1
|
Celerino da Silva R, Segat L, Kuhn L, Chies JAB, Crovella S. Association of SNPs in HLA-C and ZNRD1 Genes With HIV-1 Mother-to-Child Transmission in Zambia Population. J Acquir Immune Defic Syndr 2021; 86:509-515. [PMID: 33252547 DOI: 10.1097/qai.0000000000002584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Human leukocyte antigen C (HLA-C) and Zinc ribbon domain containing 1 (ZNRD1) are considered HIV-1 restriction factors and are expressed in the placenta. Variations in HLA-C and ZNRD1 genes are known to influence HIV-1 infection, including viral replication and progression to AIDS. Little is known about the role of variants in these genes in HIV-1 mother-to-child transmission. METHODS We evaluated the distribution of HLA-C (rs10484554, rs9264942) and ZNRD1 (rs8321, rs3869068) variants in a Zambian population composed of 333 children born to HIV-1+ mothers (248 HIV-1 noninfected/85 HIV-1 infected) and 97 HIV-1+ mothers. RESULTS Genotypic distribution of HLA-C and ZNRD1 were in Hardy-Weinberg equilibrium, except for HLA-C rs10484554 in both groups. In mothers, no significant differences were observed in their allele and genotypic distributions for both genes. The T and TT variants (rs10484554-HLA-C) were significantly more frequent among HIV-1+ children, specifically those who acquired the infection in utero (IU) and intrapartum (IP). For ZNRD1, the T allele (rs3869068) was more frequent in HIV-1- children, showing significant differences in relation to those infected via IP and postpartum (PP). The CT and TT genotypes were significantly more frequent in HIV-1- children. CONCLUSIONS Variations in HLA-C (T and TT-rs10484554) and ZNRD1 (T and CT/TT-rs3869068) can increase and decrease the susceptibility to HIV-1 infection via mother-to-child transmission, respectively. Further studies are encouraged focusing on a greater number of variants and sample size, with functional validation and in other populations.
Collapse
Affiliation(s)
- Ronaldo Celerino da Silva
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, Brazil
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE) Recife, Brazil
| | - Ludovica Segat
- Department of Surgical and Health Medical Sciences, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), UCO Hygiene and Public Health, University of Trieste, Trieste, Italy
| | - Louise Kuhn
- Gertrude H. Sergievsky Center and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY; and
| | - José Artur Bogo Chies
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sergio Crovella
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, Brazil
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE) Recife, Brazil
| |
Collapse
|
2
|
Fitting S, McRae M, Hauser KF. Opioid and neuroHIV Comorbidity - Current and Future Perspectives. J Neuroimmune Pharmacol 2020; 15:584-627. [PMID: 32876803 PMCID: PMC7463108 DOI: 10.1007/s11481-020-09941-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
With the current national opioid crisis, it is critical to examine the mechanisms underlying pathophysiologic interactions between human immunodeficiency virus (HIV) and opioids in the central nervous system (CNS). Recent advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal opioid-HIV interactions with increasing clarity. However, despite the substantial new insight, the unique impact of opioids on the severity, progression, and prognosis of neuroHIV and HIV-associated neurocognitive disorders (HAND) are not fully understood. In this review, we explore, in detail, what is currently known about mechanisms underlying opioid interactions with HIV, with emphasis on individual HIV-1-expressed gene products at the molecular, cellular and systems levels. Furthermore, we review preclinical and clinical studies with a focus on key considerations when addressing questions of whether opioid-HIV interactive pathogenesis results in unique structural or functional deficits not seen with either disease alone. These considerations include, understanding the combined consequences of HIV-1 genetic variants, host variants, and μ-opioid receptor (MOR) and HIV chemokine co-receptor interactions on the comorbidity. Lastly, we present topics that need to be considered in the future to better understand the unique contributions of opioids to the pathophysiology of neuroHIV. Graphical Abstract Blood-brain barrier and the neurovascular unit. With HIV and opiate co-exposure (represented below the dotted line), there is breakdown of tight junction proteins and increased leakage of paracellular compounds into the brain. Despite this, opiate exposure selectively increases the expression of some efflux transporters, thereby restricting brain penetration of specific drugs.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA, 23298-0059, USA.
| |
Collapse
|
3
|
Mehlotra RK. Human Genetic Variation and HIV/AIDS in Papua New Guinea: Time to Connect the Dots. Curr HIV/AIDS Rep 2019; 15:431-440. [PMID: 30218255 DOI: 10.1007/s11904-018-0417-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Human genetic polymorphisms known to influence HIV acquisition and disease progression occur in Papua New Guinea (PNG). However, no genetic association study has been reported so far. In this article, we review research findings, with a view to stimulate genotype-to-phenotype research. RECENT FINDINGS PNG, a country in Oceania, has a high prevalence of HIV and many sexually transmitted infections. While limited data is available from this country regarding the distribution of human genetic polymorphisms known to influence clinical outcomes of HIV/AIDS, genetic association studies are lacking. Our studies, in the past decade, have revealed that polymorphisms in chemokine receptor-ligand (CCR2-CCR5, CXCL12), innate immune (Toll-like receptor, β-defensin), and antiretroviral drug-metabolism enzyme (CYP2B6, UGT2B7) genes are prevalent in PNG. Although our results need to be validated in further studies, it is urgent to pursue large-scale, comprehensive genetic association studies that include these as well as additional genetic polymorphisms.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Patarčić I, Gelemanović A, Kirin M, Kolčić I, Theodoratou E, Baillie KJ, de Jong MD, Rudan I, Campbell H, Polašek O. The role of host genetic factors in respiratory tract infectious diseases: systematic review, meta-analyses and field synopsis. Sci Rep 2015; 5:16119. [PMID: 26524966 PMCID: PMC4630784 DOI: 10.1038/srep16119] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022] Open
Abstract
Host genetic factors have frequently been implicated in respiratory infectious diseases, often with inconsistent results in replication studies. We identified 386 studies from the total of 24,823 studies identified in a systematic search of four bibliographic databases. We performed meta-analyses of studies on tuberculosis, influenza, respiratory syncytial virus, SARS-Coronavirus and pneumonia. One single-nucleotide polymorphism from IL4 gene was significant for pooled respiratory infections (rs2070874; 1.66 [1.29–2.14]). We also detected an association of TLR2 gene with tuberculosis (rs5743708; 3.19 [2.03–5.02]). Subset analyses identified CCL2 as an additional risk factor for tuberculosis (rs1024611; OR = 0.79 [0.72–0.88]). The IL4-TLR2-CCL2 axis could be a highly interesting target for translation towards clinical use. However, this conclusion is based on low credibility of evidence - almost 95% of all identified studies had strong risk of bias or confounding. Future studies must build upon larger-scale collaborations, but also strictly adhere to the highest evidence-based principles in study design, in order to reduce research waste and provide clinically translatable evidence.
Collapse
Affiliation(s)
- Inga Patarčić
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Andrea Gelemanović
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Mirna Kirin
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Ivana Kolčić
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| | - Kenneth J Baillie
- Roslin Institute, University of Edinburgh, Midlothian, UK.,Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, Split, Croatia.,Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Abstract
OBJECTIVE To evaluate the impact of mitochondrial DNA (mtDNA) haplogroups on virologic and immunological outcomes of HIV infection. DESIGN HAART-naive African American adolescent participants to the Reaching for Excellence in Adolescent Care and Health study. METHODS The mtDNA haplogroups were inferred from sequenced mtDNA hypervariable regions HV1 and HV2 and their predictive value on HIV outcomes were evaluated in linear mixed models, controlled for human leukocyte antigen (HLA)-B27, HLA-B57 and HLA-B35-Px alleles and other covariates. RESULTS We report data showing that the mtDNA L2 lineage, a group composed of L2a, L2b and L2e mtDNA haplogroups in the studied population, is significantly associated (beta = -0.08; Bonferroni-adjusted P = 0.004) with decline of CD4 T cells (median loss of 8 ± 1 cells per month) in HAART-naive HIV-infected individuals of African American descent (n = 133). No significant association (P < 0.05) with set-point viral load was observed with any of the tested mtDNA haplogroups. The present data concur with previous findings in the AIDS Clinical Trials Group study 384, implicating the L2 lineage with slower CD4 T-cell recovery after antiretroviral therapy in African Americans. CONCLUSIONS Whereas the L2 lineage showed an association with unfavorable immunological outcomes of HIV infection, its phylogenetic divergence from J and U5a, two lineages associated with accelerated HIV progression in European Americans, raises the possibility that interactions with common nucleus-encoded variants drive HIV progression. Disentangling the effects of mitochondrial and nuclear gene variants on the outcomes of HIV infection is an important step to be taken toward a better understanding of HIV/AIDS pathogenesis and pharmacogenomics.
Collapse
|
6
|
Jacobs MM, Murray J, Byrd DA, Hurd YL, Morgello S. HIV-related cognitive impairment shows bi-directional association with dopamine receptor DRD1 and DRD2 polymorphisms in substance-dependent and substance-independent populations. J Neurovirol 2014; 19:495-504. [PMID: 24078558 DOI: 10.1007/s13365-013-0204-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/14/2013] [Accepted: 08/20/2013] [Indexed: 11/29/2022]
Abstract
It has been postulated that drugs of abuse act synergistically with HIV, leading to increased neurotoxicity and neurocognitive impairment. The CNS impacts of HIV and drug use converge on the mesocorticolimbic dopamine (DA) system, which contains two main receptor subtypes: dopamine receptors 1 (DRD1) and 2 (DRD2). DRD1 and DRD2 have been linked to substance dependence; whether they predict HIV-associated neurocognitive disorder (HAND) is unclear. Using an advanced-stage HIV+ population, we sought to determine if drug dependence impacts the contribution of DA receptor polymorphisms on neurocognition. We observed that both DRD1 and DRD2 polymorphisms were associated with opiate and cocaine dependence (P < 0.05) in Caucasian subjects, but not African-American individuals. Using linear regression analysis, we examined the polymorphisms for associations with neuropsychological performance in global and cognitive domain T-scores (Motor, Processing Speed, Verbal Fluency, Learning, Memory, Executive Functioning, Working Memory) while controlling for opiate and cocaine dependency. In the Motor domain, we observed an association for two DRD2 polymorphisms (P < 0.05) in Caucasian subjects. The effects differed for substance dependence groups as the direction of the correlations with DRD2 were opposite to what was seen in subjects without these dependencies. In African-American subjects, associations were observed in nearly every domain, and again, the direction of the correlation differed between substance-dependent and substance-independent groups. We conclude that studies to examine genetic risk for HAND must carefully account for substance dependence patterns when assaying dopaminergic systems, as the neurobiological substrates of cognition in HIV populations may vary with tonic alterations secondary to chronic substance exposures.
Collapse
|
7
|
Prentice HA, Pajewski NM, He D, Zhang K, Brown EE, Kilembe W, Allen S, Hunter E, Kaslow RA, Tang J. Host genetics and immune control of HIV-1 infection: fine mapping for the extended human MHC region in an African cohort. Genes Immun 2014; 15:275-81. [PMID: 24784026 PMCID: PMC4111776 DOI: 10.1038/gene.2014.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 12/31/2022]
Abstract
Multiple MHC loci encoding human leukocyte antigens (HLA) have allelic variants unequivocally associated with differential immune control of HIV-1 infection. Fine mapping based on single nucleotide polymorphisms (SNPs) in the extended MHC (xMHC) region is expected to reveal causal or novel factors and to justify a search for functional mechanisms. We have tested the utility of a custom fine-mapping platform (the ImmunoChip) for 172 HIV-1 seroconverters (SCs) and 449 seroprevalent individuals (SPs) from Lusaka, Zambia, with a focus on more than 6,400 informative xMHC SNPs. When conditioned on HLA and non-genetic factors previously associated with HIV-1 viral load (VL) in the study cohort, penalized approaches (HyperLasso models) identified an intergenic SNP (rs3094626 between RPP21 and HLA-E) and an intronic SNP (rs3134931 in NOTCH4) as novel correlates of early set-point VL in SCs. The minor allele of rs2857114 (downstream from HLA-DOB) was an unfavorable factor in SPs. Joint models based on demographic features, HLA alleles and the newly identified SNP variants could explain 29% and 15% of VL variance in SCs and SPs, respectively. These findings and bioinformatics strongly suggest that both classic and non-classic MHC genes deserve further investigation, especially in Africans with relatively short haplotype blocks.
Collapse
Affiliation(s)
- H A Prentice
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - N M Pajewski
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - D He
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - K Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E E Brown
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Kilembe
- Zambia-Emory HIV-1 Research Project, Lusaka, Zambia
| | - S Allen
- 1] Zambia-Emory HIV-1 Research Project, Lusaka, Zambia [2] Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - E Hunter
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - R A Kaslow
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Tang
- 1] Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA [2] Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Genetic, transcriptomic, and epigenetic studies of HIV-associated neurocognitive disorder. J Acquir Immune Defic Syndr 2014; 65:481-503. [PMID: 24583618 DOI: 10.1097/qai.0000000000000069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Human Genome Project, coupled with rapidly evolving high-throughput technologies, has opened the possibility of identifying heretofore unknown biological processes underlying human disease. Because of the opaque nature of HIV-associated neurocognitive disorder (HAND) neuropathogenesis, the utility of such methods has gained notice among NeuroAIDS researchers. Furthermore, the merging of genetics with other research areas has also allowed for application of relatively nascent fields, such as neuroimaging genomics, and pharmacogenetics, to the context of HAND. In this review, we detail the development of genetic, transcriptomic, and epigenetic studies of HAND, beginning with early candidate gene association studies and culminating in current "omics" approaches that incorporate methods from systems biology to interpret data from multiple levels of biological functioning. Challenges with this line of investigation are discussed, including the difficulty of defining a valid phenotype for HAND. We propose that leveraging known associations between biology and pathology across multiple levels will lead to a more reliable and valid phenotype. We also discuss the difficulties of interpreting the massive and multitiered mountains of data produced by current high-throughput omics assays and explore the utility of systems biology approaches in this regard.
Collapse
|
9
|
Gene polymorphisms in CCR5, CCR2, SDF1 and RANTES among Chinese Han population with HIV-1 infection. INFECTION GENETICS AND EVOLUTION 2014; 24:99-104. [PMID: 24650919 DOI: 10.1016/j.meegid.2014.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/28/2014] [Accepted: 03/11/2014] [Indexed: 11/23/2022]
Abstract
Chemokines and chemokine receptors are crucial for immune response in HIV-1 infection. Although many studies have been done to investigate the relationship between chemokines and chemokine receptor gene polymorphisms and host's susceptibility to HIV-1 infection, the conclusions are under debate. In the present study, a cohort of 287 HIV-1 seropositive patients, 388 ethnically age-matched healthy controls and 49 intravenous drug users (IDUs) HIV-1 exposed seronegative individuals (HESN) from Chinese Han population were enrolled in order to determine the influence of host genetic factors on HIV-1 infection. Seven polymorphisms on four known chemokines/chemokine receptor genes (CCR5Δ32, CCR5 m303, CCR5 59029A/G, CCR2 64I, RANTES -403A/G, RANTES -28C/G and SDF1 3'-A) were screened. CCR5Δ32 and CCR5 m303 were absent or infrequent in Chinese Han population, which may not be hosts' genetic protective factors for HIV-1 infection. Our results showed the CCR5 59029A/G, CCR2 64I and SDF1 3'-A were not associated with host's resistance to HIV-1 infection. The frequency of RANTES -403A allele was significantly lower in HIV-1 patients than in healthy blood donors (p=0.0005) and HESN group (p=0.035), which implied the association between A allele and reduced HIV-1 infection risk. Different genetic models were assessed to investigate this association (AA vs. GG+AG, OR=0.38 95% CI, 0.22-0.65 p=0.0004; A vs. G, OR=0.66 95% CI, 0.52-0.84 p=0.0006), which supported this association, either. The genotype and allele distribution of RANTES -28 between HIV-1 patients and healthy controls (genotype profile: p=0.072; allele profile: p=0.027) or HIV-1 seronegative group (genotype profile: p=0.036; allele profile: p=0.383) were both at the marginal level of significance, which were not observed after Bonferroni correction. All these results suggest the RANTES -403A may be associated with reduced susceptibility to HIV-1 infection, while the RANTES -28 locus not. By lack of the patients' clinical information, whether these polymorphisms affect AIDS disease progression and their role in different HIV-1 infection routes could not performed in present study and needs to be assessed in ongoing studies.
Collapse
|
10
|
Cespedes MS, Kerns SL, Holzman RS, McLaren PJ, Ostrer H, Aberg JA. Genetic predictors of cervical dysplasia in African American HIV-infected women: ACTG DACS 268. HIV CLINICAL TRIALS 2013; 14:292-302. [PMID: 24334182 DOI: 10.1310/hct1406-292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To examine genome-wide associations in HIV-infected women with a history of cervical dysplasia compared with HIV-infected women with no history of abnormal Papanicolaou (Pap) tests. DESIGN Case-control study using data from women analyzed for the HIV Controllers Study and enrolled in HIV treatment-naïve studies in the AIDS Clinical Trials Group (ACTG). METHODS Genotyping utilized Illumina HumanHap 650 Y or 1MDuo platforms. After quality control and principal component analysis, ~610,000 significant single nucleotide polymorphisms (SNPs) were tested for association. Threshold for significance was P < 5 × 10(-8) for genome-wide associations. RESULTS No significant genomic association was observed between women with low-grade dysplasia and controls. The genome-wide association study (GWAS) analysis between women with high-grade dysplasia or invasive cervical cancer and normal controls identified significant SNPs. In the analyses limited to African American women, 11 SNPs were significantly associated with the development of high-grade dysplasia or cancer after correcting for multiple comparisons. The model using significant SNPs alone had improved accuracy in predicting high-grade dysplasia in African American women compared to the use of clinical data (area under the receiver operating characteristic curve for genetic and clinical model = 0.9 and 0.747, respectively). CONCLUSIONS These preliminary data serve as proof of concept that there may be a genetic predisposition to developing high-grade cervical dysplasia in African American HIV-infected women. Given the small sample size, the results need to be validated in a separate cohort.
Collapse
Affiliation(s)
| | | | | | - Paul J McLaren
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Harry Ostrer
- Albert Einstein College of Medicine, Bronx, New York
| | - Judith A Aberg
- New York University School of Medicine, New York, New York
| |
Collapse
|
11
|
Josset L, Tisoncik-Go J, Katze MG. Moving H5N1 studies into the era of systems biology. Virus Res 2013; 178:151-67. [PMID: 23499671 PMCID: PMC3834220 DOI: 10.1016/j.virusres.2013.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/24/2013] [Indexed: 12/20/2022]
Abstract
The dynamics of H5N1 influenza virus pathogenesis are multifaceted and can be seen as an emergent property that cannot be comprehended without looking at the system as a whole. In past years, most of the high-throughput studies on H5N1-host interactions have focused on the host transcriptomic response, at the cellular or the lung tissue level. These studies pointed out that the dynamics and magnitude of the innate immune response and immune cell infiltration is critical to H5N1 pathogenesis. However, viral-host interactions are multidimensional and advances in technologies are creating new possibilities to systematically measure additional levels of 'omic data (e.g. proteomic, metabolomic, and RNA profiling) at each temporal and spatial scale (from the single cell to the organism) of the host response. Natural host genetic variation represents another dimension of the host response that determines pathogenesis. Systems biology models of H5N1 disease aim at understanding and predicting pathogenesis through integration of these different dimensions by using intensive computational modeling. In this review, we describe the importance of 'omic studies for providing a more comprehensive view of infection and mathematical models that are being developed to integrate these data. This review provides a roadmap for what needs to be done in the future and what computational strategies should be used to build a global model of H5N1 pathogenesis. It is time for systems biology of H5N1 pathogenesis to take center stage as the field moves toward a more comprehensive view of virus-host interactions.
Collapse
Affiliation(s)
- Laurence Josset
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, United States
| | | | | |
Collapse
|
12
|
Ballana E, Esté JA. Insights from host genomics into HIV infection and disease: Identification of host targets for drug development. Antiviral Res 2013; 100:473-86. [PMID: 24084487 DOI: 10.1016/j.antiviral.2013.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/11/2023]
Abstract
HIV susceptibility and disease progression show a substantial degree of individual heterogeneity, ranging from fast progressors to long-term non progressors or elite controllers, that is, subjects that control infection in the absence of therapy. Recent years have seen a significant increase in understanding of the host genetic determinants of susceptibility to HIV infection and disease progression, driven in large part by candidate gene studies, genome-wide association studies, genome-wide transcriptome analyses, and large-scale functional screens. These studies have identified common variants in host loci that clearly influence disease progression, characterized the scale and dynamics of gene and protein expression changes in response to infection, and provided the first comprehensive catalogue of genes and pathways involved in viral replication. This review highlights the potential of host genomic influences in antiviral therapy by pointing to promising novel drug targets but also providing the basis of the identification and validation of host mechanisms that might be susceptible targets for novel antiviral therapies.
Collapse
Affiliation(s)
- Ester Ballana
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | | |
Collapse
|
13
|
Gong Z, Tang J, Xiang T, Zhang L, Liao Q, Liu W, Wang Y. Association between regulated upon activation, normal T cells expressed and secreted (RANTES) -28C/G polymorphism and susceptibility to HIV-1 infection: a meta-analysis. PLoS One 2013; 8:e60683. [PMID: 23577146 PMCID: PMC3618220 DOI: 10.1371/journal.pone.0060683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/01/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Many studies have investigated the distributions of RANTES genotypes between HIV-1 infected patients and uninfected individuals. However, no definite results have been put forward about whether the RANTES -28C/G polymorphism can affect HIV-1 susceptibility. METHODS We performed a meta-analysis of 12 studies including 7473 subjects for whom the RANTES -28C/G polymorphism was genotyped. Odds ratios (ORs) with 95% confidence intervals (CIs) were employed to assess the association of the polymorphism with HIV-1 susceptibility. By dividing the controls into healthy controls and HIV-1 exposed but seronegative (HESN) controls, we explored the both allelic and dominant genetic models. RESULTS By using the healthy controls, we found a marginally significant association between the -28C/G polymorphism and susceptibility to HIV-1 infection in the allelic model (OR = 0.82, 95%CI = 0.70-0.97). But sensitivity analysis suggested that the association was driven by one study. We further performed stratified analysis according to ethnicity. The -28G allele decreased susceptibility to HIV-1 infection in the allelic model among Asians (OR = 0.79, 95%CI = 0.66-0.94). By using the HESN controls, no association between the polymorphism -28C/G and the susceptibility to HIV-1 infection was revealed in either the allelic model (OR = 0.84, 95%CI = 0.60-1.17) or the dominant model (OR = 0.77, 95%CI = 0.54-1.10). CONCLUSIONS Our findings suggested that the RANTES -28G allele might play a role in resistance to HIV-1 infection among Asians. Additional well-designed studies were required for the validation of this association.
Collapse
Affiliation(s)
- Zhenghua Gong
- Department of Public Health, Center for Disease Control and Prevention in Jiangxi Province, Nanchang, China
| | - Jialin Tang
- Department of Public Health, Center for Disease Control and Prevention in Jiangxi Province, Nanchang, China
| | - Tianxin Xiang
- Departments of Infectious Diseases, the First Hospital Affiliated of Nanchang University, Nanchang, China
| | - Lunli Zhang
- Departments of Infectious Diseases, the First Hospital Affiliated of Nanchang University, Nanchang, China
| | - Qinghua Liao
- Department of Public Health, Center for Disease Control and Prevention in Jiangxi Province, Nanchang, China
| | - Wei Liu
- Department of Public Health, Center for Disease Control and Prevention in Jiangxi Province, Nanchang, China
| | - Yalin Wang
- Department of Public Health, Center for Disease Control and Prevention in Jiangxi Province, Nanchang, China
- * E-mail:
| |
Collapse
|
14
|
Abstract
The dynamics of HIV-1 viremia is a complex and evolving landscape with clinical and epidemiological (public health) implications. Most studies have relied on the use of set-point viral load (VL) as a readily available proxy of viral dynamics to assess host and viral correlates. This review highlights recent findings from population-based studies of set-point VL, focusing primarily on robust data related to host genetics. A comprehensive understanding of viral dynamics will clearly need to consider both host and viral characteristics, with close attention to (i) the timing of VL measurements, (ii) the biology of viral evolution, (iii) compartments of active viral replication, (iv) the transmission source partner as the immediate past microenvironment, and (v) proper application of statistical models.
Collapse
Affiliation(s)
- Heather A. Prentice
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama;
- Author to whom correspondence should be addressed; ; Tel.: +1-720-352-3432
| | - Jianming Tang
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama;
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
15
|
Levine AJ, Service S, Miller EN, Reynolds SM, Singer EJ, Shapshak P, Martin EM, Sacktor N, Becker JT, Jacobson LP, Thompson P, Freimer N. Genome-wide association study of neurocognitive impairment and dementia in HIV-infected adults. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:669-83. [PMID: 22628157 PMCID: PMC3418456 DOI: 10.1002/ajmg.b.32071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/03/2012] [Indexed: 12/29/2022]
Abstract
The neuropathogenesis of HIV-associated neurocognitive disorders (HAND) is unclear. Candidate gene studies have implicated genetic susceptibility loci within immune-related genes; however, these have not been reliably validated. Here, we employed genome-wide association (GWA) methods to discover novel genetic susceptibility loci associated with HAND, and validate susceptibility loci implicated in prior candidate gene studies. Data from 1,287 participants enrolled in the Multicenter AIDS Cohort Study between 1985 and 2010 were used. Genotyping was conducted with Illumina 1M, 1MDuo, or 550K platform. Linear mixed models determined subject-specific slopes for change over time in processing speed and executive functioning, considering all visits including baseline and the most recent study visit. Covariates modeled as fixed effects included: time since the first visit, depression severity, nadir CD4+ T-cell count, hepatitis C co-infection, substance use, and antiretroviral medication regimen. Prevalence of HIV-associated dementia (HAD) and neurocognitive impairment (NCI) was also examined as neurocognitive phenotypes in a case-control analysis. No genetic susceptibility loci were associated with decline in processing speed or executive functioning among almost 2.5 million single nucleotide polymorphisms (SNPs) directly genotyped or imputed. No association between the SNPs and HAD or NCI were found. Previously reported associations between specific genetic susceptibility loci, HIV-associated NCI, and HAD were not validated. In this first GWAS of HAND, no novel or previously identified genetic susceptibility loci were associated with any of the phenotypes examined. Due to the relatively small sample size, future collaborative efforts that incorporate this dataset may still yield important findings.
Collapse
Affiliation(s)
- Andrew J Levine
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Expression quantitative trait Loci for extreme host response to influenza a in pre-collaborative cross mice. G3-GENES GENOMES GENETICS 2012; 2:213-21. [PMID: 22384400 PMCID: PMC3284329 DOI: 10.1534/g3.111.001800] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/08/2011] [Indexed: 01/05/2023]
Abstract
Outbreaks of influenza occur on a yearly basis, causing a wide range of symptoms across the human population. Although evidence exists that the host response to influenza infection is influenced by genetic differences in the host, this has not been studied in a system with genetic diversity mirroring that of the human population. Here we used mice from 44 influenza-infected pre-Collaborative Cross lines determined to have extreme phenotypes with regard to the host response to influenza A virus infection. Global transcriptome profiling identified 2671 transcripts that were significantly differentially expressed between mice that showed a severe ("high") and mild ("low") response to infection. Expression quantitative trait loci mapping was performed on those transcripts that were differentially expressed because of differences in host response phenotype to identify putative regulatory regions potentially controlling their expression. Twenty-one significant expression quantitative trait loci were identified, which allowed direct examination of genes associated with regulation of host response to infection. To perform initial validation of our findings, quantitative polymerase chain reaction was performed in the infected founder strains, and we were able to confirm or partially confirm more than 70% of those tested. In addition, we explored putative causal and reactive (downstream) relationships between the significantly regulated genes and others in the high or low response groups using structural equation modeling. By using systems approaches and a genetically diverse population, we were able to develop a novel framework for identifying the underlying biological subnetworks under host genetic control during influenza virus infection.
Collapse
|
17
|
Ramsay M, Tiemessen CT, Choudhury A, Soodyall H. Africa: the next frontier for human disease gene discovery? Hum Mol Genet 2011; 20:R214-20. [PMID: 21908518 DOI: 10.1093/hmg/ddr401] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The populations of Africa harbour the greatest human genetic diversity following an evolutionary history tracing its beginnings on the continent to time before the emergence of Homo sapiens. Signatures of selection are detectable as responses to ancient environments and cultural practices, modulated by more recent events including infectious epidemics, migrations, admixture and, of course, chance. The age of high-throughput biology is not passing Africa by. African-based cohort studies and networks with an African footprint are ideal springboards for disease-related genetic and genomic studies. Initiatives like HapMap, the 1000 Genomes Project, MalariaGEN, the INDEPTH network and Human Heredity and Health in Africa are catalysts to exploring African genetic diversity and its role in the spectrum from health to disease. The challenges are abundant in dissecting biological questions in the light of linguistic, cultural, geographic and political boundaries and their respective roles in shaping health-related profiles. Will studies based on African populations lead to a new wave of discovery of genetic contributors to disease?
Collapse
Affiliation(s)
- Michèle Ramsay
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand andNational Health Laboratory Service, Johannesburg, South Africa.
| | | | | | | |
Collapse
|