1
|
Chueire VB, Muscelli E. Effect of free fatty acids on insulin secretion, insulin sensitivity and incretin effect - a narrative review. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 65:24-31. [PMID: 33320449 PMCID: PMC10528699 DOI: 10.20945/2359-3997000000313] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/26/2020] [Indexed: 11/23/2022]
Abstract
Deleterious effects of free fatty acids, FFAs, on insulin sensitivity are observed in vivo studies in humans. Mechanisms include impaired insulin signaling, oxidative stress, inflammation, and mitochondrial dysfunction, but the effects on insulin secretion are less well known. Our aim was to review the relationship of increased FFAs with insulin resistance, secretion and mainly with the incretin effect in humans. Narrative review. Increased endogenous or administered FFAs induce insulin resistance. FFAs effects on insulin secretion are debatable; inhibition and stimulation have been reported, depending on the type and duration of lipids exposition and the study subjects. Chronically elevated FFAs seem to decrease insulin biosynthesis, glucose-stimulated insulin secretion and β-cell glucose sensitivity. Lipids infusion decreases the response to incretins with unchanged incretin levels in volunteers with normal glucose tolerance. In contrast, FFAs reduction by acipimox did not restore the incretin effect in type-2 diabetes, probably due to the dysfunctional β-cell. Possible mechanisms of FFAs excess on incretin effect include reduction of the expression and levels of GLP-1 (glucagon like peptide-1) receptor, reduction of connexin-36 expression thus the coordinated secretory activity in response to GLP-1, and GIP (glucose-dependent insulinotropic polypeptide) receptors downregulation in islets cells. Increased circulating FFAs impair insulin sensitivity. Effects on insulin secretion are complex and controversial. Deleterious effects on the incretin-induced potentiation of insulin secretion were reported. More investigation is needed to better understand the extent and mechanisms of β-cell impairment and insulin resistance induced by increased FFAs and how to prevent them.
Collapse
Affiliation(s)
- Valeria Bahdur Chueire
- Departamento de Endocrinologia, Hospital da Pontifícia Universidade Católica de Campinas, Campinas, SP, Brasil,
| | - Elza Muscelli
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
2
|
Wu X, Yu T, Ji N, Huang Y, Gao L, Shi W, Yan Y, Li H, Ma L, Wu K, Wu Z. IL6R inhibits viability and apoptosis of pancreatic beta-cells in type 2 diabetes mellitus via regulation by miR-22 of the JAK/STAT signaling pathway. Diabetes Metab Syndr Obes 2019; 12:1645-1657. [PMID: 31695460 PMCID: PMC6718245 DOI: 10.2147/dmso.s211700] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIM Type 2 diabetes mellitus (T2DM) is a common disease of harming to people's health. MicroRNAs have recently been considered as key regulators of many biological processes, such as cell proliferation, migration and apoptosis. However, the effect of miR-22 expression by targeting IL6 receptor (IL6R) in T2DM and potential molecular mechanism involved remains to be elucidated. The present study aimed to explore the regulatory mechanism of miR-22 by targeting IL6R in pancreatic beta-cells viability and apoptosis of T2DM. METHODS The expressions of miR-22, IL6R and apolipoprotein (apoA1, apoB and apoE) were examined by reverse transcription-quantitative PCR (qRT-PCR). Pancreatic beta-cells were transiently transfected with a miR-22 mimic or si-IL6R plasmid which validated with qRT-PCR to analyze the expression of miR-22 or IL6R. Cell viability, apoptosis and protein expression levels were determined by CCK-8, flow cytometry and Western blotting, respectively. RESULTS The proportion of INS-1E cell apoptosis was increased in islets of diabetic rats. Furthermore, miR-22 was downregulated and IL6R was upregulated in both diabetic serum and glucose-induced INS-1E cells. miR-22 overexpression or IL6R inhibition significantly strengthened cell viability and reduced the expression of apoptosis-related proteins to suppress cell apoptosis. IL6R was demonstrated as a target gene of miR-22 which could negatively regulate IL6R expression. Moreover, phosphorylation of JAK/STAT signaling pathway was activated by miR-22 overexpression or IL6R inhibition to strengthen the viability and suppress apoptosis of INS-1E cells. CONCLUSION This study indicated that miR-22 strengthened the viability and suppressed apoptosis of INS-1E cells, partly by down-regulation of IL6R through the activation of JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Xinhua Wu
- Department of Endocrinology, Huaian Hospital of Huaian District, Huaian, Jiangsu223200, People’s Republic of China
| | - Tao Yu
- Department of Endocrinology, Huaian Hospital of Huaian District, Huaian, Jiangsu223200, People’s Republic of China
| | - Ning Ji
- Department of Endocrinology, Huaian Hospital of Huaian District, Huaian, Jiangsu223200, People’s Republic of China
| | - Yujie Huang
- Department of Endocrinology, Huaian Hospital of Huaian District, Huaian, Jiangsu223200, People’s Republic of China
| | - Lingcheng Gao
- Department of Endocrinology, Huaian Hospital of Huaian District, Huaian, Jiangsu223200, People’s Republic of China
| | - Wen Shi
- Department of Endocrinology, Huaian Hospital of Huaian District, Huaian, Jiangsu223200, People’s Republic of China
| | - Yan Yan
- Department of Endocrinology, Huaian Hospital of Huaian District, Huaian, Jiangsu223200, People’s Republic of China
| | - Hang Li
- Department of Endocrinology, Huaian Hospital of Huaian District, Huaian, Jiangsu223200, People’s Republic of China
| | - Liming Ma
- Department of Endocrinology, Huaian Hospital of Huaian District, Huaian, Jiangsu223200, People’s Republic of China
| | - Kede Wu
- Clinical Medicine, Medical College of Yangzhou University, Yangzhou, Jiangsu225009, People’s Republic of China
| | - Zhen Wu
- Electric Engineering, China University of Mining and Technology, Xuzhou, Jiangsu221116, People’s Republic of China
| |
Collapse
|
3
|
Zhao J, Cai CK, Xie M, Liu JN, Wang BZ. Investigation of the therapy targets of Yi-Qi-Yang-Yin-Hua-Tan-Qu-Yu recipe on type 2 diabetes by serum proteome labeled with iTRAQ. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:1-14. [PMID: 29654829 DOI: 10.1016/j.jep.2018.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Based on basic theories of Chinese medicine, Yi-Qi-Yang-Yin-Hua-Tan-Qu-Yu (YQYYHTQY) recipe was constituted by eleven kinds of Chinese herbs and effective in treatment of type 2 diabetes (T2DM). But the therapy target was unclear. OBJECTIVE In this study, we used the serum proteome labeled by iTRAQ to find therapy target of YQYYHTQY recipe on T2DM. MATERIALS AND METHODS The rat model was induced by high-fat diet (HFD) and streptozotocin (STZ, 30 mg/kg). Drugs were administered to rats once daily for 14 days. Related laboratory parameters were observed. Serum proteome were compared between T2DM and YQYYHTQY group using the iTRAQ labeling quantitative proteomics technique. Functional differential proteins were analysis by STRING software. Target proteins were confirmed by ELISA kits. RESULTS Hyperglycemia, hyperinsulinemia, insulin resistance, decrease of glucose transporter, depilation, less activity, flock together, depression, ecchymosis of tongue and tail appearance, the typical diabetic patients "a little more than three" symptoms, as well as the decrease of grip strength, serum cyclic adenosine monophosphate (cAMP)/ cyclic guanosine monophosphate (cGMP) ratio, serum high density lipoprotein-cholesterol (HDL-C) and the increase of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), thromboxane B2 (TXB2)/ 6-keto prostaglandin F1α (6-keto PGF1α) ratio, endothelin-1 (ET-1) levels were found in T2DM group. After drugs treatment, all the above indexes almost were improved in different degrees and effect of YQYYHTQY recipe was superior to pioglitazone hydrochloride. In addition, there were 23 differential proteins, 5 up-regulated and 18 down-regulated proteins. Of them, there were 4 proteins related with diabetes, blood and behavior. Cell division control protein 42 homolog (CDC42) and Ras homolog gene family member A (RhoA) were the therapy targets of YQYYHTQY recipe on T2DM. CONCLUSIONS YQYYHTQY recipe showed therapy effect on T2DM. CDC42 and RhoA proteins were the therapy targets of YQYYHTQY recipe.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Formula, Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research and Continuing Education, Shenzhen 518057, China.
| | - Cheng-Ke Cai
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ming Xie
- Department of Formula, Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jin-Na Liu
- Department of Formula, Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Shool of Combination of Chinese traditional and Western medicine, Hebei Medical University, Hebei 050017, China.
| | - Bang-Zhong Wang
- Department of Formula, Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
4
|
Enooku K, Kondo M, Fujiwara N, Sasako T, Shibahara J, Kado A, Okushin K, Fujinaga H, Tsutsumi T, Nakagomi R, Minami T, Sato M, Nakagawa H, Kondo Y, Asaoka Y, Tateishi R, Ueki K, Ikeda H, Yoshida H, Moriya K, Yotsuyanagi H, Kadowaki T, Fukayama M, Koike K. Hepatic IRS1 and ß-catenin expression is associated with histological progression and overt diabetes emergence in NAFLD patients. J Gastroenterol 2018; 53:1261-1275. [PMID: 29749571 PMCID: PMC6244858 DOI: 10.1007/s00535-018-1472-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/30/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes. Our aim was to investigate the relationship between NAFLD and impaired glucose metabolism in terms of insulin receptor substrate 1 and 2 (IRS1 and IRS2) expression in the liver. METHODS Liver biopsy was performed at the University of Tokyo Hospital between November 2011 and March 2016 on 146 patients with NAFLD who were not being treated with any diabetes or dyslipidemia drugs. Among them, 63 underwent liver biopsy after an overnight fast, and 83 at 5 h after an oral glucose tolerance test (OGTT). Differences in messenger RNA (mRNA) levels of several glucose metabolism-related factors were determined and correlated with hepatic histological changes assessed by NAFLD activity score. We prospectively followed up with the patients until May 2017. RESULTS Hepatic necroinflammation was significantly correlated with serum insulin levels and inversely correlated with IRS1 mRNA levels. In specimens obtained after an OGTT, hepatic necroinflammation and IRS1 expression correlated significantly with both peripheral and hepatic insulin resistance. We also found that hepatic β-catenin and glucokinase mRNA levels were elevated in patients undergoing liver biopsy after an OGTT, especially in those with less hepatic necroinflammation and a lower degree of fibrosis. A prospective cohort study showed that ballooning is the most significant risk factor for developing diabetes. CONCLUSIONS The decreased hepatic expression of IRS1 and β-catenin in NAFLD is linked to histological progression such as ballooning, and might lead to diabetes as a result of impaired glucose metabolism.
Collapse
Affiliation(s)
- Kenichiro Enooku
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Mayuko Kondo
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Naoto Fujiwara
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Takayoshi Sasako
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junji Shibahara
- 0000 0000 9340 2869grid.411205.3Department of Pathology, Kyorin University, Mitaka, Japan
| | - Akira Kado
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Kazuya Okushin
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Hidetaka Fujinaga
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Takeya Tsutsumi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Nakagomi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Tatsuya Minami
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Masaya Sato
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Hayato Nakagawa
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Yuji Kondo
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Yoshinari Asaoka
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Ryosuke Tateishi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Kohjiro Ueki
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Ikeda
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kyoji Moriya
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
5
|
Interaction of poor sleep quality, family history of type 2 diabetes, and abdominal obesity on impaired fasting glucose: a population-based cross-sectional survey in China. Int J Diabetes Dev Ctries 2016. [DOI: 10.1007/s13410-015-0410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
6
|
Efficacy of integrative medicine in deficiency of both qi and yin in the rat model of type 2 diabetes. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2015. [DOI: 10.1016/j.jtcms.2016.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Ruggles KV, Garbarino J, Liu Y, Moon J, Schneider K, Henneberry A, Billheimer J, Millar JS, Marchadier D, Valasek MA, Joblin-Mills A, Gulati S, Munkacsi AB, Repa JJ, Rader D, Sturley SL. A functional, genome-wide evaluation of liposensitive yeast identifies the "ARE2 required for viability" (ARV1) gene product as a major component of eukaryotic fatty acid resistance. J Biol Chem 2013; 289:4417-31. [PMID: 24273168 DOI: 10.1074/jbc.m113.515197] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the "ARE2 required for viability" (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic β-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease.
Collapse
|
8
|
Guo C, Li R, Zheng N, Xu L, Liang T, He Q. Anti-diabetic effect of ramulus mori polysaccharides, isolated from Morus alba L., on STZ-diabetic mice through blocking inflammatory response and attenuating oxidative stress. Int Immunopharmacol 2013; 16:93-9. [DOI: 10.1016/j.intimp.2013.03.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/11/2013] [Accepted: 03/25/2013] [Indexed: 01/11/2023]
|
9
|
Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 2012; 142:711-725.e6. [PMID: 22326434 DOI: 10.1053/j.gastro.2012.02.003] [Citation(s) in RCA: 655] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/04/2012] [Accepted: 02/02/2012] [Indexed: 02/07/2023]
Abstract
As obesity reaches epidemic proportions, nonalcoholic fatty liver disease (NAFLD) is becoming a frequent cause of patient referral to gastroenterologists. There is a close link between dysfunctional adipose tissue in NAFLD and common conditions such as metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. This review focuses on the pathophysiology of interactions between adipose tissue and target organs in obesity and the resulting clinical implications for the management of nonalcoholic steatohepatitis. The release of fatty acids from dysfunctional and insulin-resistant adipocytes results in lipotoxicity, caused by the accumulation of triglyceride-derived toxic metabolites in ectopic tissues (liver, muscle, pancreatic beta cells) and subsequent activation of inflammatory pathways, cellular dysfunction, and lipoapoptosis. The cross talk between dysfunctional adipocytes and the liver involves multiple cell populations, including macrophages and other immune cells, that in concert promote the development of lipotoxic liver disease, a term that more accurately describes the pathophysiology of nonalcoholic steatohepatitis. At the clinical level, adipose tissue insulin resistance contributes to type 2 diabetes mellitus and cardiovascular disease. Treatments that rescue the liver from lipotoxicity by restoring adipose tissue insulin sensitivity (eg, significant weight loss, exercise, thiazolidinediones) or preventing activation of inflammatory pathways and oxidative stress (ie, vitamin E, thiazolidinediones) hold promise in the treatment of NAFLD, although their long-term safety and efficacy remain to be established. Better understanding of pathways that link dysregulated adipose tissue, metabolic dysfunction, and liver lipotoxicity will result in improvements in the clinical management of these challenging patients.
Collapse
Affiliation(s)
- Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610-0226, USA.
| |
Collapse
|
10
|
Kita T, Yoshioka E, Satoh H, Saijo Y, Kawaharada M, Okada E, Kishi R. Short sleep duration and poor sleep quality increase the risk of diabetes in Japanese workers with no family history of diabetes. Diabetes Care 2012; 35:313-8. [PMID: 22210572 PMCID: PMC3263910 DOI: 10.2337/dc11-1455] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate whether a difference in the risk for diabetes exists in Japanese workers with regard to sleep duration/quality and the presence or absence of a family history of diabetes (FHD). RESEARCH DESIGN AND METHODS The researchers conducted a prospective, occupational-based study of local government employees in Sapporo, Japan. Between April 2003 and March 2004, 3,570 nondiabetic participants, aged 35-55 years, underwent annual health checkups and completed a self-administered questionnaire that included information on sleep duration/quality and FHD at baseline. Having diabetes was defined as taking medication for diabetes or a fasting plasma glucose level of ≥126 mg/dL at follow-up (2007-2008). RESULTS A total of 121 (3.4%) new cases of diabetes were reported. In multivariate logistic regression models of workers without an FHD, and after adjustment for potential confounding factors, the odds ratio (95% CI) for developing diabetes was 5.37 (1.38-20.91) in those with a sleep duration of ≤5 h compared with those with a sleep duration of >7 h. Other risk factors were awakening during the night (5.03 [1.43-17.64]), self-perceived insufficient sleep duration (6.76 [2.09-21.87]), and unsatisfactory overall quality of sleep (3.71 [1.37-10.07]). In subjects with an FHD, these associations were either absent or weaker. CONCLUSIONS The current study shows that poor sleep is associated with a higher risk of developing diabetes in workers without an FHD. Promoting healthy sleeping habits may be effective for preventing the development of diabetes in people without an FHD.
Collapse
Affiliation(s)
- Toshiko Kita
- Department of Public Health Sciences, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Cusi K. Comment on: Hoeg et al. Lipid-induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling. Diabetes 2011;60:64-73. Diabetes 2011; 60:e23; author reply e24. [PMID: 21868787 PMCID: PMC3161319 DOI: 10.2337/db11-0687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Giacca A, Xiao C, Oprescu AI, Carpentier AC, Lewis GF. Lipid-induced pancreatic β-cell dysfunction: focus on in vivo studies. Am J Physiol Endocrinol Metab 2011; 300:E255-62. [PMID: 21119027 DOI: 10.1152/ajpendo.00416.2010] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The phenomenon of lipid-induced pancreatic β-cell dysfunction ("lipotoxicity") has been very well documented in numerous in vitro experimental systems and has become widely accepted. In vivo demonstration of β-cell lipotoxicity, on the other hand, has not been consistently demonstrated, and there remains a lack of consensus regarding the in vivo effects of chronically elevated free fatty acids (FFA) on β-cell function. Much of the disagreement relates to how insulin secretion is quantified in vivo and in particular whether insulin secretion is assessed in relation to whole body insulin sensitivity, which is clearly reduced by elevated FFA. By correcting for changes in in vivo insulin sensitivity, we and others have shown that prolonged elevation of FFA impairs β-cell secretory function. Prediabetic animal models and humans with a positive family history of type 2 diabetes are more susceptible to this impairment, whereas those with severe impairment of β-cell function (such as individuals with type 2 diabetes) demonstrate no additional impairment of β-cell function when FFA are experimentally raised. Glucolipotoxicity (i.e., the combined β-cell toxicity of elevated glucose and FFA) has been amply demonstrated in vitro and in some animal studies but not in humans, perhaps because there are limitations in experimentally raising plasma glucose to sufficiently high levels for prolonged periods of time. We and others have shown that therapies directed toward diminishing oxidative stress and ER stress have the potential to reduce lipid-induced β-cell dysfunction in animals and humans. In conclusion, lipid-induced pancreatic β-cell dysfunction is likely to be one contributor to the complex array of genetic and metabolic insults that result in the relentless decline in pancreatic β-cell function in those destined to develop type 2 diabetes, and mechanisms involved in this lipotoxicity are promising therapeutic targets.
Collapse
Affiliation(s)
- Adria Giacca
- Dept. of Physiology, Univ. of Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
13
|
Li ZY, Na HM, Peng G, Pu J, Liu P. Alteration of microRNA expression correlates to fatty acid-mediated insulin resistance in mouse myoblasts. ACTA ACUST UNITED AC 2011; 7:871-7. [DOI: 10.1039/c0mb00230e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Abstract
The widespread epidemics of obesity and type 2 diabetes mellitus (T2DM) suggest that both conditions are closely linked. An increasing body of evidence has shifted our view of adipose tissue from a passive energy depot to a dynamic "endocrine organ" that tightly regulates nutritional balance by means of a complex crosstalk of adipocytes with their microenvironment. Dysfunctional adipose tissue, particularly as observed in obesity, is characterized by adipocyte hypertrophy, macrophage infiltration, impaired insulin signaling, and insulin resistance. The result is the release of a host of inflammatory adipokines and excessive amounts of free fatty acids that promote ectopic fat deposition and lipotoxicity in muscle, liver, and pancreatic beta cells. This review focuses on recent work on how glucose homeostasis is profoundly altered by distressed adipose tissue. A better understanding of this relationship offers the best chance for early intervention strategies aimed at preventing the burden of T2DM.
Collapse
Affiliation(s)
- Kenneth Cusi
- The University of Texas Health Science Center at San Antonio, Diabetes Division, Room 3.380S, 7703 Floyd Curl Drive, San Antonio, TX 78284-3900, USA.
| |
Collapse
|
15
|
Mathew M, Tay E, Cusi K. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects. Cardiovasc Diabetol 2010; 9:9. [PMID: 20158910 PMCID: PMC2837624 DOI: 10.1186/1475-2840-9-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 02/16/2010] [Indexed: 11/18/2022] Open
Abstract
Background CVD in obesity and T2DM are associated with endothelial activation, elevated plasma vascular inflammation markers and a prothrombotic state. We examined the contribution of FFA to these abnormalities following a 48-hour physiological increase in plasma FFA to levels of obesity and diabetes in a group of healthy subjects. Methods 40 non-diabetic subjects (age = 38 ± 3 yr, BMI = 28 ± 1 kg/m2, FPG = 95 ± 1 mg/dl, HbA1c = 5.3 ± 0.1%) were admitted twice and received a 48-hour infusion of normal saline or low-dose lipid. Plasma was drawn for intracellular (ICAM-1) and vascular (VCAM-1) adhesion molecules-1, E-selectin (sE-S), myeloperoxidase (MPO) and total plasminogen inhibitor-1 (tPAI-1). Insulin sensitivity was measured by a hyperglycemic clamp (M/I). Results Lipid infusion increased plasma FFA to levels observed in obesity and T2DM and reduced insulin sensitivity by 27% (p = 0.01). Elevated plasma FFA increased plasma markers of endothelial activation ICAM-1 (138 ± 10 vs. 186 ± 25 ng/ml), VCAM-1 (1066 ± 67 vs. 1204 ± 65 ng/ml) and sE-S (20 ± 1 vs. 24 ± 1 ng/ml) between 13-35% and by ≥ 2-fold plasma levels of myeloperoxidase (7.5 ± 0.9 to 15 ± 25 ng/ml), an inflammatory marker of future CVD, and tPAI-1 (9.7 ± 0.6 to 22.5 ± 1.5 ng/ml), an indicator of a prothrombotic state (all p ≤ 0.01). The FFA-induced increase was independent from the degree of adiposity, being of similar magnitude in lean, overweight and obese subjects. Conclusions An increase in plasma FFA within the physiological range observed in obesity and T2DM induces markers of endothelial activation, vascular inflammation and thrombosis in healthy subjects. This suggests that even transient (48-hour) and modest increases in plasma FFA may initiate early vascular abnormalities that promote atherosclerosis and CVD.
Collapse
Affiliation(s)
- Manoj Mathew
- Diabetes Division, Department of Medicine, The University of Texas Health Science Center at San Antonio, Texas-78229, USA
| | | | | |
Collapse
|
16
|
Xiao C, Giacca A, Lewis GF. The effect of high-dose sodium salicylate on chronically elevated plasma nonesterified fatty acid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men. Am J Physiol Endocrinol Metab 2009; 297:E1205-11. [PMID: 19755670 DOI: 10.1152/ajpendo.00313.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prolonged elevation of plasma nonesterified fatty acids (NEFA) induces insulin resistance and impairs pancreatic β-cell adaptation to insulin resistance. Studies in rodents suggest that inflammation may play a role in this "lipotoxicity." We studied the effects of sodium salicylate, an anti-inflammatory agent, on lipid-induced alterations in β-cell function and insulin sensitivity in six overweight and obese nondiabetic men. Each subject underwent four separate studies, 4-6 wk apart, in random order: 1) SAL, 1-wk placebo followed by intravenous (iv) infusion of saline for 48 h; 2) IH, 1-wk placebo followed by iv infusion of intralipid plus heparin for 48 h to raise plasma NEFA approximately twofold; 3) IH + SS, 1-wk sodium salicylate (4.5 g/day) followed by 48-h IH infusion; and 4) SS, 1-wk oral sodium salicylate followed by 48-h saline infusion. After 48-h saline or lipid infusion, insulin secretion and sensitivity were assessed by hyperglycemic clamp and euglycemic hyperinsulinemic clamp, respectively, in sequential order. Insulin sensitivity was reduced by lipid infusion (IH = 67% of SAL) and was not improved by salicylate (IH + SS = 56% of SAL). Lipid infusion also reduced the disposition index (P < 0.05), which was not prevented by sodium salicylate. Salicylate reduced insulin clearance. These data suggest that oral sodium salicylate at this dose impairs insulin clearance but does not ameliorate lipid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.
Collapse
Affiliation(s)
- Changting Xiao
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
17
|
Abstract
It is well established that the development of NAFLD and NASH are closely linked to an excess flow of free fatty acids (FFA) arising from dysfunctional/insulin resistant adipose tissue causing ectopic fat deposition in many organs. In the liver, when chronic lipid supply surpasses the metabolic ability to adapt it will induce hepatocellular damage as FFA are redirected into harmful pathways of non-oxidative metabolism with intracellular accumulation of toxic lipid-derived metabolites. Multiple mechanisms have been implicated including mitochondrial dysfunction, endoplasmic reticulum stress, and activation of multiple inflammatory pathways. Understanding the role of insulin resistance and lipotoxicity in NASH as part of a broader metabolic disorder is likely to assist practitioners in the successful management of these challenging patients.
Collapse
Affiliation(s)
- Kenneth Cusi
- Diabetes Division, The University of Texas Health Science Center at San Antonio, Room 3.380S, 7703 Floyd Curl Drive, San Antonio, TX 78284-3900, USA.
| |
Collapse
|