1
|
Zhu H, Cai H, Wang X, Chen T, Zhen C, Zhang Z, Ruan X, Li G. Sodium-glucose co-transporter 1 (SGLT1) differentially regulates gluconeogenesis and GLP-1 receptor (GLP-1R) expression in different diabetic rats: a preliminary validation of the hypothesis of "SGLT1 bridge" as an indication for "surgical diabetes". ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:481. [PMID: 35571394 PMCID: PMC9096370 DOI: 10.21037/atm-22-1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Sodium-glucose co-transporter 1 (SGLT1) may play a synergistic role in gluconeogenesis (GNG) and glucagon-like peptide-1 (GLP-1) expression. We proposed the hypothesis of a "SGLT1 bridge" as an indication for "surgical diabetes" that was preliminary validated in the present study. METHODS We selected nonobese diabetic Goto-Kakizaki (GK) rats and Zuker diabetic fat (ZDF) rats to represent advanced and early diabetes, respectively. Based on glucose gavage with or without SGLT1 inhibitor phlorizin, the rats were divided into 4 groups: Gk-Glu, GK-P, ZDF-Glu, and ZDF-P. The expressions of SGLT1, GLP-1 receptor (GLP-1R), glucose-6 phosphatase (G6Pase), and phosphoenolpyruvate carboxykinase-1 (Pck1) were determined by immunohistochemistry (IHC) or quantitative reverse transcription polymerase chain reaction (RT-qPCR), and the effects of phlorizin were analyzed. RESULTS Glucose tolerance was worse in GK rats and the homeostasis model assessment-insulin resistance (HOMA-IR) was higher in ZDF rats, indicating different pathophysiological conditions between the different diabetic rats. GK rats showed higher activity of duodenal SGLT1 (P=0.022) and jejunal SGLT1 mRNA expression (P=0.000) and lower SGLT1 mRNA expression in the liver (P=0.000) and pancreas (P=0.000). Phlorizin effectively inhibited the activity of duodenal SGLT1 in both GK rats (P=0.000) and ZDF rats (P=0.000). In ZDF rats, the expression of GLP-1R mRNA was downregulated in the jejunum (P=0.001) and upregulated in the pancreas (P=0.021) by phlorizin, but there were no regulatory effects on GLP-1R mRNA in the jejunum and pancreas of GK rats. As for the regulatory effects on GNG, phlorizin upregulated Pck1 mRNA in the duodenum (P=0.000) and the jejunum (P=0.038), whereas it downregulated hepatic G6Pase mRNA in ZDF rats (P=0.005) and Pck1 mRNA expression in GK rats (P=0.001), suggesting that SGLT1 inhibitor may have upregulated intestinal GNG in ZDF rats and downregulated hepatic GNG in both ZDF and GK rats. CONCLUSIONS SGLT1 showed synergistic regulatory effects on the entero-insular axis (EIA) and the gut-brain-liver axis (GBLA), preliminarily validating the hypothesis of a "SGLT1 bridge". The distinct expression of SGLT1 and its differentially regulatory effects on diabetic rats with different pathophysiological conditions may provide probable potential indications involved in the "Surgical Diabetes" that is supposed as the inclusion for diabetic surgery.
Collapse
Affiliation(s)
- Hengliang Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of General Surgery, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Huajie Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Wang
- Department of Gastrointestinal & Hernia Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Tao Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaohui Zhen
- Department of General Surgery, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Zhenzhan Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojiao Ruan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Mäkinen J, Hannukainen JC, Karmi A, Immonen HM, Soinio M, Nelimarkka L, Savisto N, Helmiö M, Ovaska J, Salminen P, Iozzo P, Nuutila P. Obesity-associated intestinal insulin resistance is ameliorated after bariatric surgery. Diabetologia 2015; 58:1055-62. [PMID: 25631620 PMCID: PMC4392118 DOI: 10.1007/s00125-015-3501-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/12/2014] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS The intestine is the main site for glucose absorption and it has been suggested that it exhibits insulin resistance. Bariatric surgery has been shown to reverse insulin resistance and type 2 diabetes, but its effects on human intestinal metabolism are unknown. Our aim was to evaluate the effects of insulin on intestinal glucose metabolism before and after bariatric surgery. METHODS Twenty-one morbidly obese individuals undergoing bariatric surgery and ten age-matched healthy individuals were recruited and intestinal and skeletal muscle glucose uptake (GU) was measured using [(18)F]fluoro-2-deoxyglucose and positron emission tomography at fast and during hyperinsulinaemia. MRI was used as anatomical reference. Obese participants were studied again 6 months postoperatively. RESULTS In contrast to healthy individuals, insulin had no effect on intestinal GU in obese participants with or without diabetes, suggesting that intestinal insulin resistance is present early in morbid obesity. Postoperatively, jejunal GU increased in line with whole-body and muscle GU. Postoperative GU values in the intestine correlated with whole-body insulin sensitivity, indicating that the intestinal mucosa may reflect the overall glycaemic state and potentially mediate obesity-associated insulin resistance. CONCLUSIONS/INTERPRETATION This study shows that insulin is a potent stimulator of GU in the healthy intestine and that intestinal insulin resistance is ameliorated after bariatric surgery. In our study, obese individuals had intestinal insulin resistance regardless of their glycaemic status. Persistent changes in intestinal glucose metabolism are likely to influence both local processes in the gut and systemic glucose homeostasis.
Collapse
Affiliation(s)
- Jaakko Mäkinen
- Turku PET Centre, University of Turku, PL 52, FIN-20520 Turku, Finland
| | | | - Anna Karmi
- Turku PET Centre, University of Turku, PL 52, FIN-20520 Turku, Finland
| | - Heidi M. Immonen
- Turku PET Centre, University of Turku, PL 52, FIN-20520 Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Minna Soinio
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Lassi Nelimarkka
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Nina Savisto
- Turku PET Centre, University of Turku, PL 52, FIN-20520 Turku, Finland
| | - Mika Helmiö
- Department of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Jari Ovaska
- Department of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Paulina Salminen
- Department of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, PL 52, FIN-20520 Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
3
|
Mithieux G. Crosstalk between gastrointestinal neurons and the brain in the control of food intake. Best Pract Res Clin Endocrinol Metab 2014; 28:739-44. [PMID: 25256768 DOI: 10.1016/j.beem.2014.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent data have emphasized that the gastrointestinal nervous system is preponderant in the sensing of nutrients and hormones and its translation in terms of control of food intake by the central nervous system. More specifically, the gastrointestinal neural system participates in the control of hunger via the sensing of at least two major macronutrients, e.g. glucose and protein, which may control hunger sensations from the portal vein. Protein are first sensed by mu-opioid receptors present in the portal vein walls to induce intestinal gluconeogenesis-via a reflex arc and next portal glucose sensing. The gastrointestinal nervous system may also account for the rapid benefits of gastric bypass surgeries on energy homeostasis (hunger and body weight) and glucose homeostasis (insulin sensitivity). This knowledge provides novel mechanisms of control of body weight, which might be useful to envision future approaches of prevention or treatment of obesity.
Collapse
Affiliation(s)
- Gilles Mithieux
- Inserm U855, Faculté de Médecine Lyon-Est « Laennec », 69372 Lyon Cedex 08, France; Université Lyon 1, 69622 Villeurbanne, France; Université de Lyon, 69008 Lyon, France.
| |
Collapse
|
4
|
Mithieux G, Gautier-Stein A. Intestinal glucose metabolism revisited. Diabetes Res Clin Pract 2014; 105:295-301. [PMID: 24969963 DOI: 10.1016/j.diabres.2014.04.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 02/02/2023]
Abstract
It is long known that the gut can contribute to the control of glucose homeostasis via its high glucose utilization capacity. Recently, a novel function in intestinal glucose metabolism (gluconeogenesis) was described. The intestine notably contributes to about 20-25% of total endogenous glucose production during fasting. More importantly, intestinal gluconeogenesis is capable of regulating energy homeostasis through a communication with the brain. The periportal neural system senses glucose (produced by intestinal gluconeogenesis) in the portal vein walls, which sends a signal to the brain to modulate hunger sensations and whole body glucose homeostasis. Relating to the mechanism of glucose sensing, the role of the glucose receptor SGLT3 has been strongly suggested. Moreover, dietary proteins mobilize intestinal gluconeogenesis as a mandatory link between their detection in the portal vein and their effect of satiety. In the same manner, dietary soluble fibers exert their anti-obesity and anti-diabetic effects via the induction of intestinal gluconeogenesis. FFAR3 is a key neural receptor involved in the specific sensing of propionate to activate a gut-brain reflex arc triggering the induction of the gut gluconeogenic function. Lastly, intestinal gluconeogenesis might also be involved in the rapid metabolic improvements induced by gastric bypass surgeries of obesity.
Collapse
Affiliation(s)
- Gilles Mithieux
- Inserm U855, Faculté de Médecine Lyon-Est "Laennec", 69372 Lyon Cedex 08, France; Université Lyon 1, 69622 Villeurbanne, France; Université de Lyon, 69008 Lyon, France.
| | - Amandine Gautier-Stein
- Inserm U855, Faculté de Médecine Lyon-Est "Laennec", 69372 Lyon Cedex 08, France; Université Lyon 1, 69622 Villeurbanne, France; Université de Lyon, 69008 Lyon, France
| |
Collapse
|
5
|
Mithieux G. Nutrient control of energy homeostasis via gut-brain neural circuits. Neuroendocrinology 2014; 100:89-94. [PMID: 25342450 DOI: 10.1159/000369070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
Abstract
Intestinal gluconeogenesis is a recently described function in intestinal glucose metabolism. In particular, the intestine contributes around 20-25% of total endogenous glucose production during fasting. Intestinal gluconeogenesis appears to regulate energy homeostasis via a neurally mediated mechanism linking the enterohepatic portal system with the brain. The periportal neural system is able to sense glucose produced by intestinal gluconeogenesis in the portal vein walls, which sends a signal to the brain to modulate energy and glucose homeostasis. Dietary proteins mobilize intestinal gluconeogenesis as a mandatory link between the sensing of these proteins in the portal vein and their well-known effect of satiety. Comparably, dietary soluble fibers exert their antiobesity and antidiabetic effects via the induction of intestinal gluconeogenesis. Finally, intestinal gluconeogenesis might be involved in the rapid metabolic improvements in energy homeostasis induced by gastric bypass surgeries of obesity.
Collapse
Affiliation(s)
- Gilles Mithieux
- Inserm U-855, Faculté de Médecine Lyon-Est 'Laennec', and Université de Lyon, Lyon, France
| |
Collapse
|
6
|
Penhoat A, Fayard L, Stefanutti A, Mithieux G, Rajas F. Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice. Metabolism 2014; 63:104-11. [PMID: 24135501 DOI: 10.1016/j.metabol.2013.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/08/2013] [Accepted: 09/09/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Similar to the liver and kidneys, the intestine has been strongly suggested to be a gluconeogenic organ. However, the precise contribution of the intestine to endogenous glucose production (EGP) remains to be determined. To define the quantitative role of intestinal gluconeogenesis during long-term fasting, we compared changes in blood glucose during prolonged fasting in mice with a liver-deletion of the glucose-6 phosphatase catalytic (G6PC) subunit (LKO) and in mice with a combined deletion of G6PC in both the liver and the intestine (ILKO). MATERIALS/METHODS The LKO and ILKO mice were studied after 6h and 40 h of fasting by measuring metabolic and hormonal plasmatic parameters, as well as the expression of gluconeogenic enzymes in the liver, kidneys and intestine. RESULTS After a transient hypoglycemic episode (approximately 60 mg/dL) because of their incapacity to mobilize liver glycogen, the LKO mice progressively re-increased their plasma glucose to reach a glycemia comparable to that of wild-type mice (90 mg/dL) from 30 h of fasting. This increase was associated with a rapid induction of renal and intestinal gluconeogenic gene expression, driven by glucagon, glucocorticoids and acidosis. The ILKO mice exhibited a similar induction of renal gluconeogenesis. However, these mice failed to re-increase their glycemia and maintained a plasma glucose level of only 60 mg/dL throughout the 48 h-fasting period. CONCLUSIONS These data indicate that intestinal glucose production is essential to maintain glucose homeostasis in the absence of hepatic glucose production during fasting. These data provide a definitive quantitative estimate of the capacity of intestinal gluconeogenesis to sustain EGP during long-term fasting.
Collapse
Affiliation(s)
- Armelle Penhoat
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; University of Lyon, Lyon 69008, France; University Lyon 1, Villeurbanne 69622, France
| | | | | | | | | |
Collapse
|
7
|
Junqueira Vasques AC, Pareja JC, de Oliveira MDS, Satake Novaes F, Miranda de Oliveira Lima M, Chaim ÉA, Piccinini F, Dalla Man C, Cobelli C, Geloneze B. β-Cell function improvements in grade I/II obese subjects with type 2 diabetes 1 month after biliopancreatic diversion: results from modeling analyses of oral glucose tolerance tests and hyperglycemic clamp studies. Diabetes Care 2013; 36:4117-24. [PMID: 24135388 PMCID: PMC3836124 DOI: 10.2337/dc13-0530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the effect of biliopancreatic diversion (BPD) surgery on β-cell function in grade I and II obese patients with type 2 diabetes using oral and intravenous glucose loads. RESEARCH DESIGN AND METHODS Sixty-eight women were divided into the following three groups: 19 lean-control (23.0 ± 2.2 kg/m(2)) and 18 obese-control (35.0 ± 4.8 kg/m(2)) subjects with normal glucose tolerance, and 31 obese patients with type 2 diabetes (36.3 ± 3.7 kg/m(2)). Of the 31 diabetic women, 64% underwent BPD (n = 20, BMI: 36.5 ± 3.7 kg/m(2)) and were reassessed 1 month after surgery. Oral glucose tolerance tests and hyperglycemic clamps were performed. Mathematical modeling was used to analyze basal and stimulated β-cell function, insulin sensitivity (IS), hepatic extraction (HE) of insulin, and delay time of β-cell response to a specific plasma glucose concentration. RESULTS After BPD, restoration of the basal disposition index (P < 0.001) and improvement of the stimulated disposition indices in oral and intravenous glucose stimulation of the β-cell were observed (P < 0.05). In both dynamic tests, there were no changes in the delay time of β-cell response. IS for oral glucose stimulation (IS(oral)) and intravenous clamp glucose stimulation (IS(clamp)) was completely normalized (P < 0.001). IS(oral) and IS(clamp) increased approximately 5.0-fold and 3.5-fold, respectively (P < 0.01). The HE of insulin increased in the basal (P < 0.05) and stimulated states (P < 0.01). CONCLUSIONS β-Cell function, IS, and HE of insulin improved after BPD, which improved glycemic control.
Collapse
|
8
|
Stepanian A, Bourguignat L, Hennou S, Coupaye M, Hajage D, Salomon L, Alessi MC, Msika S, de Prost D. Microparticle increase in severe obesity: not related to metabolic syndrome and unchanged after massive weight loss. Obesity (Silver Spring) 2013; 21:2236-43. [PMID: 23512861 DOI: 10.1002/oby.20365] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 12/17/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To clarify the relationships between circulating microparticles (MPs), leukocyte-platelet aggregates (LPAs), obesity, and metabolic abnormalities and evaluate the effect of losing weight on these parameters. DESIGN AND METHODS In 151 severely obese women and 60 lean controls, total MPs (annexin-V positive), platelet (annexin V/CD41+) and endothelial (CD31+/CD41-) MPs, and LPAs using flow cytometry, and the presence of metabolic syndrome (MS) were assessed. The effect of weight loss was studied in 32 subjects after a 1 year follow-up. RESULTS Total microparticle count, platelet MPs (PMPs) and endothelial MPs (EMPs), and neutrophil-platelet aggregates were significantly increased in obese subjects versus lean controls, independently of the MS. Within obese subjects, there was no significant difference between those having and those not having MS. MPs and LPA counts did not vary significantly in subjects who lost 25% of their excess weight. CONCLUSIONS PMPs and EMPs, and LPAs are associated with obesity independently of metabolic abnormalities, but do not significantly change after massive weight loss. Further studies are needed to evaluate the prognostic significance of these observations, as beneficial effects of MPs are currently reported in addition to their initially described deleterious effects.
Collapse
Affiliation(s)
- Alain Stepanian
- AP-HP, Hôpital Louis Mourier, service d'Hématologie biologique et Transfusion, Colombes, 92700, France; INSERM U770, Hôpital de Bicêtre, Le Kremlin-Bicêtre 94270, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mithieux G. Nutrient control of hunger by extrinsic gastrointestinal neurons. Trends Endocrinol Metab 2013; 24:378-84. [PMID: 23714040 DOI: 10.1016/j.tem.2013.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
The neural sensing of nutrients during food digestion plays a key role in the regulation of hunger. Recent data have emphasized that the extrinsic gastrointestinal nervous system is preponderant in this phenomenon and in its translation to the control of food intake by the central nervous system (CNS). Nutrient sensing by the extrinsic gastrointestinal nervous system may account for the satiation induced by food lipids, the satiety initiated by food protein, and for the rapid benefits of gastric bypass surgeries on both glucose and energy homeostasis. Thus, this recent knowledge provides novel examples of the mechanisms that control food intake and body weight, and this might pave the way for future approaches to the prevention and/or treatment of obesity.
Collapse
Affiliation(s)
- Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale Unité 855, Faculté de Médecine Lyon-Est 'Laennec', 69372 Lyon CEDEX 08, France.
| |
Collapse
|
10
|
Duodenal–Jejunal Bypass Surgery Up-Regulates the Expression of the Hepatic Insulin Signaling Proteins and the Key Regulatory Enzymes of Intestinal Gluconeogenesis in Diabetic Goto–Kakizaki Rats. Obes Surg 2013; 23:1734-42. [DOI: 10.1007/s11695-013-0985-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Honka H, Mäkinen J, Hannukainen JC, Tarkia M, Oikonen V, Teräs M, Fagerholm V, Ishizu T, Saraste A, Stark C, Vähäsilta T, Salminen P, Kirjavainen A, Soinio M, Gastaldelli A, Knuuti J, Iozzo P, Nuutila P. Validation of [18F]fluorodeoxyglucose and positron emission tomography (PET) for the measurement of intestinal metabolism in pigs, and evidence of intestinal insulin resistance in patients with morbid obesity. Diabetologia 2013; 56:893-900. [PMID: 23334481 DOI: 10.1007/s00125-012-2825-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS The role of the intestine in the pathogenesis of metabolic diseases is gaining much attention. We therefore sought to validate, using an animal model, the use of positron emission tomography (PET) in the estimation of intestinal glucose uptake (GU), and thereafter to test whether intestinal insulin-stimulated GU is altered in morbidly obese compared with healthy human participants. METHODS In the validation study, pigs were imaged using [(18)F]fluorodeoxyglucose ([(18)F]FDG) and the image-derived data were compared with corresponding ex vivo measurements in tissue samples and with arterial-venous differences in glucose and [(18)F]FDG levels. In the clinical study, GU was measured in different regions of the intestine in lean (n = 8) and morbidly obese (n = 8) humans at baseline and during euglycaemic hyperinsulinaemia. RESULTS PET- and ex vivo-derived intestinal values were strongly correlated and most of the fluorine-18-derived radioactivity was accumulated in the mucosal layer of the gut wall. In the gut wall of pigs, insulin promoted GU as determined by PET, the arterial-venous balance or autoradiography. In lean human participants, insulin increased GU from the circulation in the duodenum (from 1.3 ± 0.6 to 3.1 ± 1.1 μmol [100 g](-1) min(-1), p < 0.05) and in the jejunum (from 1.1 ± 0.7 to 3.0 ± 1.5 μmol [100 g](-1) min(-1), p < 0.05). Obese participants failed to show any increase in insulin-stimulated GU compared with fasting values (NS). CONCLUSIONS/INTERPRETATION Intestinal GU can be quantified in vivo by [(18)F]FDG PET. Intestinal insulin resistance occurs in obesity before the deterioration of systemic glucose tolerance.
Collapse
Affiliation(s)
- H Honka
- Turku PET Centre, University of Turku, PL 52, FIN-20520 Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li B, Lu Y, Srikant CB, Gao ZH, Liu JL. Intestinal adaptation and Reg gene expression induced by antidiabetic duodenal-jejunal bypass surgery in Zucker fatty rats. Am J Physiol Gastrointest Liver Physiol 2013; 304:G635-45. [PMID: 23370676 DOI: 10.1152/ajpgi.00275.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The antidiabetic mechanism of bariatric surgery includes specific changes in the secretion of incretins. To identify additional players originating from the gut, we evaluated the effects of duodenal-jejunal bypass (DJB) in morbidly obese Zucker fatty rats. A fast relief of hyperglycemia and hyperinsulinemia was achieved even before a significant weight loss occurred. Fourteen days after DJB, we characterized the changes in intestinal histochemistry in the bypassed duodenum and shortcut jejunum that was reanastomosed directly to the starting point of the duodenum and compared with the corresponding regions of sham-operated rats. The bypassed duodenum exhibited mucosal atrophy and apoptosis and decreased proliferative renewal. In shortcut jejunum, DJB resulted in 40% significantly enlarged intestinal circumference and increased epithelial proliferation, especially in putative transit-amplifying (TA) cells and the crypt. Because Reg family proteins promote cell growth and survival, we explored their expression in the intestine. With the use of immunohistochemistry, Reg1, -3α, and -3β were normally expressed in intestinal mucosa. After DJB, the level of Reg1 protein was reduced, whereas Reg3α and -3β were not changed in bypassed duodenum. Downstream in shortcut jejunum, the levels of Reg1 and -3β were greatly induced and especially concentrated in the putative TA cells. Our results revealed significant changes in the integrity and proliferation of the intestinal mucosa as a consequence of DJB, and in cell- and isoform-specific expression of Reg proteins within the replicating mucosal epithelium, and provide evidence indicating that the activation of Reg proteins may contribute to intestinal compensation against increased load and/or to improving insulin sensitivity.
Collapse
Affiliation(s)
- Bing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | | | | | | | | |
Collapse
|