1
|
Mili A, Das S, Nandakumar K, Lobo R. Molecular docking and dynamics guided approach to identify potential anti-inflammatory molecules as NRF2 activator to protect against drug-induced liver injury (DILI): a computational study. J Biomol Struct Dyn 2023; 41:9193-9210. [PMID: 36326112 DOI: 10.1080/07391102.2022.2141885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Inflammation and oxidative stress can contribute to the etiology of metabolic and chronic illnesses. The ability to prevent oxidative stress induced diseases such as cancer, cardiovascular disease, Alzheimer's disease, and others has been the subject of global research. Drug-induced liver injury (DILI) pathogenesis can be either due to oxidative stress or inflammatory response elicited by the drug, its metabolite, or herbal supplements. Our present research uses computational studies to identify a molecule with anti-inflammatory properties that can operate as an NRF2 activator. Acquiring and preparing the KEAP1-NRF2 Protein (PDB: 4L7D) with Schrodinger Suite was followed by developing a ligand library (Anti-inflammatory library downloaded from ChemDiv database). Molecular docking studies were performed in HTVS, SP, and XP modes, respectively. Based on the docking score, interaction, ADMET and binding free energy, the top ten compounds were selected and subjected to induced-fit docking (IFD) analysis for further study. The top three molecules were chosen for a molecular dynamics (MD) simulation study. Using the Desmond module of the Schrodinger Suite, the stability of the protein-ligand complex and protein-ligand contact throughout 100ns were evaluated during the MD simulation study. In our study, it was observed that three compounds exhibit exceptional stability and retain the essential interaction throughout the studies, and it is anticipated that these compounds may act as effective NRF2 activators. Further in vitro and in vivo assessments can be conducted to determine its potential to prevent DILI via acting as an NRF2 activator for future drug development.
Collapse
Affiliation(s)
- Ajay Mili
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Richard Lobo
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Tak J, Kim SG. Effects of toxicants on endoplasmic reticulum stress and hepatic cell fate determination. Toxicol Res 2023; 39:533-547. [PMID: 37779594 PMCID: PMC10541383 DOI: 10.1007/s43188-023-00201-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 10/03/2023] Open
Abstract
Toxicant-induced injury is a significant global health issue. However, the mechanisms through which toxicants such as carbon tetrachloride, acetaminophen, dimethylformamide, cocaine, and morphine induce the death of multiple cell types and contribute to liver toxicity are highly complex. This phenomenon involves intricate signaling pathways in association with oxidative stress, inflammation, and activation of death receptors, which are closely linked to endoplasmic reticulum (ER) stress. ER stress initially triggers the unfolded protein response, which either promotes cell survival or causes cell death at later times, depending on the severity and duration of the stress. Thus, comprehending the molecular basis governing cell fate determination in the context of ER stress may provide key insights into the prevention and treatment of toxicant-induced injury. This review summarizes our current understanding of agents that trigger different forms of ER stress-mediated cell death, necroptosis, ferroptosis, pyroptosis, and apoptosis, and covers the underlying molecular basis of toxicant-induced ER stress, as well as potential target molecules.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| |
Collapse
|
3
|
Cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice. JHEP Rep 2023; 5:100687. [PMID: 36923240 PMCID: PMC10009536 DOI: 10.1016/j.jhepr.2023.100687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Background & Aims Acetaminophen (APAP)-induced acute liver injury (AILI) is a leading cause of acute liver failure (ALF). N-acetylcysteine (NAC) is only effective within 24 h after APAP intoxication, raising an urgent need for alternative approaches to treat this disease. This study aimed to test whether cathelicidin (Camp), which is a protective factor in chronic liver diseases, protects mice against APAP-induced liver injury and ALF. Methods A clinically relevant AILI model and an APAP-induced ALF model were generated in mice. Genetic and pharmacological approaches were used to interfere with the levels of cathelicidin in vivo. Results An increase in hepatic pro-CRAMP/CRAMP (the precursor and mature forms of mouse cathelicidin) was observed in APAP-intoxicated mice. Upregulated cathelicidin was derived from liver-infiltrating neutrophils. Compared with wild-type littermates, Camp knockout had no effect on hepatic injury but dampened hepatic repair in AILI and reduced survival in APAP-induced ALF. CRAMP administration reversed impaired liver recovery observed in APAP-challenged Camp knockout mice. Delayed CRAMP, CRAMP(1-39) (the extended form of CRAMP), or LL-37 (the mature form of human cathelicidin) treatment exhibited a therapeutic benefit for AILI. Co-treatment of cathelicidin and NAC in AILI displayed a stronger hepatoprotective effect than NAC alone. A similar additive effect of CRAMP(1-39)/LL-37 and NAC was observed in APAP-induced ALF. The pro-reparative role of cathelicidin in the APAP-damaged liver was attributed to an accelerated resolution of inflammation at the onset of liver repair, possibly through enhanced neutrophil phagocytosis of necrotic cell debris in an autocrine manner. Conclusions Cathelicidin reduces APAP-induced liver injury and ALF in mice by promoting liver recovery via facilitating inflammation resolution, suggesting a therapeutic potential for late-presenting patients with AILI with or without ALF. Impact and implications Acetaminophen-induced acute liver injury is a leading cause of acute liver failure. The efficacy of N-acetylcysteine, the only clinically approved drug against acetaminophen-induced acute liver injury, is significantly reduced for late-presenting patients. We found that cathelicidin exhibits a great therapeutic potential in mice with acetaminophen-induced liver injury or acute liver failure, which makes up for the limitation of N-acetylcysteine therapy by specifically promoting liver repair after acetaminophen intoxication. The pro-reparative role of cathelicidin, as a key effector molecule of neutrophils, in the APAP-injured liver is attributed to an accelerated resolution of inflammation at the onset of liver repair, possibly through enhanced phagocytic function of neutrophils in an autocrine manner.
Collapse
Key Words
- AILI, acetaminophen-induced acute liver injury
- ALF, acute liver failure
- ALT, alanine aminotransferase
- APAP, acetaminophen
- Acetaminophen
- CRAMP, cathelicidin-related antimicrobial peptide
- CYP2E1, cytochrome P450 2E1
- Cathelicidin
- EGF, endothelial growth factor
- FPR2/ALX, formyl peptide receptor type 2/lipoxin A4 receptor
- GSH, glutathione
- Inflammation resolution
- JNK, c-Jun N-terminal kinase
- KO, knockout
- Liver repair
- Mac-1, macrophage-1 antigen
- NAC, N-acetylcysteine
- NAPQI, N-acetyl-p-benzoquinone imine
- NPC, non-parenchymal cell
- Neutrophils
- Phagocytosis
- ROS, reactive oxygen species
- TLR4, Toll-like receptor 4
- WT, wild-type
- hCAP18, human cationic antimicrobial protein
- α-SMA, alpha-smooth muscle actin
Collapse
|
4
|
Metabolic activation of drugs by cytochrome P450 enzymes: Biochemical insights into mechanism-based inactivation by fibroblast growth factor receptor inhibitors and chemical approaches to attenuate reactive metabolite formation. Biochem Pharmacol 2022; 206:115336. [DOI: 10.1016/j.bcp.2022.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
5
|
Kobayashi S, Homma T, Okumura N, Han J, Nagaoka K, Sato H, Konno H, Yamada S, Takao T, Fujii J. Carnosine dipeptidase II (CNDP2) protects cells under cysteine insufficiency by hydrolyzing glutathione-related peptides. Free Radic Biol Med 2021; 174:12-27. [PMID: 34324979 DOI: 10.1016/j.freeradbiomed.2021.07.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/25/2021] [Indexed: 01/18/2023]
Abstract
The knockout (KO) of the cystine transporter xCT causes ferroptosis, a type of iron-dependent necrotic cell death, in mouse embryonic fibroblasts, but this does not occur in macrophages. In this study, we explored the gene that supports cell survival under a xCT deficiency using a proteomics approach. Analysis of macrophage-derived peptides that were tagged with iTRAQ by liquid chromatography-mass spectrometry revealed a robust elevation in the levels of carnosine dipeptidase II (CNDP2) in xCT KO macrophages. The elevation in the CNDP2 protein levels was confirmed by immunoblot analyses and this elevation was accompanied by an increase in hydrolytic activity towards cysteinylglycine, the intermediate degradation product of glutathione after the removal of the γ-glutamyl group, in xCT KO macrophages. Supplementation of the cystine-free media of Hepa1-6 cells with glutathione or cysteinylglycine extended their survival, whereas the inclusion of bestatin, an inhibitor of CNDP2, counteracted the effects of these compounds. We established CNDP2 KO mice by means of the CRISPR/Cas9 system and found a decrease in dipeptidase activity in the liver, kidney, and brain. An acetaminophen overdose (350 mg/kg) showed not only aggravated hepatic damage but also renal injury in the CNDP2 KO mice, which was not evident in the wild-type mice that were receiving the same dose. The aggravated renal damage in the CNDP2 KO mice was consistent with the presence of abundant levels of CNDP2 in the kidney, the organ prone to developing ferroptosis. These collective data imply that cytosolic CNDP2, in conjugation with the removal of the γ-glutamyl group, recruits Cys from extracellular GSH and supports redox homeostasis of cells, particularly in epithelial cells of proximal tubules that are continuously exposed to oxidative insult from metabolic wastes that are produced in the body.
Collapse
Affiliation(s)
- Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, Yamagata, 990-9585, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, Yamagata, 990-9585, Japan
| | - Nobuaki Okumura
- Laboratory of Biomolecular Analysis, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jia Han
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Uchinada, Ishikawa, 920-0293, Japan
| | - Keita Nagaoka
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Hideyo Sato
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Technology, Faculty of Medicine, Niigata University, 746-2 Asahimachi-dori, Chuo-ku, Niigata, 951-8518, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Uchinada, Ishikawa, 920-0293, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, Yamagata, 990-9585, Japan.
| |
Collapse
|
6
|
Moon G, Kobayashi S, Aung Naing Y, Yamada KI, Yamakawa M, Fujii J. Iron loading exerts synergistic action via a different mechanistic pathway from that of acetaminophen-induced hepatic injury in mice. Free Radic Res 2020; 54:606-619. [PMID: 32896183 DOI: 10.1080/10715762.2020.1819996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP) overdose is a major cause of drug-induced acute liver failure. In such cases, free iron is released from lysosomes and is transported to mitochondria where it plays a pivotal role in APAP-induced liver injury. We previously reported that ascorbic acid (Asc) markedly mitigates APAP-induced hepatic damage in aldehyde reductase (Akr1a)-knockout (KO) mice that produce about 10% Asc as wild-type (WT) mice. However, the issue of the protective mechanism of Asc in association with the status of iron remains ambiguous. To gain additional insights into this issue, we examined effects of APAP (500 mg/kg) on female KO mice under conditions of iron loading. While the KO mice without AsA supplementation were more sensitive to APAP toxicity than the WT mice, FeSO4 loading (25 mg/kg) to WT mice aggravated the hepatic injury, which was a similar extent to that of the KO mice. Supplementation of Asc (1.5 mg/ml in the drinking water) ameliorated KO mice irrespective of iron status but did not change the iron-mediated increase in the lethality in the WT mice. Hepatic cysteine and glutathione levels declined to similar extents in all mouse groups at 3 h irrespective of the iron status and largely recovered at 18 h after the APAP treatment when liver damage was evident. Asc prominently mitigated APAP toxicity in KO mice irrespective of the iron status but had no effect on the synergistic action of iron and APAP in the WT mice, suggesting that the mechanism for the deteriorating action of loaded iron is different from that of APAP toxicity.
Collapse
Affiliation(s)
- Gyul Moon
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Ye Aung Naing
- Department of Pathological Diagnostics, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Ken-Ichi Yamada
- Department of Bio-functional Science, Faculty of Pharmacological Science, Kyushu University, Fukuoka, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Mitsunori Yamakawa
- Department of Pathological Diagnostics, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
7
|
Barbier-Torres L, Iruzubieta P, Fernández-Ramos D, Delgado TC, Taibo D, Guitiérrez-de-Juan V, Varela-Rey M, Azkargorta M, Navasa N, Fernández-Tussy P, Zubiete-Franco I, Simon J, Lopitz-Otsoa F, Lachiondo-Ortega S, Crespo J, Masson S, McCain MV, Villa E, Reeves H, Elortza F, Lucena MI, Hernández-Alvarez MI, Zorzano A, Andrade RJ, Lu SC, Mato JM, Anguita J, Rincón M, Martínez-Chantar ML. The mitochondrial negative regulator MCJ is a therapeutic target for acetaminophen-induced liver injury. Nat Commun 2017; 8:2068. [PMID: 29233977 PMCID: PMC5727217 DOI: 10.1038/s41467-017-01970-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP) is the active component of many medications used to treat pain and fever worldwide. Its overuse provokes liver injury and it is the second most common cause of liver failure. Mitochondrial dysfunction contributes to APAP-induced liver injury but the mechanism by which APAP causes hepatocyte toxicity is not completely understood. Therefore, we lack efficient therapeutic strategies to treat this pathology. Here we show that APAP interferes with the formation of mitochondrial respiratory supercomplexes via the mitochondrial negative regulator MCJ, and leads to decreased production of ATP and increased generation of ROS. In vivo treatment with an inhibitor of MCJ expression protects liver from acetaminophen-induced liver injury at a time when N-acetylcysteine, the standard therapy, has no efficacy. We also show elevated levels of MCJ in the liver of patients with acetaminophen overdose. We suggest that MCJ may represent a therapeutic target to prevent and rescue liver injury caused by acetaminophen.
Collapse
Affiliation(s)
- Lucía Barbier-Torres
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Paula Iruzubieta
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd). Infection, Immunity and Digestive Pathology Group, Research Institute Marqués de Valdecilla (IDIVAL), Santander, 39008, Spain
| | - David Fernández-Ramos
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Daniel Taibo
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Virginia Guitiérrez-de-Juan
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Marta Varela-Rey
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, 48160, Spain
| | - Nicolas Navasa
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Pablo Fernández-Tussy
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Imanol Zubiete-Franco
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Jorge Simon
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Sofia Lachiondo-Ortega
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Javier Crespo
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd). Infection, Immunity and Digestive Pathology Group, Research Institute Marqués de Valdecilla (IDIVAL), Santander, 39008, Spain
| | - Steven Masson
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 7DN, UK
| | - Misti Vanette McCain
- Northern Institute of Cancer Research, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 7DN, UK
| | - Erica Villa
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - Helen Reeves
- The Liver Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 7DN, UK
- Northern Institute of Cancer Research, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 7DN, UK
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, 48160, Spain
| | | | - Maria Isabel Hernández-Alvarez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, 08028, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, 08028, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Raúl J Andrade
- University Hospital Virgen de la Victoria, Málaga, 29010, Spain
| | - Shelly C Lu
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, 90048, CA, USA
| | - José M Mato
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - Juan Anguita
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Mercedes Rincón
- Department of Medicine, University of Vermont College of Medicine, Burlington, 05405, VT, USA.
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory and Liver Metabolism Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain.
| |
Collapse
|
8
|
Hu PF, Wang PQ, Chen H, Hu XF, Xie QP, Shi J, Lin L, Xie WF. Beneficial effect of corticosteroids for patients with severe drug-induced liver injury. J Dig Dis 2016; 17:618-627. [PMID: 27426618 DOI: 10.1111/1751-2980.12383] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The efficacy of corticosteroids in drug-induced liver injury (DILI) remains controversial. We aimed to determine whether corticosteroids were beneficial for severe DILI. METHODS This was a single-center retrospective study of patients with DILI enrolled between January 2010 and May 2015. RESULTS Of the 203 patients enrolled, 53 were treated with corticosteroids. The baseline characteristics of patients received corticosteroids were more severe than that of the non-corticosteroid group. Subgroup analyses indicated that almost all patients who died had the higher 50% quartile of total bilirubin (TB) levels. Among the 50-75% quartile of TB level, no patient in the corticosteroids group but 3 (15.0%) of 20 patients in the non-corticosteroid group died (P = 0.261). With the highest 25% quartile of TB level, four patients in the corticosteroids group and four in the non-corticosteroids group died (P = 0.405). Corticosteroid therapy improved the recovery rate from 77.4% to 87.9% in the higher 50% quartile of TB values (P = 0.331). More interestingly, corticosteroid administration hastened the resolution of liver injury by shortening the duration of peak TB to 50% reduction from 17 to 12 days (P < 0.05). Additionally, multivariate analysis revealed that the TB levels and cholestatic injury type were the two independent factors associated with a poor outcome of DILI. CONCLUSIONS Corticosteroids are not detrimental to DILI, but instead ameliorate liver injury and improve patient survival. Short-time use of corticosteroids is strongly recommended for severe DILI patients with hyperbilirubinemia.
Collapse
Affiliation(s)
- Ping Fang Hu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pei Qin Wang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Han Chen
- Department of General Surgery, 411th Hospital of the People's Liberation Army, Shanghai, China
| | - Xiao Fan Hu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qiu Ping Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Shi
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lin Lin
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Zhang P, Ye Y, Yang X, Jiao Y. Systematic Review on Chinese Herbal Medicine Induced Liver Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:3560812. [PMID: 27651817 PMCID: PMC5019919 DOI: 10.1155/2016/3560812] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
Background. In recent years, with the popularity of CHM, its hepatotoxicity has also been increasingly noticed. However, there are still veils on causative herbs and clinical characteristics. Aim. To systematically review data on CHM induced liver injury with particular focus on causative herbs and clinical characteristics. Methods. Using terms related to CHM and liver injury, PubMed and three Chinese electronic databases were searched, which was limited to the past 5 years. Publications meeting our eligibility criteria were included and further analyzed. Results. In total, 4 single herbs, 21 patent drugs, and 4 decoctions were reported to be of hepatotoxicity, with He-Shou-Wu being the most common one (65/114). Dang-Gui and other 5 herbs were the most common ingredients of patent drugs and decoctions. All patients were assessed using the RUCAM scale, with 26 being highly probable and 28 being probable. For these 54 cases, the latent period was 30 (47) days, and 81.48% were labeled as hepatocellular injuries. Most patients (96.3%) recovered, apart from the fact that one died and one is receiving liver transplantation. Conclusions. CHM should be used carefully for hepatotoxicity. Liver injury from CHM is similar to that from conventional medicines in clinical characteristics. Details about causative herbs should be illustrated, and more RUCAM should be used in future.
Collapse
Affiliation(s)
- Peng Zhang
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Yongan Ye
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| | - Xianzhao Yang
- Department of Infectious Disease, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| | - Yuntao Jiao
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
van Swelm RPL, Kramers C, Masereeuw R, Russel FGM. Application of urine proteomics for biomarker discovery in drug-induced liver injury. Crit Rev Toxicol 2014; 44:823-41. [PMID: 25264586 DOI: 10.3109/10408444.2014.931341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Li LM, Wang D, Zen K. MicroRNAs in Drug-induced Liver Injury. J Clin Transl Hepatol 2014; 2:162-9. [PMID: 26357624 PMCID: PMC4521241 DOI: 10.14218/jcth.2014.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of acute liver failure, and a major reason for the recall of marketed drugs. Detection of potential liver injury is a challenge for clinical management and preclinical drug safety studies, as well as a great obstacle to the development of new, effective and safe drugs. Currently, serum levels of alanine and aspartate aminotransferases are the gold standard for evaluating liver injury. However, these levels are assessed by nonspecific, insensitive, and non-predictive tests, and often result in false-positive results. Therefore, there is an urgent need for better DILI biomarkers to guide risk assessment and patient management. The discovery of microRNAs (miRNAs) as a new class of gene expression regulators has triggered an explosion of research, particularly on the measurement of miRNAs in various body fluids as biomarkers for many human diseases. The properties of miRNA-based biomarkers, such as tissue specificity and high stability and sensitivity, suggest they could be used as novel, minimally invasive and stable DILI biomarkers. In the current review, we summarize recent progress concerning the role of miRNAs in diagnosing and monitoring both clinical and preclinical DILI, and discuss the main advantages and challenges of miRNAs as novel DILI biomarkers.
Collapse
Affiliation(s)
| | | | - Ke Zen
- Correspondence to: Ke Zen, Nanjing University School of Life Sciences, 22 Hankou Road, Nanjing, Jiangsu 210093, China. E-mail:
| |
Collapse
|