1
|
Marszołek A, Leśniak M, Sekunda A, Siwek A, Skiba Z, Lejman M, Zawitkowska J. Haploidentical HSCT in the Treatment of Pediatric Hematological Disorders. Int J Mol Sci 2024; 25:6380. [PMID: 38928087 PMCID: PMC11204214 DOI: 10.3390/ijms25126380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation has become a treatment option for otherwise non-curative conditions, both malignant and benign, affecting children and adults. Nevertheless, the latest research has been focusing extensively on transplantation from related and unrelated haploidentical donors, suitable for patients requiring emergent hematopoietic stem cell transplantation (HSCT) in the absence of an HLA-matched donor. Haploidentical HSCT (haplo-HSCT) can be an effective treatment for non-malignant pediatric disorders, such as primary immunodeficiencies or hemoglobinopathies, by enabling a much quicker selection of the appropriate donor for virtually all patients, low incidence of graft-versus-host disease (GVHD), and transplant-related mortality (TRM). Moreover, the outcomes of haplo-HSCT among children with hematological malignancies have improved radically. The most demanding tasks for clinicians are minimizing T-cell-mediated alloreactivity as well as early GVHD prevention. As a result, several T-cell depletion approaches, such as ex vivo T-cell depletion (TCD), and T-cell replete approaches, such as a combination of anti-thymocyte globulin (ATG), post-transplantation cyclophosphamide (PTCy), cyclosporine/tacrolimus, mycophenolate mofetil, or methotrexate, have been taken up. As more research is needed to establish the most beneficial form of therapy, haplo-HSCT is currently considered an alternative donor strategy for pediatric and adult patients with complications like viral and bacterial infections, invasive fungal disease, and GVHD.
Collapse
Affiliation(s)
- Anna Marszołek
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (M.L.); (A.S.); (A.S.); (Z.S.)
| | - Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (M.L.); (A.S.); (A.S.); (Z.S.)
| | - Anna Sekunda
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (M.L.); (A.S.); (A.S.); (Z.S.)
| | - Aleksander Siwek
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (M.L.); (A.S.); (A.S.); (Z.S.)
| | - Zuzanna Skiba
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (M.L.); (A.S.); (A.S.); (Z.S.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Deveci B, Kublashvili G, Oztekin AT, Ertugrul MA, Veske H, Celikbilek G, Dosemeci L, Salim O, Ozdemir Y, Toptas T, Yerebakan Sen AN, Saba R. Efficacy and Reliability of T-Cell-Depleted Haploidentical Stem Cell Transplantation in Hematologic Disorders: A Retrospective Study. Transplant Proc 2024; 56:178-185. [PMID: 38212171 DOI: 10.1016/j.transproceed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/04/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND A promising recent strategy for haploidentical transplantation is the depletion of T lymphocytes based on the selective elimination of T cells by manipulation, which enables a very low incidence of nonrelapse mortality and graft-vs-host disease. It is more expensive than conventional unmanipulated methods and requires dedicated transplant centers and sufficient stem cell processing facilities. This retrospective study aimed to evaluate the relapse, survival, and clinical data of the patients and to analyze the outcomes of the technique. METHODS The study included 56 adult patients who underwent haploidentical stem cell transplantation via αβ T-cell depletion. RESULTS The median age of the patients at the time of hematopoietic stem cell transplantation was 41.5 years (range, 20-70 years); 22 patients (39.3%) were women. After the transplantation, half of the patients (50.0%) needed immunosuppressive drugs, and 17.9% of the patients experienced a post-transplant relapse. The mortality rate was 55.4%, and nonrelapse mortality was 25.0%. The 100-day mortality rate was 19.6%. The median overall days was 1101 days (142-3813 days), whereas the median progression-free overall was 302.5 days (11-2479 days). Being older (age >40), having hypertension, having acute liver graft-vs-host disease, and having systemic fungal infection were found as risk factors that significantly increased mortality (with 3.5-, 2.8-, 3.7-, and 2.7-fold increases, respectively). CONCLUSION To conclude, T-cell-depleted hematopoietic stem cell transplantation is an effective and reliable technique that has the potential to decrease morbidity and improve relapse-free survival, especially for young patients requiring haploidentical donor transplantation for hematologic malignancy.
Collapse
Affiliation(s)
- Burak Deveci
- Antalya Bilim University, Vocational School of Health Services, Antalya, Türkiye
| | | | | | | | | | | | | | - Ozan Salim
- Akdeniz University, Hematology Clinic, Antalya, Türkiye
| | - Yesim Ozdemir
- Uskudar University, School of Medicine, Istanbul, Türkiye
| | - Tayfur Toptas
- Marmara University, School of Medicine, Hematology Clinic, Istanbul, Türkiye
| | - Ayse Nur Yerebakan Sen
- Istanbul University-Cerrahpasa, Institute of Graduate Studies, Department of Surgical Diseases Nursing, Istanbul, Türkiye.
| | - Rabin Saba
- Antalya Bilim University, Faculty of Dentistry, Antalya, Türkiye
| |
Collapse
|
3
|
Cappelli B, Gluckman E, Corbacioglu S, de la Fuente J, Abboud MR. Hemoglobinopathies (Sickle Cell Disease and Thalassemia). THE EBMT HANDBOOK 2024:725-739. [DOI: 10.1007/978-3-031-44080-9_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
AbstractHematopoietic cell transplantation (HCT) using an HLA-matched sibling donor is a well-established curative therapy for pediatric patients with sickle cell disease (SCD) and transfusion-dependent thalassemias (TDT). In order to expand the donor pool, new approaches such as related haploidentical donor HCT have been used with encouraging results. These approaches aim for a higher overall survival, an effective reduction of acute and chronic GvHD and a reduced toxicity. Due to these alternative approaches and adult patients being increasingly transplanted, the number of HCT has dramatically increased in the last decade. Furthermore, different gene therapy and gene editing strategies are being developed in clinical trials, showing promising results.
Collapse
|
4
|
Cuvelier GDE, Logan BR, Prockop SE, Buckley RH, Kuo CY, Griffith LM, Liu X, Yip A, Hershfield MS, Ayoub PG, Moore TB, Dorsey MJ, O'Reilly RJ, Kapoor N, Pai SY, Kapadia M, Ebens CL, Forbes Satter LR, Burroughs LM, Petrovic A, Chellapandian D, Heimall J, Shyr DC, Rayes A, Bednarski JJ, Chandra S, Chandrakasan S, Gillio AP, Madden L, Quigg TC, Caywood EH, Dávila Saldaña BJ, DeSantes K, Eissa H, Goldman FD, Rozmus J, Shah AJ, Vander Lugt MT, Thakar MS, Parrott RE, Martinez C, Leiding JW, Torgerson TR, Pulsipher MA, Notarangelo LD, Cowan MJ, Dvorak CC, Haddad E, Puck JM, Kohn DB. Outcomes following treatment for ADA-deficient severe combined immunodeficiency: a report from the PIDTC. Blood 2022; 140:685-705. [PMID: 35671392 PMCID: PMC9389638 DOI: 10.1182/blood.2022016196] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/21/2022] [Indexed: 11/20/2022] Open
Abstract
Adenosine deaminase (ADA) deficiency causes ∼13% of cases of severe combined immune deficiency (SCID). Treatments include enzyme replacement therapy (ERT), hematopoietic cell transplant (HCT), and gene therapy (GT). We evaluated 131 patients with ADA-SCID diagnosed between 1982 and 2017 who were enrolled in the Primary Immune Deficiency Treatment Consortium SCID studies. Baseline clinical, immunologic, genetic characteristics, and treatment outcomes were analyzed. First definitive cellular therapy (FDCT) included 56 receiving HCT without preceding ERT (HCT); 31 HCT preceded by ERT (ERT-HCT); and 33 GT preceded by ERT (ERT-GT). Five-year event-free survival (EFS, alive, no need for further ERT or cellular therapy) was 49.5% (HCT), 73% (ERT-HCT), and 75.3% (ERT-GT; P < .01). Overall survival (OS) at 5 years after FDCT was 72.5% (HCT), 79.6% (ERT-HCT), and 100% (ERT-GT; P = .01). Five-year OS was superior for patients undergoing HCT at <3.5 months of age (91.6% vs 68% if ≥3.5 months, P = .02). Active infection at the time of HCT (regardless of ERT) decreased 5-year EFS (33.1% vs 68.2%, P < .01) and OS (64.7% vs 82.3%, P = .02). Five-year EFS (90.5%) and OS (100%) were best for matched sibling and matched family donors (MSD/MFD). For patients treated after the year 2000 and without active infection at the time of FDCT, no difference in 5-year EFS or OS was found between HCT using a variety of transplant approaches and ERT-GT. This suggests alternative donor HCT may be considered when MSD/MFD HCT and GT are not available, particularly when newborn screening identifies patients with ADA-SCID soon after birth and before the onset of infections. This trial was registered at www.clinicaltrials.gov as #NCT01186913 and #NCT01346150.
Collapse
Affiliation(s)
- Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Susan E Prockop
- Stem Cell Transplant Service, Dana Farber Cancer Institute/Boston Children's Hospital, Boston, MA
| | | | - Caroline Y Kuo
- Division of Allergy, Immunology, Rheumatology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institutes of Allergy, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Xuerong Liu
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Alison Yip
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | | | - Paul G Ayoub
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA
| | - Theodore B Moore
- Department of Pediatric Hematology-Oncology, Mattel Children's Hospital, University of California, Los Angeles, CA
| | - Morna J Dorsey
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Richard J O'Reilly
- Stem Cell Transplantation and Cellular Therapy, MSK Kids, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Neena Kapoor
- Division of Hematology, Oncology and Blood and Marrow Transplant, Children's Hospital, Los Angeles, CA
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Malika Kapadia
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Christen L Ebens
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapy, MHealth Fairview Masonic Children's Hospital, Minneapolis, MN
| | - Lisa R Forbes Satter
- Immunology, Allergy and Retrovirology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Lauri M Burroughs
- Fred Hutchinson Cancer Research Center, University of Washington, Department of Pediatrics and Seattle Children's Hospital, Seattle, WA
| | - Aleksandra Petrovic
- Fred Hutchinson Cancer Research Center, University of Washington, Department of Pediatrics and Seattle Children's Hospital, Seattle, WA
| | - Deepak Chellapandian
- Center for Cell and Gene Therapy for Non-Malignant Conditions, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Jennifer Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - David C Shyr
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford School of Medicine, Palo Alto, CA
| | - Ahmad Rayes
- Primary Children's Hospital, University of Utah, Salt Lake City, UT
| | | | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Alfred P Gillio
- Children's Cancer Institute, Hackensack University Medical Center, Hackensack, NJ
| | - Lisa Madden
- Methodist Children's Hospital of South Texas, San Antonio, TX
| | - Troy C Quigg
- Pediatric Blood and Marrow Transplant and Cellular Therapy Program, Helen DeVos Children's Hospital, Michigan State University College of Human Medicine, Grand Rapids, MI
| | - Emi H Caywood
- Nemours Children's Health, Thomas Jefferson University, Wilmington, DE
| | | | - Kenneth DeSantes
- Division of Pediatric Hematology-Oncology & Bone Marrow Transplant, University of Wisconsin, American Family Children's Hospital, Madison, WI
| | - Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, Aurora, CO
| | - Frederick D Goldman
- Division of Pediatric Hematology and Oncology and Bone Marrow Transplant, University of Alabama at Birmingham, Birmingham, AL
| | - Jacob Rozmus
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Ami J Shah
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford School of Medicine, Palo Alto, CA
| | - Mark T Vander Lugt
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI
| | - Monica S Thakar
- Fred Hutchinson Cancer Research Center, University of Washington, Department of Pediatrics and Seattle Children's Hospital, Seattle, WA
| | | | - Caridad Martinez
- Hematology/Oncology/BMT, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Johns Hopkins University, St Petersburg, FL
| | | | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute at the University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD; and
| | - Morton J Cowan
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Christopher C Dvorak
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Elie Haddad
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Jennifer M Puck
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Donald B Kohn
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA
| |
Collapse
|
5
|
Achini-Gutzwiller FR, Snowden JA, Corbacioglu S, Greco R. Haematopoietic stem cell transplantation for severe autoimmune diseases in children: A review of current literature, registry activity and future directions on behalf of the autoimmune diseases and paediatric diseases working parties of the European Society for Blood and Marrow Transplantation. Br J Haematol 2022; 198:24-45. [PMID: 37655707 DOI: 10.1111/bjh.18176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/27/2022]
Abstract
Although modern clinical management strategies have improved the outcome of paediatric patients with severe autoimmune and inflammatory diseases over recent decades, a proportion will experience ongoing or recurrent/relapsing disease activity despite multiple therapies often leading to irreversible organ damage, and compromised quality of life, growth/development and long-term survival. Autologous and allogeneic haematopoietic stem cell transplantation (HSCT) have been used successfully to induce disease control and often apparent cure of severe treatment-refractory autoimmune diseases (ADs) in children. However, transplant-related outcomes are disease-dependent and long-term outcome data are limited in respect to efficacy and safety. Moreover, balancing risks of HSCT against AD prognosis with continually evolving non-transplant options is challenging. This review appraises published literature on HSCT strategies and outcomes in individual paediatric ADs. We also provide a summary of the European Society for Blood and Marrow Transplantation (EBMT) Registry, where 343 HSCT procedures (176 autologous and 167 allogeneic) have been reported in 326 children (<18 years) for a range of AD indications. HSCT is a promising treatment modality, with potential long-term disease control or cure, but therapy-related morbidity and mortality need to be reduced. Further research is warranted to establish the position of HSCT in paediatric ADs via registries and prospective clinical studies to support evidence-based interspeciality guidelines and recommendations.
Collapse
Affiliation(s)
- Federica R Achini-Gutzwiller
- Division of Paediatric Stem Cell Transplantation and Haematology, Children's Research Centre (CRC), University Children's Hospital of Zurich, Zurich, Switzerland
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Selim Corbacioglu
- Department of Paediatric Oncology, Haematology and Stem Cell Transplantation, University Children's Hospital Regensburg, Regensburg, Germany
| | - Raffaella Greco
- Unit of Haematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Faraci M, Giardino S, Podestà M, Pierri F, Dell'Orso G, Beccaria A, Neves JF, Volpi S, Gattorno M. Haploidentical α/β T-cell and B-cell depleted stem cell transplantation in severe mevalonate kinase deficiency. Rheumatology (Oxford) 2021; 60:4850-4854. [PMID: 33410495 DOI: 10.1093/rheumatology/keaa912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Mevalonic aciduria represents the most severe form of mevalonate kinase deficiency (MKD). Patients with mevalonic aciduria have an incomplete response even to high doses of anti-cytokine drugs such as anakinra or canakinumab and stem cell transplantation (SCT) represents a possible therapy for this severe disease. METHODS We report the first two children affected by severe MKD who received haploidentical α/β T-cell and B-cell depleted SCT. Both patients received a treosulfan-based conditioning regimen and one received a second haploidentical-SCT for secondary rejection of the first. RESULTS Both patients obtained a stable full donor engraftment with a complete regression of clinical and biochemical inflammatory signs, without acute organ toxicity or acute and chronic GvHD. In both, the urinary excretion of mevalonic acid remained high post-transplant in the absence of any inflammatory signs. CONCLUSION Haploidentical α/β T-cell and B-cell depleted SCT represents a potential curative strategy in patients affected by MKD. The persistence of urinary excretion of mevalonic acid after SCT, probably related to the ubiquitous expression of MVK enzyme, suggests that these patients should be carefully monitored after SCT to exclude MKD clinical recurrence. Prophylaxis with anakinra in the acute phase after transplant could represent a safe and effective approach. Further biological studies are required to clarify the pathophysiology of inflammatory attacks in MKD in order to better define the therapeutic role of SCT.
Collapse
Affiliation(s)
- Maura Faraci
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology-Oncology
| | - Stefano Giardino
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology-Oncology
| | | | - Filomena Pierri
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology-Oncology
| | - Gianluca Dell'Orso
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology-Oncology
| | - Andrea Beccaria
- Hematology Unit, Department of Hematology-Oncology, Istituto G. Gaslini, Genova, Italy
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia- CHLC, EPE.,CEDOC Chronic Diseases Research Center, NOVA Medical School, Lisbon, Portugal
| | - Stefano Volpi
- Centro Malattie Auto-infiammatorie e Immunodeficienze, Istituto G. Gaslini, Genova, Italy
| | - Marco Gattorno
- Centro Malattie Auto-infiammatorie e Immunodeficienze, Istituto G. Gaslini, Genova, Italy
| |
Collapse
|
7
|
Successful mismatched hematopoietic stem cell transplantation for pediatric hemoglobinopathy by using ATG and post-transplant cyclophosphamide. Bone Marrow Transplant 2021; 56:2203-2211. [PMID: 33941871 DOI: 10.1038/s41409-021-01302-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
The use of HLA-mismatched (un)related donors is historically associated with a higher incidence of transplant-related complications and mortality. However, the use of such donors may overcome the limited availability of HLA-matched donors for patients with β-thalassemia major (TM) and sickle cell disease (SCD). We investigated hematopoietic stem cell transplantation (HSCT) outcomes of pediatric TM and SCD patients treated with a mismatched donor using a treosulfan-based conditioning in combination with ATG and post-transplant cyclophosphamide (PT-CY) and compared these results to the clinical outcome of patients treated by matched donor HSCT without PT-CY. Thirty-eight children (n = 24 HLA-identical or 10/10-matched donors; n = 14 HLA-mismatched donors), who received a non-depleted bone marrow graft were included. Event-free survival (EFS) and GvHD were not higher in the mismatched PT-Cy group as compared to the matched group. Moreover, despite delayed neutrophil engraftment (day +22 vs. +26, p = 0.002) and immune recovery in the mismatched PT-Cy group, this did not result in more infectious complications. Therefore, we conclude that in the absence of an HLA-identical or a matched unrelated donor, HSCT with a mismatched unrelated or haploidentical donor in combination with ATG plus PT-CY can be considered a safe and effective treatment option for pediatric hemoglobinopathy patients.
Collapse
|
8
|
The Role of Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Leukemia. J Clin Med 2021; 10:jcm10173790. [PMID: 34501237 PMCID: PMC8432223 DOI: 10.3390/jcm10173790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) offers potentially curative treatment for many children with high-risk or relapsed acute leukemia (AL), thanks to the combination of intense preparative radio/chemotherapy and the graft-versus-leukemia (GvL) effect. Over the years, progress in high-resolution donor typing, choice of conditioning regimen, graft-versus-host disease (GvHD) prophylaxis and supportive care measures have continuously improved overall transplant outcome, and recent successes using alternative donors have extended the potential application of allotransplantation to most patients. In addition, the importance of minimal residual disease (MRD) before and after transplantation is being increasingly clarified and MRD-directed interventions may be employed to further ameliorate leukemia-free survival after allogeneic HSCT. These advances have occurred in parallel with continuous refinements in chemotherapy protocols and the development of targeted therapies, which may redefine the indications for HSCT in the coming years. This review discusses the role of HSCT in childhood AL by analysing transplant indications in both acute lymphoblastic and acute myeloid leukemia, together with current and most promising strategies to further improve transplant outcome, including optimization of conditioning regimen and MRD-directed interventions.
Collapse
|
9
|
Haploidentical Hematopoietic Cell Transplantation Using Post-transplant Cyclophosphamide for Children with Non-malignant Diseases. J Clin Immunol 2021; 41:1754-1761. [PMID: 34355352 DOI: 10.1007/s10875-021-01113-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
Haploidentical hematopoietic cell transplantation (HCT) is a valuable curative option for children with non-malignant diseases. Haploidentical HCT using post-transplant cyclophosphamide (PTCy) is a readily available option in the absence of an HLA-matched donor. We conducted a retrospective single-center study on the outcome of haploidentical HCT in children with non-malignant diseases. We gathered data from 44 patients underwent HCT in the period 2015 to 2020. The indications for HCT were bone marrow failure, primary immunodeficiency, metabolic disorders, and hemoglobinopathy. Median age at HCT was 4 years (range 0.7-20). The conditioning regimens were myeloablative (n = 17) or reduced intensity (n = 27). After a median follow-up of 20 months (range 4-71), 2-year overall survival was 89% and 2-year GvHD-free relapse-free survival (GRFS) was 66%. Incidence of primary graft failure was 13.6%. Cumulative incidence of grade II-IV acute and moderate/severe chronic GvHD were 20% and 6.4%, respectively. Younger age at HCT (< 4 years) and primary immunodeficiency were significantly associated with better GRFS (p < 0.05). In conclusion, haploidentical HCT using PTCy is feasible and curative in children with non-malignant diseases lacking an HLA-matched donor. Early diagnosis and referral in addition to timely treatment can further improve outcomes.
Collapse
|
10
|
Penna S, Villa A, Capo V. Autosomal recessive osteopetrosis: mechanisms and treatments. Dis Model Mech 2021; 14:261835. [PMID: 33970241 PMCID: PMC8188884 DOI: 10.1242/dmm.048940] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autosomal recessive osteopetrosis (ARO) is a severe inherited bone disease characterized by defective osteoclast resorption or differentiation. Clinical manifestations include dense and brittle bones, anemia and progressive nerve compression, which hamper the quality of patients' lives and cause death in the first 10 years of age. This Review describes the pathogenesis of ARO and highlights the strengths and weaknesses of the current standard of care, namely hematopoietic stem cell transplantation (HSCT). Despite an improvement in the overall survival and outcomes of HSCT, transplant-related morbidity and the pre-existence of neurological symptoms significantly limit the success of HSCT, while the availability of human leukocyte antigen (HLA)-matched donors still remains an open issue. Novel therapeutic approaches are needed for ARO patients, especially for those that cannot benefit from HSCT. Here, we review preclinical and proof-of-concept studies, such as gene therapy, systematic administration of deficient protein, in utero HSCT and gene editing. Summary: Autosomal recessive osteopetrosis is a heterogeneous and rare bone disease for which effective treatments are still lacking for many patients. Here, we review the literature on clinical, preclinical and proof-of-concept studies.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan 20090, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan 20090, Italy
| |
Collapse
|
11
|
Patel DA, Dhedin N, Chen H, Karnik L, Gatwood K, Culos K, Mohan S, Engelhardt BG, Kitko C, Connelly J, Satyanarayana G, Jagasia M, De La Fuente J, Kassim A. Early viral reactivation despite excellent immune reconstitution following haploidentical Bone marrow transplant with post‐transplant cytoxan for sickle cell disease. Transpl Infect Dis 2019; 22:e13222. [DOI: 10.1111/tid.13222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 11/24/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Dilan A. Patel
- Department of Hematology and Bone Marrow Transplant Vanderbilt University Medical Center Nashville TN USA
| | - Nathalie Dhedin
- Department of Haematology for Adolescents and Young Adults Saint‐Louis Hospital Paris France
| | - Heidi Chen
- Department of Biostatistics Vanderbilt University School of Medicine Nashville TN USA
| | - Leena Karnik
- Department of Paediatrics St. Mary’s Hospital Imperial College London UK
| | - Katie Gatwood
- Department of Pharmaceutical Services Vanderbilt University Medical Center Nashville TN USA
| | - Katie Culos
- Department of Pharmaceutical Services Vanderbilt University Medical Center Nashville TN USA
| | - Sanjay Mohan
- Department of Hematology and Bone Marrow Transplant Vanderbilt University Medical Center Nashville TN USA
| | - Brian G. Engelhardt
- Department of Hematology and Bone Marrow Transplant Vanderbilt University Medical Center Nashville TN USA
| | - Carrie Kitko
- Department of Pediatrics Pediatric Hematology and Bone Marrow Transplant Vanderbilt Childrens Hospital Nashville TN USA
| | - Jim Connelly
- Department of Pediatrics Pediatric Hematology and Bone Marrow Transplant Vanderbilt Childrens Hospital Nashville TN USA
| | - Gowri Satyanarayana
- Department of Infectious Disease Vanderbilt University Medical Center Nashville TN USA
| | - Madan Jagasia
- Department of Hematology and Bone Marrow Transplant Vanderbilt University Medical Center Nashville TN USA
| | - Josu De La Fuente
- Department of Paediatrics St. Mary’s Hospital Imperial College London UK
| | - Adetola Kassim
- Department of Hematology and Bone Marrow Transplant Vanderbilt University Medical Center Nashville TN USA
| |
Collapse
|
12
|
Patel DA, Akinsete AM, Connelly JA, Kassim AA. T-cell deplete versus T-cell replete haploidentical hematopoietic stem cell transplantation for sickle cell disease: where are we? Expert Rev Hematol 2019; 12:733-752. [DOI: 10.1080/17474086.2019.1642103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dilan A. Patel
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Meharry Center for Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adeseye M. Akinsete
- College of Medicine, Division of Pediatric Hematology & Oncology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - James A. Connelly
- Department of Pediatrics, Pediatric Hematopoietic Cell Transplant, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adetola A. Kassim
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Meharry Center for Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
Unrelated donor vs HLA-haploidentical α/β T-cell- and B-cell-depleted HSCT in children with acute leukemia. Blood 2018; 132:2594-2607. [PMID: 30348653 DOI: 10.1182/blood-2018-07-861575] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
Traditionally, hematopoietic stem cell transplantation (HSCT) from both HLA-matched related and unrelated donors (UD) has been used for treating children with acute leukemia (AL) in need of an allograft. Recently, HLA-haploidentical HSCT after αβ T-cell/B-cell depletion (αβhaplo-HSCT) was shown to be effective in single-center studies. Here, we report the first multicenter retrospective analysis of 127 matched UD (MUD), 118 mismatched UD (MMUD), and 98 αβhaplo-HSCT recipients, transplanted between 2010 and 2015, in 13 Italian centers. All these AL children were transplanted in morphological remission after a myeloablative conditioning regimen. Graft failure occurred in 2% each of UD-HSCT and αβhaplo-HSCT groups. In MUD vs MMUD-HSCT recipients, the cumulative incidence of grade II to IV and grade III to IV acute graft-versus-host disease (GVHD) was 35% vs 44% and 6% vs 18%, respectively, compared with 16% and 0% in αβhaplo-HSCT recipients (P < .001). Children treated with αβhaplo-HSCT also had a significantly lower incidence of overall and extensive chronic GVHD (P < .01). Eight (6%) MUD, 32 (28%) MMUD, and 9 (9%) αβhaplo-HSCT patients died of transplant-related complications. With a median follow-up of 3.3 years, the 5-year probability of leukemia-free survival in the 3 groups was 67%, 55%, and 62%, respectively. In the 3 groups, chronic GVHD-free/relapse-free (GRFS) probability of survival was 61%, 34%, and 58%, respectively (P < .001). When compared with patients given MMUD-HSCT, αβhaplo-HSCT recipients had a lower cumulative incidence of nonrelapse mortality and a better GRFS (P < .001). These data indicate that αβhaplo-HSCT is a suitable therapeutic option for children with AL in need of transplantation, especially when an allele-matched UD is not available.
Collapse
|
14
|
Slatter MA, Rao K, Abd Hamid IJ, Nademi Z, Chiesa R, Elfeky R, Pearce MS, Amrolia P, Worth A, Flood T, Abinun M, Hambleton S, Qasim W, Gaspar HB, Cant AJ, Gennery AR, Veys P. Treosulfan and Fludarabine Conditioning for Hematopoietic Stem Cell Transplantation in Children with Primary Immunodeficiency: UK Experience. Biol Blood Marrow Transplant 2017; 24:529-536. [PMID: 29155317 DOI: 10.1016/j.bbmt.2017.11.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/08/2017] [Indexed: 11/17/2022]
Abstract
We previously published results for 70 children who received conditioning with treosulfan and cyclophosphamide (n = 30) or fludarabine (n = 40) before undergoing hematopoietic stem cell transplantation (HSCT) for primary immunodeficiency (PID). Toxicity was lower and T cell chimerism was better in the patients receiving fludarabine, but cohort numbers were relatively small and follow-up was short. Here we report outcomes of 160 children who received homogeneous conditioning with treosulfan, fludarabine, and, in most cases, alemtuzumab (n = 124). The median age at transplantation was 1.36 years (range, .09 to 18.25 years). Donors included 73 matched unrelated, 54 1 to 3 antigen-mismatched unrelated, 12 matched sibling, 17 other matched family, and 4 haploidentical donors. Stem cell source was peripheral blood stem cells (PBSCs) in 70, bone marrow in 49, and cord blood in 41. Median duration of follow-up was 4.3 years (range, .8 to 9.4 years). Overall survival was 83%. No patients had veno-occlusive disease. Seventy-four patients (46%) had acute GVHD, but only 14 (9%) greater than grade II. Four patients underwent successful retransplantation for graft loss or poor immune reconstitution. Another patient experienced graft rejection and died. There was no association between T cell chimerism >95% and stem cell source, but a significant association was seen between myeloid chimerism >95% and use of PBSCs without an increased risk of significant GVHD compared with other sources. All 11 patients with severe combined immunodeficiency diagnosed at birth were alive at up to 8.7 years of follow-up. Long-term studies are needed to determine late gonadotoxic effects, and pharmacokinetic studies are needed to identify whether specific targeting is advantageous. The combination of treosulfan, fludarabine, and alemtuzumab is associated with excellent results in HSCT for PID.
Collapse
Affiliation(s)
- Mary A Slatter
- Department of Paediatric Immunology, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Kanchan Rao
- Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Intan Juliana Abd Hamid
- Department of Paediatric Immunology, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Malaysia
| | - Zohreh Nademi
- Department of Paediatric Immunology, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert Chiesa
- Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Reem Elfeky
- Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Mark S Pearce
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Persis Amrolia
- Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Austen Worth
- Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Terence Flood
- Department of Paediatric Immunology, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Mario Abinun
- Department of Paediatric Immunology, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Sophie Hambleton
- Department of Paediatric Immunology, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Waseem Qasim
- Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Hubert B Gaspar
- Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Andrew J Cant
- Department of Paediatric Immunology, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Andrew R Gennery
- Department of Paediatric Immunology, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Paul Veys
- Great Ormond Street Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
15
|
Role of αβ T Cell Depletion in Prevention of Graft versus Host Disease. Biomedicines 2017; 5:biomedicines5030035. [PMID: 28672883 PMCID: PMC5618293 DOI: 10.3390/biomedicines5030035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/15/2017] [Accepted: 06/18/2017] [Indexed: 12/18/2022] Open
Abstract
Graft versus host disease (GVHD) represents a major complication of allogeneic hematopoietic stem cell transplantation (allo HCT). Graft cellular manipulation has been used to mitigate the risk of GVHD. The αβ T cells are considered the primary culprit for causing GVHD therefore depletion of this T cell subset emerged as a promising cellular manipulation strategy to overcome the human leukocyte antigen (HLA) barrier of haploidentical (haplo) HCT. This approach is also being investigated in HLA-matched HCT. In several studies, αβ T cell depletion HCT has been performed without pharmacologic GVHD prophylaxis, thus unleashing favorable effect of donor’s natural killer cells (NK) and γδ T cells. This article will discuss the evolution of this method in clinical practice and the clinical outcome as described in different clinical trials.
Collapse
|
16
|
Panch SR, Szymanski J, Savani BN, Stroncek DF. Sources of Hematopoietic Stem and Progenitor Cells and Methods to Optimize Yields for Clinical Cell Therapy. Biol Blood Marrow Transplant 2017; 23:1241-1249. [PMID: 28495640 DOI: 10.1016/j.bbmt.2017.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/03/2017] [Indexed: 11/26/2022]
Abstract
Bone marrow (BM) aspirates, mobilized peripheral blood, and umbilical cord blood (UCB) have developed as graft sources for hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation and other cellular therapeutics. Individualized techniques are necessary to enhance graft HSPC yields and cell quality from each graft source. BM aspirates yield adequate CD34+ cells but can result in relative delays in engraftment. Granulocyte colony-stimulating factor (G-CSF)-primed BM HSPCs may facilitate faster engraftment while minimizing graft-versus-host disease in certain patient subsets. The levels of circulating HSPCs are enhanced using mobilizing agents, such as G-CSF and/or plerixafor, which act via the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 axis. Alternate niche pathway mediators, including very late antigen-4/vascular cell adhesion molecule-1, heparan sulfate proteoglycans, parathyroid hormone, and coagulation cascade intermediates, may offer promising alternatives for graft enhancement. UCB grafts have been expanded ex vivo with cytokines, notch-ligand, or mesenchymal stromal cells, and most studies demonstrated greater quantities of CD34+ cells ex vivo and improved short-term engraftment. No significant changes were observed in long-term repopulating potential or in patient survival. Early phase clinical trials using nicotinamide and StemReginin1 may offer improved short- and long-term repopulating ability. Breakthroughs in genome editing and stem cell reprogramming technologies may hasten the generation of pooled, third-party HSPC grafts. This review elucidates past, present, and potential future approaches to HSPC graft optimization.
Collapse
Affiliation(s)
- Sandhya R Panch
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland.
| | - James Szymanski
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Bipin N Savani
- Department of Hematology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David F Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|