical implications.
Collapse
Affiliation(s)
| | | | - Jesús García-Foncillas
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| | - Arancha Cebrián
- Translational Oncology Division, Hospital Universitario Fundación Jimenez Diaz, 28040 Madrid, Spain; (A.R.-V.); (L.d.P.-N.)
| |
Collapse
|
45
|
Xu Z, Qu H, Ren Y, Gong Z, Ri HJ, Chen X. An Update on the Potential Roles of E2F Family Members in Colorectal Cancer. Cancer Manag Res 2021; 13:5509-5521. [PMID: 34276228 PMCID: PMC8277564 DOI: 10.2147/cmar.s320193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide, and thus, optimised diagnosis and treatments are imperative. E2F transcription factors (E2Fs) are a family of transcription factors consisting of eight genes, contributing to the oncogenesis and development of CRC. Importantly, E2Fs control not only the cell cycle but also apoptosis, senescence, DNA damage response, and drug resistance by interacting with multiple signaling pathways. However, the specific functions and intricate machinery of these eight E2Fs in human CRC remain unclear in many respects. Evidence on E2Fs and CRC has been scattered on the related regulatory genes, microRNAs (miRNAs), and competing endogenous RNAs (ceRNAs). Accordingly, some drugs targeting E2Fs have been transferred from preclinical to clinical application. Herein, we have systemically reviewed the current literature on the roles of various E2Fs in CRC with the purpose of providing possible clinical implications for patient diagnosis and prognosis and future treatment strategy design, thereby furthering the understanding of the E2Fs.
Collapse
Affiliation(s)
- ZhaoHui Xu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hui Qu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - YanYing Ren
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - ZeZhong Gong
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hyok Ju Ri
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Xin Chen
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| |
Collapse
|
46
|
Radanova M, Mihaylova G, Nazifova-Tasinova N, Levkova M, Tasinov O, Ivanova D, Mihaylova Z, Donev I. Oncogenic Functions and Clinical Significance of Circular RNAs in Colorectal Cancer. Cancers (Basel) 2021; 13:3395. [PMID: 34298612 PMCID: PMC8303601 DOI: 10.3390/cancers13143395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is ranked as the second most commonly diagnosed disease in females and the third in males worldwide. Therefore, the finding of new more reliable biomarkers for early diagnosis, for prediction of metastasis, and resistance to conventional therapies is an important challenge in overcoming the disease. The current review presents circular RNAs (circRNAs) with their unique features as potential prognostic and diagnostic biomarkers in CRC. The review highlights the mechanism of action and the role of circRNAs with oncogenic functions in the CRC as well as the association between their expression and clinicopathological characteristics of CRC patients. The comprehension of the role of oncogenic circRNAs in CRC pathogenesis is growing rapidly and the next step is using them as suitable new drug targets in the personalized treatment of CRC patients.
Collapse
Affiliation(s)
- Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
- Laboratory of Molecular Pathology, University Hospital “St. Marina”, 9000 Varna, Bulgaria
| | - Galya Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Neshe Nazifova-Tasinova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Mariya Levkova
- Department of Medical Genetics, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Oskan Tasinov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Desislava Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Zhasmina Mihaylova
- Clinic of Medical Oncology, Military Medical Academy, 1000 Sofia, Bulgaria;
| | - Ivan Donev
- Clinic of Medical Oncology, Hospital Nadezhda, 1000 Sofia, Bulgaria
| |
Collapse
|
47
|
Lin D, Fan W, Zhang R, Zhao E, Li P, Zhou W, Peng J, Li L. Molecular subtype identification and prognosis stratification by a metabolism-related gene expression signature in colorectal cancer. J Transl Med 2021; 19:279. [PMID: 34193202 PMCID: PMC8244251 DOI: 10.1186/s12967-021-02952-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metabolic reprograming have been associated with cancer occurrence and progression within the tumor immune microenvironment. However, the prognostic potential of metabolism-related genes in colorectal cancer (CRC) has not been comprehensively studied. Here, we investigated metabolic transcript-related CRC subtypes and relevant immune landscapes, and developed a metabolic risk score (MRS) for survival prediction. METHODS Metabolism-related genes were collected from the Molecular Signatures Database and metabolic subtypes were identified using an unsupervised clustering algorithm based on the expression profiles of survival-related metabolic genes in GSE39582. The ssGSEA and ESTIMATE methods were applied to estimate the immune infiltration among subtypes. The MRS model was developed using LASSO Cox regression in the GSE39582 dataset and independently validated in the TCGA CRC and GSE17537 datasets. RESULTS We identified two metabolism-related subtypes (cluster-A and cluster-B) of CRC based on the expression profiles of 539 survival-related metabolic genes with distinct immune profiles and notably different prognoses. The cluster-B subtype had a shorter OS and RFS than the cluster-A subtype. Eighteen metabolism-related genes that were mostly involved in lipid metabolism pathways were used to build the MRS in GSE39582. Patients with higher MRS had worse prognosis than those with lower MRS (HR 3.45, P < 0.001). The prognostic role of MRS was validated in the TCGA CRC (HR 2.12, P = 0.00017) and GSE17537 datasets (HR 2.67, P = 0.039). Time-dependent receiver operating characteristic curve and stratified analyses revealed the robust predictive ability of the MRS in each dataset. Multivariate Cox regression analysis indicted that the MRS could predict OS independent of TNM stage and age. CONCLUSIONS Our study provides novel insight into metabolic heterogeneity and its relationship with immune landscape in CRC. The MRS was identified as a robust prognostic marker and may facilitate individualized therapy for CRC patients.
Collapse
Affiliation(s)
- Dagui Lin
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Wenhua Fan
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Rongxin Zhang
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Enen Zhao
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Pansong Li
- Geneplus-Beijing, Beijing, 102206, China
| | - Wenhao Zhou
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Jianhong Peng
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Liren Li
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
48
|
Mollace A, Coluccio ML, Donato G, Mollace V, Malara N. Cross-talks in colon cancer between RAGE/AGEs axis and inflammation/immunotherapy. Oncotarget 2021; 12:1281-1295. [PMID: 34194625 PMCID: PMC8238251 DOI: 10.18632/oncotarget.27990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
The tumour microenvironment is the result of the activity of many types of cells in various metabolic states, whose metabolites are shared between cells. This cellular complexity results in an availability profile of nutrients and reactive metabolites such as advanced glycation end products (AGE). The tumour microenvironment is not favourable to immune cells due to hypoxia and for the existence of significant competition between various types of cells for a limited nutrient pool. However, it is now known that cancer cells can influence the host's immune reaction through the expression and secretion of numerous molecules. The microenvironment can therefore present itself in different patterns that contribute to shaping immune surveillance. Colorectal cancer (CRC) is one of the most important causes of death in cancer patients. Recently, immunotherapy has begun to give encouraging results in some groups of patients suffering from this neoplasm. The analysis of literature data shows that the RAGE (Receptor for advanced glycation end products) and its numerous ligands contribute to connect the energy metabolic pathway, which appears prevalently disconnected by mitochondrial running, with the immune reaction, conditioned by local microbiota and influencing tumour growth. Understanding how metabolism in cancer and immune cells shapes response and resistance to therapy, will provide novel potential strategies to increase both the number of tumour types treated by immunotherapy and the rate of immunotherapy response. The analysis of literature data shows that an immunotherapy approach based on the knowledge of RAGE and its ligands is not only possible, but also desirable in the treatment of CRC.
Collapse
Affiliation(s)
- Annachiara Mollace
- Department of Health Sciences, Research Centre IRC-FSH, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Laura Coluccio
- Department of Experimental and Clinical Medicine, Bionem Laboratory, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Græcia of Catanzaro, Campus S. Venuta, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Research Centre IRC-FSH, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy.,These authors contributed equally to this work
| | - Natalia Malara
- Department of Experimental and Clinical Medicine, Bionem Laboratory, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy.,These authors contributed equally to this work
| |
Collapse
|
49
|
Insulin-Like Growth Factor 1 (IGF-1) Signaling in Glucose Metabolism in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22126434. [PMID: 34208601 PMCID: PMC8234711 DOI: 10.3390/ijms22126434] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common aggressive carcinoma types worldwide, characterized by unfavorable curative effect and poor prognosis. Epidemiological data re-vealed that CRC risk is increased in patients with metabolic syndrome (MetS) and its serum components (e.g., hyperglycemia). High glycemic index diets, which chronically raise post-prandial blood glucose, may at least in part increase colon cancer risk via the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway. However, the underlying mechanisms linking IGF-1 and MetS are still poorly understood. Hyperactivated glucose uptake and aerobic glycolysis (the Warburg effect) are considered as a one of six hallmarks of cancer, including CRC. However, the role of insulin/IGF-1 signaling during the acquisition of the Warburg metabolic phenotypes by CRC cells is still poorly understood. It most likely results from the interaction of multiple processes, directly or indirectly regulated by IGF-1, such as activation of PI3K/Akt/mTORC, and Raf/MAPK signaling pathways, activation of glucose transporters (e.g., GLUT1), activation of key glycolytic enzymes (e.g., LDHA, LDH5, HK II, and PFKFB3), aberrant expression of the oncogenes (e.g., MYC, and KRAS) and/or overexpression of signaling proteins (e.g., HIF-1, TGF-β1, PI3K, ERK, Akt, and mTOR). This review describes the role of IGF-1 in glucose metabolism in physiology and colorectal carcinogenesis, including the role of the insulin/IGF system in the Warburg effect. Furthermore, current therapeutic strategies aimed at repairing impaired glucose metabolism in CRC are indicated.
Collapse
|
50
|
Nenkov M, Ma Y, Gaßler N, Chen Y. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. Int J Mol Sci 2021; 22:6262. [PMID: 34200820 PMCID: PMC8230539 DOI: 10.3390/ijms22126262] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal carcinoma (CRC) is one of the most frequently diagnosed carcinomas and one of the leading causes of cancer-related death worldwide. Metabolic reprogramming, a hallmark of cancer, is closely related to the initiation and progression of carcinomas, including CRC. Accumulating evidence shows that activation of oncogenic pathways and loss of tumor suppressor genes regulate the metabolic reprogramming that is mainly involved in glycolysis, glutaminolysis, one-carbon metabolism and lipid metabolism. The abnormal metabolic program provides tumor cells with abundant energy, nutrients and redox requirements to support their malignant growth and metastasis, which is accompanied by impaired metabolic flexibility in the tumor microenvironment (TME) and dysbiosis of the gut microbiota. The metabolic crosstalk between the tumor cells, the components of the TME and the intestinal microbiota further facilitates CRC cell proliferation, invasion and metastasis and leads to therapy resistance. Hence, to target the dysregulated tumor metabolism, the TME and the gut microbiota, novel preventive and therapeutic applications are required. In this review, the dysregulation of metabolic programs, molecular pathways, the TME and the intestinal microbiota in CRC is addressed. Possible therapeutic strategies, including metabolic inhibition and immune therapy in CRC, as well as modulation of the aberrant intestinal microbiota, are discussed.
Collapse
Affiliation(s)
| | | | | | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, University Hospital Jena, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| |
Collapse
|