1
|
Chen W, Luo M, Guo J, Wang S, Yan D, Feng X, Huang Y, Zeng T, Shen L, Zhang R, Yan J, Hu C, Zhang W, Yu X. Metabolic pathways mediating insulin resistance and gestational diabetes mellitus discovered by high-dimensional systematic Mendelian randomization. Cardiovasc Diabetol 2025; 24:195. [PMID: 40346526 PMCID: PMC12065323 DOI: 10.1186/s12933-025-02746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/18/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM), characterized by insulin resistance (IR) and β-cell dysfunction, is one of the most common complications of pregnancy with unmet needs of prevention methods. OBJECTIVE To investigate the causal role of insulin resistance and metabolic pathways in the pathogenesis of GDM with our proposed high-dimensional systematic Mendelian randomization (hdsMR) framework. METHODS Cases with GDM and controls with normal glucose tolerance were recruited at the University of Hong Kong-Shenzhen Hospital from 2015 to 2018. A total of 566 participants (aged > 18 years), including 274 with GDM, were enrolled after excluding subjects with major chronic diseases or long-term use of medications affecting glycolipid metabolism. Clinical characteristics and serum samples were collected during the GDM screening stage, and the genome and metabolome were tested. A novel hdsMR framework was proposed to estimate the causal role of IR index (Homeostasis Model Assessment of Insulin Resistance, HOMA-IR) and metabolic pathways in the pathogenesis of GDM. RESULTS Our hdsMR method confirmed that HOMA-IR was causal to GDM (odds ratio, 1.17; 95% confidence interval, 1.04-1.32) and revealed that two metabolic pathways (glyoxylate and dicarboxylate metabolism pathway and lysine degradation pathway) mediated 14.6% and 8.4%, respectively, between HOMA-IR and GDM. In an independent validation cohort comprising 255 pre-diabetic individuals, we showed that both pathways could be intervened through diet (P < 0.05). Furthermore, glyoxylate and dicarboxylate metabolism pathway was significantly associated with adverse pregnancy outcomes in GDM. CONCLUSIONS These results indicated that targeting specific metabolic pathways through dietary intervention is worth exploring as a possible GDM prevention approach, and hdsMR is more efficient in finding causal mediating metabolic pathways than traditional MR methods.
Collapse
Affiliation(s)
- Wei Chen
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjuan Luo
- Department of Endocrinology and Metabolism, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jingyi Guo
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suna Wang
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Yan
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Xiaohui Feng
- Department of Endocrinology and Metabolism, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yunting Huang
- Department of Endocrinology and Metabolism, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Tao Zeng
- Guangzhou National Laboratory, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Li Shen
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weituo Zhang
- School of Public Health, Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiangtian Yu
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Wang Y, Chen J, Wang Z, Luo X, Wu N, Wang J. HKDC1 promotes ovarian cancer progression through boosting lipid metabolism and immune escape by stabilizing G6PC/G6PC2. Commun Biol 2025; 8:615. [PMID: 40234623 PMCID: PMC12000390 DOI: 10.1038/s42003-025-08031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Ovarian cancer (OC) is a significant health challenge, yet the mechanisms driving its progression remain unclear. This study explored the role of hexokinase domain-containing protein 1 (HKDC1) in OC, focusing on tumor growth, lipid metabolism, and immune evasion. Human OC cell lines (SKOV3 and HEY) and the murine OC cell line (ID8) were used to knock down and overexpress HKDC1. An ID8-based epithelial OC mouse model was established to validate the in vitro findings. Our results demonstrated that HKDC1 was upregulated in OC and promoted cell proliferation, migration, and invasion. HKDC1 enhanced lipid accumulation by elevating levels of free fatty acids (FFA), triglycerides, phospholipids, cholesterol, and neutral lipid, while upregulating key enzymes (ACC1, FASN, SCD1, HMGCS1, and HMGCR). It promoted immune escape through PD-L1 upregulation, inhibiting T cell proliferation and reducing IFN-γ, granzyme B, and perforin levels while increasing PD-1 levels. HKDC1 knockdown reversed these effects, which were restored by adding FFA. Mechanistically, HKDC1 interacted with and stabilized glucose-6-phosphatase catalytic subunits (G6PC/G6PC2), supporting its tumor-promoting functions. These findings were confirmed in an OC mouse model, highlighting HKDC1 as a key driver of OC progression through lipid biosynthesis and immune suppression, offering potential therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- Department of the Central Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China.
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Zhan Wang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China
| | - Xia Luo
- Department of the Central Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China
| | - Nayiyuan Wu
- Department of the Central Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China
| | - Jing Wang
- Department of the Central Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China.
| |
Collapse
|
3
|
Xu K, Corona-Avila I, Frutos MD, Núñez-Sánchez MÁ, Makhanasa D, Shah PV, Guzman G, Ramos-Molina B, Priyadarshini M, Khan MW. Hepatic HKDC1 deletion alleviates western diet-induced MASH in mice. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167746. [PMID: 40020530 DOI: 10.1016/j.bbadis.2025.167746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
The global prevalence of Metabolic Dysfunction-Associated Steatohepatitis (MASH) has been rising sharply, closely mirroring the increasing rates of obesity and metabolic syndrome. MASH exhibits a strong sexual dimorphism where females are affected with more severe forms after menopause. Hexokinase domain-containing protein 1 (HKDC1) has recently been recognized for its role in liver diseases, where its expression is minimal under normal conditions but significantly increases in response to metabolic stressors like obesity and liver injury. This selective upregulation suggests HKDC1's potential specialization in hepatic glucose and lipid dysregulation, linking it closely to the progression of MASH. This study aims to clarify the role of HKDC1 in Western diet-induced MASH in female mice by examining its impact on hepatic glucose and lipid metabolism, offering insights into its potential as a therapeutic target and addressing the need for sex-specific research in liver disease. This study reveals that HKDC1 expression is elevated in obese women with MASH and correlates with liver pathology. In a mouse model, liver-specific HKDC1 knockout (HKDC1LKO) protected against Western diet-induced obesity, glucose intolerance, and MASH features, including steatosis, inflammation, and fibrosis. Transcriptomic analysis showed that HKDC1 deletion reduced pro-inflammatory and pro-fibrotic gene expression, while gut microbiome analysis indicated a shift toward MASH-protective bacteria. These findings suggest that HKDC1 may exacerbate MASH progression through its role in metabolic and inflammatory pathways, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Kai Xu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, United States of America
| | - Irene Corona-Avila
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, United States of America
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - María Ángeles Núñez-Sánchez
- Obesity, Diabetes and Metabolism Research Group, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Dhruvi Makhanasa
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, United States of America
| | - Pratham Viral Shah
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, United States of America
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Research Group, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Medha Priyadarshini
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, United States of America.
| | - Md Wasim Khan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, United States of America.
| |
Collapse
|
4
|
Xu K, Corona-Avila I, Frutos MD, Nunez-Sanchez MA, Makhanasa D, Shah PV, Guzman G, Ramos-Molina B, Priyadarshini M, Khan MW. Hepatic HKDC1 Deletion Alleviates Western Diet-Induced MASH in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.26.625530. [PMID: 39651120 PMCID: PMC11623584 DOI: 10.1101/2024.11.26.625530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The global prevalence of Metabolic dysfunction-associated steatohepatitis (MASH) has been rising sharply, closely mirroring the increasing rates of obesity and metabolic syndrome. MASH exhibits a strong sexual dimorphism where females are affected with more severe forms after menopause. Hexokinase domain-containing protein 1 (HKDC1) has recently been recognized for its role in liver diseases, where its expression is minimal under normal conditions but significantly increases in response to metabolic stressors like obesity and liver injury. This selective upregulation suggests HKDC1s potential specialization in hepatic glucose and lipid dysregulation, linking it closely to the progression of MASLD and MASH. This study aims to clarify the role of HKDC1 in Western diet-induced MASH in female mice by examining its impact on hepatic glucose and lipid metabolism, offering insights into its potential as a therapeutic target and addressing the need for sex-specific research in liver disease. This study reveals that HKDC1 expression is elevated in obese women with MASH and correlates with liver pathology. In a mouse model, liver-specific HKDC1 knockout (HKDC1LKO) protected against Western diet-induced obesity, glucose intolerance, and MASH features, including steatosis, inflammation, and fibrosis. Transcriptomic analysis showed that HKDC1 deletion reduced pro-inflammatory and pro-fibrotic gene expression, while gut microbiome analysis indicated a shift toward MASH-protective bacteria. These findings suggest that HKDC1 may exacerbate MASH progression through its role in metabolic and inflammatory pathways, making it a potential therapeutic target.
Collapse
|
5
|
Brito Nunes C, Borges MC, Freathy RM, Lawlor DA, Qvigstad E, Evans DM, Moen GH. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites 2024; 14:508. [PMID: 39330515 PMCID: PMC11434570 DOI: 10.3390/metabo14090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: During pregnancy, physiological changes in maternal circulating glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women, this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM), a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies globally, and it is often associated with short- and long-term adverse health outcomes in both mothers and offspring. Although recent studies have highlighted the role of genetic determinants in the development of GDM, research in this area is still lacking, hindering the development of prevention and treatment strategies. Methods: In this paper, we review recent advances in the understanding of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions: Our review highlights the need for further collaborative efforts as well as larger and more diverse genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address research gaps, and further improve diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Caroline Brito Nunes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David M. Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
6
|
Chen H, Wang SH, Chen C, Yu XY, Zhu JN, Mansell T, Novakovic B, Saffery R, Baker PN, Han TL, Zhang H. A novel role of FoxO3a in the migration and invasion of trophoblast cells: from metabolic remodeling to transcriptional reprogramming. Mol Med 2022; 28:92. [PMID: 35941589 PMCID: PMC9358829 DOI: 10.1186/s10020-022-00522-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background The forkhead box O3a protein (FoxO3a) has been reported to be involved in the migration and invasion of trophoblast, but its underlying mechanisms unknown. In this study, we aim to explore the transcriptional and metabolic regulations of FoxO3a on the migration and invasion of early placental development.
Methods Lentiviral vectors were used to knock down the expression of FoxO3a of the HTR8/SVneo cells. Western blot, matrigel invasion assay, wound healing assay, seahorse, gas-chromatography-mass spectrometry (GC–MS) based metabolomics, fluxomics, and RNA-seq transcriptomics were performed. Results We found that FoxO3a depletion restrained the migration and invasion of HTR8/SVneo cells. Metabolomics, fluxomics, and seahorse demonstrated that FoxO3a knockdown resulted in a switch from aerobic to anaerobic respiration and increased utilization of aromatic amino acids and long-chain fatty acids from extracellular nutrients. Furthermore, our RNA-seq also demonstrated that the expression of COX-2 and MMP9 decreased after FoxO3a knockdown, and these two genes were closely associated with the migration/invasion progress of trophoblast cells. Conclusions Our results suggested novel biological roles of FoxO3a in early placental development. FoxO3a exerts an essential effect on trophoblast migration and invasion owing to the regulations of COX2, MMP9, aromatic amino acids, energy metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Hao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Shi-Han Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Chang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin-Yang Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jia-Nan Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Toby Mansell
- Molecular Immunity, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Novakovic
- Molecular Immunity, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Philip N Baker
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Pei J, Zhao S, Yin M, Wu F, Li J, Zhang G, Wu X, Bao P, Xiong L, Song W, Ba Y, Yan P, Song R, Guo X. Differential proteomics of placentas reveals metabolic disturbance and oxidative damage participate yak spontaneous miscarriage during late pregnancy. BMC Vet Res 2022; 18:248. [PMID: 35761325 PMCID: PMC9235108 DOI: 10.1186/s12917-022-03354-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background High spontaneous miscarriage rate in yak, especially during late pregnancy, have caused a great economic loss to herdsmen living in the Qinghai-Tibet plateau. However, the mechanism underlying spontaneous miscarriage is still poorly understood. In the present study, placenta protein markers were identified to elucidate the pathological reasons for yak spontaneous miscarriage through isobaric tags for relative and absolute quantification (iTRAQ) proteomic technology and bioinformatic approaches. Results Subsequently, a total of 415 differentially expressed proteins (DEPs) were identified between aborted and normal placentas. The up-regulated DEPs in the aborted placentas were significantly associated with “spinocerebellar ataxia”, “sphingolipid signalling”, “relaxin signalling”, “protein export”, “protein digestion and absorption” and “aldosterone synthesis and secretion” pathway. While the down-regulated DEPs in the aborted placentas mainly participated in “valine, leucine and isoleucine degradation”, “PPAR signalling”, “peroxisome”, “oxidative phosphorylation”, “galactose metabolism”, “fatty acid degradation”, “cysteine and methionine metabolism” and “citrate cycle” pathway. Conclusions The results implied that the identified DEPs could be considered as placental protein markers for yak miscarriage during late pregnancy, and biomacromolecule metabolic abnormality and oxidative damage might be responsible for the high spontaneous miscarriage rate in yak. These findings provide an important theoretical basis for deciphering the pathologic mechanism of late spontaneous miscarriage in yak. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03354-w.
Collapse
|