1
|
Kishi T. Clarification of hypertension mechanisms provided by the research of central circulatory regulation. Hypertens Res 2023; 46:1908-1916. [PMID: 37277436 DOI: 10.1038/s41440-023-01335-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
Sympathoexcitation, under the regulatory control of the brain, plays a pivotal role in the etiology of hypertension. Within the brainstem, significant structures involved in the modulation of sympathetic nerve activity include the rostral ventrolateral medulla (RVLM), caudal ventrolateral medulla (CVLM), nucleus tractus solitarius (NTS), and paraventricular nucleus (paraventricular). The RVLM, in particular, is recognized as the vasomotor center. Over the past five decades, fundamental investigations on central circulatory regulation have underscored the involvement of nitric oxide (NO), oxidative stress, the renin-angiotensin system, and brain inflammation in regulating the sympathetic nervous system. Notably, numerous significant findings have come to light through chronic experiments conducted in conscious subjects employing radio-telemetry systems, gene transfer techniques, and knockout methodologies. Our research has centered on elucidating the role of NO and angiotensin II type 1 (AT1) receptor-induced oxidative stress within the RVLM and NTS in regulating the sympathetic nervous system. Additionally, we have observed that various orally administered AT1 receptor blockers effectively induce sympathoinhibition by reducing oxidative stress via blockade of the AT1 receptor in the RVLM of hypertensive rats. Recent advances have witnessed the development of several clinical interventions targeting brain mechanisms. Nonetheless, Future and further basic and clinical research are needed.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Graduate School of Medicine (Cardiology), International University of Health and Welfare, Okawa, Japan.
| |
Collapse
|
2
|
Frimodt-Møller EK, Vittinghoff E, Kaur G, Biering-Sørensen T, Soliman EZ, Marcus GM. Association Between Intensive vs Standard Blood Pressure Control and Incident Left Ventricular Conduction Disease: A Post Hoc Analysis of the SPRINT Randomized Clinical Trial. JAMA Cardiol 2023; 8:612-616. [PMID: 37133829 PMCID: PMC10157506 DOI: 10.1001/jamacardio.2023.0845] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/28/2023] [Indexed: 05/04/2023]
Abstract
Importance Left ventricular conduction disease predicts heart failure and death, and the only strategies to mitigate its effects involve implantation of a permanent pacemaker. There are currently no proven preventive strategies for this common condition. Objective To determine the association between targeting intensive blood pressure (BP) control and the risk of developing left ventricular conduction disease. Design, Setting, and Participants This was a post hoc analysis of the 2-arm multicenter Systolic Blood Pressure Intervention Trial (SPRINT), which recruited participants from 102 sites in the US and Puerto Rico and was conducted from November 2010 until August 2015. Adults 50 years and older with hypertension and at least 1 other cardiovascular risk factor were included. Participants with baseline left ventricular conduction disease, ventricular pacing, or ventricular pre-excitation were excluded for the current analysis. Data were analyzed from November 2021 to November 2022. Intervention Participants were randomly assigned to a systolic BP target of less than 140 mm Hg (standard treatment group) or less than 120 mm Hg (intensive treatment group). Main Outcome The primary outcome was incident left ventricular conduction disease, including any fascicular or left bundle-branch block, assessed by serial electrocardiography. Incident right bundle-branch block was examined as a negative control. Results Among 3918 participants randomized to standard treatment and 3956 to intensive treatment (mean [SD] age, 67.6 [9.2] years; 2815 [36%] female) monitored for a median [IQR] 3.5 (0.02-5.2) years, 203 developed left ventricular conduction disease. Older age (hazard ratio per 10-year increase [HR], 1.42; 95% CI, 1.21-1.67; P < .001), male sex (HR, 2.31; 95% CI, 1.63-3.32; P < .001), and cardiovascular disease (HR, 1.46; 95% CI, 1.06-2.00; P = .02) were associated with a higher risk of left ventricular conduction disease. Assignment to intensive treatment was associated with a 26% lower risk of left ventricular conduction disease (HR, 0.74; 95% CI, 0.56-0.98; P = .04). These results persisted when incident ventricular pacing was included in the outcome and when considering all-cause death as a competing risk. In contrast, no association between randomization assignment and right bundle-branch block was observed (HR, 0.95; 95% CI, 0.71-1.27; P = .75). Conclusions and Relevance In this study, targeting intensive BP control was associated with lower risk of left ventricular conduction disease in a randomized clinical trial, suggesting that clinically relevant conduction disease may be preventable. Trial Registration ClinicalTrials.gov Identifier: NCT01206062.
Collapse
Affiliation(s)
- Emilie K. Frimodt-Møller
- Division of Cardiology, Department of Medicine, University of California San Francisco
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Eric Vittinghoff
- Division of Cardiology, Department of Medicine, University of California San Francisco
| | - Gurbani Kaur
- Division of Cardiology, Department of Medicine, University of California San Francisco
| | - Tor Biering-Sørensen
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elsayed Z. Soliman
- Section of Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Gregory M. Marcus
- Division of Cardiology, Department of Medicine, University of California San Francisco
| |
Collapse
|
3
|
Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 2023; 14:1060666. [PMID: 36798942 PMCID: PMC9926972 DOI: 10.3389/fphys.2023.1060666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The heart is a functional syncytium controlled by a delicate and sophisticated balance ensured by the tight coordination of its several cell subpopulations. Accordingly, cardiomyocytes together with the surrounding microenvironment participate in the heart tissue homeostasis. In the right atrium, the sinoatrial nodal cells regulate the cardiac impulse propagation through cardiomyocytes, thus ensuring the maintenance of the electric network in the heart tissue. Notably, the central nervous system (CNS) modulates the cardiac rhythm through the two limbs of the autonomic nervous system (ANS): the parasympathetic and sympathetic compartments. The autonomic nervous system exerts non-voluntary effects on different peripheral organs. The main neuromodulator of the Sympathetic Nervous System (SNS) is norepinephrine, while the principal neurotransmitter of the Parasympathetic Nervous System (PNS) is acetylcholine. Through these two main neurohormones, the ANS can gradually regulate cardiac, vascular, visceral, and glandular functions by turning on one of its two branches (adrenergic and/or cholinergic), which exert opposite effects on targeted organs. Besides these neuromodulators, the cardiac nervous system is ruled by specific neuropeptides (neurotrophic factors) that help to preserve innervation homeostasis through the myocardial layers (from epicardium to endocardium). Interestingly, the dysregulation of this neuro-signaling pathway may expose the cardiac tissue to severe disorders of different etiology and nature. Specifically, a maladaptive remodeling of the cardiac nervous system may culminate in a progressive loss of neurotrophins, thus leading to severe myocardial denervation, as observed in different cardiometabolic and neurodegenerative diseases (myocardial infarction, heart failure, Alzheimer's disease). This review analyzes the current knowledge on the pathophysiological processes involved in cardiac nervous system impairment from the perspectives of both cardiac disorders and a widely diffused and devastating neurodegenerative disorder, Alzheimer's disease, proposing a relationship between neurodegeneration, loss of neurotrophic factors, and cardiac nervous system impairment. This overview is conducive to a more comprehensive understanding of the process of cardiac neuro-signaling dysfunction, while bringing to light potential therapeutic scenarios to correct or delay the adverse cardiovascular remodeling, thus improving the cardiac prognosis and quality of life in patients with heart or neurodegenerative disorders.
Collapse
|
4
|
Padovani C, Arruda RMDC, Phillips S, Sampaio LMM. Cardiac autonomic activity, endothelial function and physical fitness in type 2 diabetic patients. REVISTA CIÊNCIAS EM SAÚDE 2022. [DOI: 10.21876/rcshci.v12i3.1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Objective: To investigate the association between cardiac autonomic activity, endothelial function, and physical fitness in patients with type 2 diabetes mellitus (T2DM). Methods: Twenty-seven patients with T2DM were studied, with a mean age of 57 ± 9 years and a mean disease duration of 7.4 ± 5 years. The assessment of physical fitness was performed using the Shuttle Walking Test (SWT), cardiac autonomic modulation by heart rate variability (HRV), and endothelial function was assessed by flow-mediated dilation (FMD) of the brachial artery through ultrasound imaging. Results: The main finding of this study was that some HRV indices (SDNN, RMSSD, and HF) were significantly correlated with endothelial function in individuals with T2DM, with R values between 0.51 and 0.57 (p < 0, 05), for all relationships. Additionally, an association was found between the distance covered in the SWT and the basal diameter of the brachial artery (R = 0.59; p = 0.01). Conclusion: Our data demonstrate that some HRV indices are associated with DMF, indicating an interaction between these two systems. Furthermore, our findings suggest a correlation between physical fitness and endothelial function in individuals with T2DM.
Collapse
|
5
|
Emergent players in renovascular disease. Clin Sci (Lond) 2022; 136:239-256. [PMID: 35129198 DOI: 10.1042/cs20210509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
Renovascular disease (RVD) remains a common etiology of secondary hypertension. Recent clinical trials revealed unsatisfactory therapeutic outcomes of renal revascularization, leading to extensive investigation to unravel key pathophysiological mechanisms underlying irreversible functional loss and structural damage in the chronically ischemic kidney. Research studies identified complex interactions among various players, including inflammation, fibrosis, mitochondrial injury, cellular senescence, and microvascular remodeling. This interplay resulted in a shift of our understanding of RVD from a mere hemodynamic disorder to a pro-inflammatory and pro-fibrotic pathology strongly influenced by systemic diseases like metabolic syndrome (MetS), hypertension, diabetes mellitus, and hyperlipidemia. Novel diagnostic approaches have been tested for early detection and follow-up of RVD progression, using new imaging techniques and biochemical markers of renal injury and dysfunction. Therapies targeting some of the pathological pathways governing the development of RVD have shown promising results in animal models, and a few have moved from bench to clinical research. This review summarizes evolving understanding in chronic ischemic kidney injury.
Collapse
|
6
|
Garu A, Nitta E, Yoshida Y, Yata E, Tsunematsu A, Araki T, Nagai A, Yano S. Does overnight duty affect vascular endothelial function? BMC Cardiovasc Disord 2021; 21:467. [PMID: 34579658 PMCID: PMC8474775 DOI: 10.1186/s12872-021-02277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The reactive hyperemia index (RHI), which is obtained from the measurement of peripheral arterial tonometry (PAT), is highly associated with the percentage change in the end-diastolic arterial diameter (%flow-mediated dilatation) at reactive hyperemia. Low RHI is reported to be a mortality risk in patients with a high risk of cardiovascular (CV) disease. CV events are thought to be induced by physical and mental stress, including long-term fatigue and lack of sleep. However, the relationship between fatigue, lack of sleep, and endothelial function has not yet been established. METHODS Healthy hospital workers (n = 13, 6 men and 7 women) with an average age of 31.6 years were assigned to this study after they provided written informed consent. During the study period, we conducted 72 measurements of reactive hyperemia-peripheral arterial tonometry (RH-PAT) in the morning before or after their duty. At each measurement of the RH-PAT, we recorded the participants' hours of sleep and evaluated their degree of fatigue using a visual analog scale (VAS). RESULTS Although the VAS was significantly less (36 ± 16% and 64 ± 12%, p < 0.001) and the hours of sleep were longer (6.0 ± 1.1 h and 2.3 ± 1.0 h, p < 0.001) before duty compared to those after duty, the RHI was comparable between them (2.12 ± 0.53 vs. 1.97 ± 0.50, p = 0.21). The VAS score was significantly higher in participants with low RHI (< 1.67) than in those with normal RHI (≥ 2.07) (59 ± 13% and 46 ± 21%, respectively, p < 0.05). However, binary logistic regression showed no significant association between low RHI and the VAS when adjusted for systemic blood pressure (SBP) and heart rate variability (HRV). In a simple regression analysis, the RHI was significantly correlated with the VAS score but not with sleep duration. A multiple linear regression analysis also showed no significant association between the RHI and VAS scores after adjustment for SBP and HRV. CONCLUSIONS Vascular endothelial function was not associated with overnight duty, hours of sleep, or degree of fatigue in healthy young adults. Since the RHI may be decreased in severe fatigue conditions through autonomic nerve activity, one should consider the physical and mental conditions of the examinee when evaluating the RH-PAT results.
Collapse
Affiliation(s)
- A Garu
- Department of Neurology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Eri Nitta
- Department of Clinical Laboratory Medicine, Shimane University Hospital, Shimane, Japan
| | - Yuri Yoshida
- Department of Clinical Laboratory Medicine, Shimane University Hospital, Shimane, Japan
| | - Erika Yata
- Department of Clinical Laboratory Medicine, Shimane University Hospital, Shimane, Japan
| | - Akari Tsunematsu
- Department of Clinical Laboratory Medicine, Shimane University Hospital, Shimane, Japan
| | - Tsuyoshi Araki
- Department of Clinical Laboratory Medicine, Shimane University Hospital, Shimane, Japan
| | - Atsushi Nagai
- Department of Neurology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Shozo Yano
- Department of Clinical Laboratory Medicine, Shimane University Hospital, Shimane, Japan. .,Department of Laboratory Medicine, Faculty of Medicine, Shimane University, Shimane, Japan.
| |
Collapse
|
7
|
Wen S, Nguyen T, Gong M, Yuan X, Wang C, Jin J, Zhou L. An Overview of Similarities and Differences in Metabolic Actions and Effects of Central Nervous System Between Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs) and Sodium Glucose Co-Transporter-2 Inhibitors (SGLT-2is). Diabetes Metab Syndr Obes 2021; 14:2955-2972. [PMID: 34234493 PMCID: PMC8254548 DOI: 10.2147/dmso.s312527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
GLP-1 receptor agonists (GLP-1RAs) and SGLT-2 inhibitors (SGLT-2is) are novel antidiabetic medications associated with considerable cardiovascular benefits therapying treatment of diabetic patients. GLP-1 exhibits atherosclerosis resistance, whereas SGLT-2i acts to ameliorate the neuroendocrine state in the patients with chronic heart failure. Despite their distinct modes of action, both factors share pathways by regulating the central nervous system (CNS). While numerous preclinical and clinical studies have demonstrated that GLP-1 can access various nuclei associated with energy homeostasis and hedonic eating in the CNS via blood-brain barrier (BBB), research on the activity of SGLT-2is remains limited. In our previous studies, we demonstrated that both GLP-1 receptor agonists (GLP-1RAs) liraglutide and exenatide, as well as an SGLT-2i, dapagliflozin, could activate various nuclei and pathways in the CNS of Sprague Dawley (SD) rats and C57BL/6 mice, respectively. Moreover, our results revealed similarities and differences in neural pathways, which possibly regulated different metabolic effects of GLP-1RA and SGLT-2i via sympathetic and parasympathetic systems in the CNS, such as feeding, blood glucose regulation and cardiovascular activities (arterial blood pressure and heart rate control). In the present article, we extensively discuss recent preclinical studies on the effects of GLP-1RAs and SGLT-2is on the CNS actions, with the aim of providing a theoretical explanation on their mechanism of action in improvement of the macro-cardiovascular risk and reducing incidence of diabetic complications. Overall, these findings are expected to guide future drug design approaches.
Collapse
Affiliation(s)
- Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Thiquynhnga Nguyen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Min Gong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Jianlan Jin
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of ChinaTel +8613611927616 Email
| |
Collapse
|
8
|
Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids 2020; 163:108701. [PMID: 32717198 DOI: 10.1016/j.steroids.2020.108701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a specific hormonal cascade implicated in the blood pressure control and sodium balance regulation. Several components of this pathway have been identified including renin, angiotensinogen, angiotensin-converting enzyme, angiotensins with a wide range of distinct subtypes and receptors, and aldosterone. The RAAS is not only confined to the systemic circulation but also exists locally in specific tissues such as the heart, brain, and blood vessels with a particular paracrine action. Alteration of RAAS function can contribute to the development of hypertension and the emergence of its associated end-organ damage. Genotypic variations of the different genes of RAAS cascade have been linked to the susceptibility to essential hypertension. Accordingly, to understand the pathogenesis of essential hypertension and its related complications, deep insight into the physiological and genetic aspects of RAAS with its different components and pathways is necessary. In this review, we aimed to illustrate the physiological and genetic aspects of RAAS and the underlying mechanisms which link this system to the predisposition to essential hypertension.
Collapse
|
9
|
Impaired cardiorespiratory coupling in young normotensives with a family history of hypertension. J Hypertens 2018; 36:2157-2167. [DOI: 10.1097/hjh.0000000000001795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Role of cannabinoid receptor type 1 in rostral ventrolateral medulla in high-fat diet-induced hypertension in rats. J Hypertens 2018; 36:801-808. [PMID: 29493561 DOI: 10.1097/hjh.0000000000001621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Stimulation of cannabinoid type 1 (CB1) receptor in the rostral ventrolateral medulla (RVLM) increases renal sympathetic activity (RSNA) and blood pressure (BP) in rats. Thus, we hypothesized that CB1 receptor in the RVLM may play a critical role in the development of obesity-induced hypertension. METHODS To this end, we evaluated the levels of endocannabinoids and CB1 receptors in the RVLM in high-fat diet (HFD)-induced hypertensive rats. We then used pharmacological and molecular methods to examine the role of RVLM CB1 receptors in regulation of BP, heart rate (HR), and RSNA in obesity-induced hypertensive rats. RESULTS We found that HFD-fed rats exhibited higher basal BP, HR, and RSNA than standard diet-fed rats, which were associated with increased levels of endocannabinoids and CB1 receptor expression in the RVLM. Furthermore, unilateral intra-RVLM microinjections of AM251 (0, 100, or 500 nM/0.5 μl/site) dose-dependently decreased BP, HR, and RSNA to a greater extent in HFD-fed rats than in standard diet-fed rats. Finally, siRNA-mediated knockdown of CB1 receptor expression in the RVLM robustly decreased BP, HR, and RSNA in HFD-fed rats. CONCLUSION Taken together, our results suggested that enhanced CB1 receptor-mediated neurotransmissions in the RVLM may play a role in the development of obesity-induced hypertension.
Collapse
|
11
|
Haspula D, Clark MA. Neuroinflammation and sympathetic overactivity: Mechanisms and implications in hypertension. Auton Neurosci 2018; 210:10-17. [DOI: 10.1016/j.autneu.2018.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
|
12
|
Overactivation of cannabinoid receptor type 1 in rostral ventrolateral medulla promotes cardiovascular responses in spontaneously hypertensive rats. J Hypertens 2017; 35:538-545. [PMID: 27861247 DOI: 10.1097/hjh.0000000000001179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Stimulation of cannabinoid type 1 (CB1) receptor in the rostral ventrolateral medulla (RVLM) increases renal sympathetic nerve activity (RSNA) and blood pressure (BP) in rats. Thus, we hypothesized that abnormal expression of CB1 receptor in the RVLM may play a critical role in the pathogenesis of essential hypertension. METHODS We evaluated the effects of intra-RVLM infusions of arachidonyl-2'-chloroethylamide (ACEA), selective CB1 receptor agonist, with or without AM251, selective CB1 receptor antagonist, on BP, heart rate (HR), and RSNA in spontaneously hypertensive rats and wild-type rats. We also assessed the protein level and surface expression of CB1 receptor in the RVLM in these rats. RESULTS We found that spontaneously hypertensive rats exhibited higher basal BP, HR, and RSNA than wild-type rats. Furthermore, unilateral intra-RVLM microinjections ACEA (0, 10, or 100 nM/0.5 μl/site) increased BP, HR, and RSNA to a greater extent in spontaneously hypertensive rats than in wild-type rats. These effects were abolished by co-administrations of AM251 (500 nM/0.5 μl/site) into the RVLM. In addition, the protein level of CB1 receptor in the RVLM was robustly increased in spontaneously hypertensive rats, which is correlated with ACEA-induced maximum changes of RSNA, and this was also associated with reduced expression of β-arrestin 2 in the RVLM in spontaneously hypertensive rats. Finally, overexpression of β-arrestin 2 in the RVLM in spontaneously hypertensive rats attenuated BP, HR and RSNA. CONCLUSION Taken together, our results suggested that alterations of CB1 receptor desensitization in the RVLM may play a role in the pathogenesis of essential hypertension.
Collapse
|
13
|
Yu B, Cai D. Neural Programmatic Role of Leptin, TNFα, Melanocortin, and Glutamate in Blood Pressure Regulation vs Obesity-Related Hypertension in Male C57BL/6 Mice. Endocrinology 2017; 158:1766-1775. [PMID: 28419227 PMCID: PMC5460935 DOI: 10.1210/en.2016-1872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
Abstract
Continuous nutritional surplus sets the stage for hypertension development. Whereas moderate dietary obesity in mice is normotensive, the homeostatic balance is disrupted concurrent with an increased risk of hypertension. However, it remains unclear how the obesity-associated prehypertensive state is converted into overt hypertension. Here, using mice with high-fat-diet (HFD)-induced moderate obesity vs control diet (CD)-fed lean mice, we comparatively studied the effects of central leptin and tumor necrosis factor-α (TNFα) as well as the involvement of the neuropeptide melanocortin pathway vs the neurotransmitter glutamate pathway. Compared with CD-fed lean mice, the pressor effect of central excess leptin and TNFα, but not melanocortin, was sensitized in HFD-fed mice. The pressor effect of central leptin in HFD-fed mice was strongly suppressed by glutamatergic inhibition but not by melanocortinergic inhibition. The pressor effect of central TNFα was substantially reversed by melanocortinergic inhibition in HFD-fed mice but barely in CD-fed mice. Regardless of diet, the hypertensive effects of central TNFα and melanocortin were both partially reversed by glutamatergic suppression. Hence, neural control of blood pressure is mediated by a signaling network between leptin, TNFα, melanocortin, and glutamate and changes in dynamics due to central excess leptin and TNFα mediate the switch from normal physiology to obesity-related hypertension.
Collapse
Affiliation(s)
- Bin Yu
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
14
|
Alé A, Zhang Y, Han C, Cai D. Obesity-associated extracellular mtDNA activates central TGFβ pathway to cause blood pressure increase. Am J Physiol Endocrinol Metab 2017; 312:E161-E174. [PMID: 27894066 PMCID: PMC5374298 DOI: 10.1152/ajpendo.00337.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/25/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023]
Abstract
Hypothalamic inflammation was recently found to mediate obesity-related hypertension, but the responsible upstream mediators remain unexplored. In this study, we show that dietary obesity is associated with extracellular release of mitochondrial DNA (mtDNA) into the cerebrospinal fluid and that central delivery of mtDNA mimics transforming growth factor-β (TGFβ) excess to activate downstream signaling pathways. Physiological study reveals that central administration of mtDNA or TGFβ is sufficient to cause hypertension in mice. Knockout of the TGFβ receptor in proopiomelanocortin neurons counteracts the hypertensive effect of not only TGFβ but also mtDNA excess, while the hypertensive action of central mtDNA can be blocked pharmacologically by a TGFβ receptor antagonist or genetically by TGFβ receptor knockout. Finally, we confirm that obesity-induced hypertension can be reversed through central treatment with TGFβ receptor antagonist. In conclusion, circulating mtDNA in the brain employs neural TGFβ pathway to mediate a central inflammatory mechanism of obesity-related hypertension.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- Blood Pressure/immunology
- Blotting, Western
- DNA, Mitochondrial/cerebrospinal fluid
- DNA, Mitochondrial/immunology
- DNA, Mitochondrial/metabolism
- DNA, Mitochondrial/pharmacology
- Diet, High-Fat
- Dioxoles/pharmacology
- Hypertension/etiology
- Hypertension/immunology
- Hypothalamus/immunology
- Hypothalamus/metabolism
- Male
- Mice
- Mice, Knockout
- Neurons/immunology
- Neurons/metabolism
- Obesity/complications
- Obesity/immunology
- Pro-Opiomelanocortin/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/immunology
- Third Ventricle
- Transforming Growth Factor beta/immunology
- Transforming Growth Factor beta1/pharmacology
Collapse
Affiliation(s)
- Albert Alé
- Department of Molecular Pharmacology, Diabetes Research Center, and Institute for Aging Research, Albert Einstein College of Medicine, New York, New York
| | - Yalin Zhang
- Department of Molecular Pharmacology, Diabetes Research Center, and Institute for Aging Research, Albert Einstein College of Medicine, New York, New York
| | - Cheng Han
- Department of Molecular Pharmacology, Diabetes Research Center, and Institute for Aging Research, Albert Einstein College of Medicine, New York, New York
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, and Institute for Aging Research, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
15
|
Jiang F, Li H, Zhu F, Zeng L, Wang X, Wang X, Shen Z, Yang K, Zhang Z. Investigation of the mechanism underlying the antihypertensive effect of catheter-based radiofrequency renal sympathetic denervation in hypertensive dogs. Biomed Rep 2014; 3:254-260. [PMID: 26075079 DOI: 10.3892/br.2014.410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/16/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to assess the antihypertensive efficacy and safety of catheter-based radiofrequency renal sympathetic denervation (RSD) in hypertensive dogs. Furthermore, the study investigated the possible antihypertensive mechanism of radiofrequency RSD through measuring the postoperative serum concentrations of angiotensin II (AngII), nicotinamide adenine dinucleotide phosphate oxidase (NADPH-ox), malondialdehyde (MDA), nitric oxide (NO) and endothelial NO synthase (eNOS). A total of 12 beagles were randomly divided into the surgery (n=6) and the sham-surgery groups (n=6). The hypertension model was established using a high-fat diet. The surgery group received catheter-based radiofrequency RSD, while the sham-surgery group only received renal arteriography. Blood pressure was measured prior to the surgery and 3 days, 1 and 2 weeks, and 1, 2 and 3 months after the surgery. The serum concentrations of AngII, NADPH-ox, MDA, NO and eNOS were measured prior to the surgery and 1 week, and 1 and 3 months after the surgery. Following the establishment of the model, the systolic arterial pressure (SAP), diastolic arterial pressure (DAP) and mean arterial pressure (MAP) of the surgery and the sham-surgery groups were all significantly increased above the baseline (P<0.05), but there was no significant difference between the two groups. SAP, DAP and MAP in the surgery group at 1 and 3 months after the surgery were significantly decreased compared to the levels measured prior to the surgery and those in the sham-surgery group (P<0.05). Three months after the surgery, the serum creatinine level was normal and renal arteriography did not show renal artery stenosis. Compared to those measured prior to the surgery, the concentrations of serum AngII, NADPH-ox and MDA in the surgery group at 1 week, and 1 and 3 months after the surgery were decreased, while the concentrations of serum NO and eNOS were increased (P<0.05). The above indicators measured at the same time points demonstrated statistically significant differences between the surgery and the sham-surgery groups (P<0.05). In conclusion, catheter-based radiofrequency RSD may inhibit the renin-angiotensin system and the oxidative stress response, as well as improve vascular endothelial function, thus significantly reducing blood pressure through the reduction of sympathetic activity in hypertensive dogs.
Collapse
Affiliation(s)
- Fenglin Jiang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hui Li
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Fuying Zhu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Lixiong Zeng
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaoyan Wang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xinguo Wang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhijie Shen
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Kan Yang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhihui Zhang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
16
|
Charkoudian N, Wallin BG. Sympathetic neural activity to the cardiovascular system: integrator of systemic physiology and interindividual characteristics. Compr Physiol 2014; 4:825-50. [PMID: 24715570 DOI: 10.1002/cphy.c130038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The sympathetic nervous system is a ubiquitous, integrating controller of myriad physiological functions. In the present article, we review the physiology of sympathetic neural control of cardiovascular function with a focus on integrative mechanisms in humans. Direct measurement of sympathetic neural activity (SNA) in humans can be accomplished using microneurography, most commonly performed in the peroneal (fibular) nerve. In humans, muscle SNA (MSNA) is composed of vasoconstrictor fibers; its best-recognized characteristic is its participation in transient, moment-to-moment control of arterial blood pressure via the arterial baroreflex. This property of MSNA contributes to its typical "bursting" pattern which is strongly linked to the cardiac cycle. Recent evidence suggests that sympathetic neural mechanisms and the baroreflex have important roles in the long term control of blood pressure as well. One of the striking characteristics of MSNA is its large interindividual variability. However, in young, normotensive humans, higher MSNA is not linked to higher blood pressure due to balancing influences of other cardiovascular variables. In men, an inverse relationship between MSNA and cardiac output is a major factor in this balance, whereas in women, beta-adrenergic vasodilation offsets the vasoconstrictor/pressor effects of higher MSNA. As people get older (and in people with hypertension) higher MSNA is more likely to be linked to higher blood pressure. Skin SNA (SSNA) can also be measured in humans, although interpretation of SSNA signals is complicated by multiple types of neurons involved (vasoconstrictor, vasodilator, sudomotor and pilomotor). In addition to blood pressure regulation, the sympathetic nervous system contributes to cardiovascular regulation during numerous other reflexes, including those involved in exercise, thermoregulation, chemoreflex regulation, and responses to mental stress.
Collapse
Affiliation(s)
- N Charkoudian
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | |
Collapse
|
17
|
Vemulapalli S, Tyson CC, Svetkey LP. Apparent treatment-resistant hypertension and chronic kidney disease: another cardiovascular-renal syndrome? Adv Chronic Kidney Dis 2014; 21:489-99. [PMID: 25443574 DOI: 10.1053/j.ackd.2014.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 12/21/2022]
Abstract
To identify patients at increased risk of cardiovascular (CV) outcomes, apparent treatment-resistant hypertension (aTRH) is defined as having a blood pressure above goal despite the use of 3 or more antihypertensive therapies of different classes at maximally tolerated doses, ideally including a diuretic. Recent epidemiologic studies in selected populations estimated the prevalence of aTRH as 10% to 15% among patients with hypertension and that aTRH is associated with elevated risk of CV and renal outcomes. Additionally, aTRH and CKD are associated. Although the pathogenesis of aTRH is multifactorial, the kidney is believed to play a significant role. Increased volume expansion, aldosterone concentration, mineralocorticoid receptor activity, arterial stiffness, and sympathetic nervous system activity are central to the pathogenesis of aTRH and are targets of therapies. Although diuretics form the basis of therapy in aTRH, pathophysiologic and clinical data suggest an important role for aldosterone antagonism. Interventional techniques, such as renal denervation and carotid baroreceptor activation, modulate the sympathetic nervous system and are currently in phase III trials for the treatment of aTRH. These technologies are as yet unproven and have not been investigated in relationship to CV outcomes or in patients with CKD.
Collapse
|
18
|
Wu D, He L, Chen L. Apelin/APJ system: a promising therapy target for hypertension. Mol Biol Rep 2014; 41:6691-703. [DOI: 10.1007/s11033-014-3552-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
|
19
|
Kishi T. Regulation of the sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 Academic Conference Award from the Japanese Society of Hypertension. Hypertens Res 2013; 36:845-51. [DOI: 10.1038/hr.2013.73] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/26/2013] [Indexed: 02/07/2023]
|
20
|
|
21
|
Kishi T, Hirooka Y. Oxidative stress in the brain causes hypertension via sympathoexcitation. Front Physiol 2012; 3:335. [PMID: 22934082 PMCID: PMC3429101 DOI: 10.3389/fphys.2012.00335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/30/2012] [Indexed: 12/31/2022] Open
Abstract
Activation of the sympathetic nervous system (SNS) has an important role in the pathogenesis of hypertension, and is determined by the brain. Previous many studies have demonstrated that oxidative stress, mainly produced by angiotensin II type 1 (AT(1)) receptor and nicotinamide adenine dinucleotide phosphate (NAD (P) H) oxidase, in the autonomic brain regions was involved in the activation of the SNS of hypertension. In this concept, we have investigated the role of oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as the cardiovascular center in the brainstem, in the activation of the SNS, and demonstrated that AT(1) receptor and NAD (P) H oxidase-induced oxidative stress in the RVLM causes sympathoexcitation in hypertensive rats. The mechanisms in which brain oxidative stress causes sympathoexcitation have been investigated, such as the interactions with nitric oxide (NO), effects on the signal transduction, or inflammations. Interestingly, the environmental factors of high salt intake and high calorie diet may also increase the oxidative stress in the brain, particularly in the RVLM, thereby activating the central sympathetic outflow and increasing the risk of hypertension. Furthermore, several orally administered AT(1) receptor blockers have been found to cause sympathoinhibition via reduction of oxidative stress through the inhibition of central AT(1) receptor. In conclusion, we must consider that AT(1) receptor and the related oxidative stress production in the brain cause the activation of SNS in hypertension, and that AT(1) receptor in the brain could be novel therapeutic target of the treatments for hypertension.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences Fukuoka, Japan
| | | |
Collapse
|
22
|
Pinter A, Horvath T, Sarkozi A, Kollai M. Relationship between heart rate variability and endothelial function in healthy subjects. Auton Neurosci 2012; 169:107-12. [PMID: 22749462 DOI: 10.1016/j.autneu.2012.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
In various diseased states reduced cardiac vagal activity is accompanied by impaired endothelial function. Evidence from animal studies indicates interaction between the two systems, but such data from human studies is limited. The aim of this study was to test the hypothesis that cardiac vagal activity and endothelial function are related in healthy individuals. 46 young males were studied. From 10 minute long ECG recordings mean RR-interval and time and frequency domain vagal heart rate variability indices (RMSSD; pNN50 and HF, respectively) were determined. Heart rate variability indices were used to define cardiac vagal activity. Endothelial function was assessed by measuring brachial artery flow mediated dilation. Hyperemic, diastolic shear rate was used to normalize flow mediated dilation. All three vagal heart rate variability indices correlated significantly and positively with flow mediated dilation across subjects, with r values within the range of 0.43-0.52, p<0.01 for all relations. After adjusting for potential confounders, vagal heart rate variability indices remained significantly associated with normalized flow mediated dilation. RR-interval was related to most heart rate variability indices, but was not related to flow mediated dilation. Our data demonstrate that vagal heart rate variability indices are related to flow mediated dilation across healthy male subjects. The results cannot serve as evidence of a causal relationship, but are of interest and render for further investigation into underlying mechanisms.
Collapse
Affiliation(s)
- Alexandra Pinter
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
23
|
Abstract
The heart is electrically and mechanically controlled as a syncytium by the autonomic nervous system. The cardiac nervous system comprises the sympathetic, parasympathetic, and sensory nervous systems that together regulate heart function on demand. Sympathetic electric activation was initially considered the main regulator of cardiac function; however, modern molecular biotechnological approaches have provided a new dimension to our understanding of the mechanisms controlling the cardiac nervous system. The heart is extensively innervated, although the innervation density is not uniform within the heart, being high in the subepicardium and the special conduction system. We and others showed previously that the balance between neural chemoattractants and chemorepellents determine cardiac nervous development, with both factors expressed in heart. Nerve growth factor is a potent chemoattractant synthesized by cardiomyocytes, whereas Sema3a is a neural chemorepellent expressed specifically in the subendocardium. Disruption of this well-organized molecular balance and innervation density can induce sudden cardiac death due to lethal arrhythmias. In diseased hearts, various causes and mechanisms underlie cardiac sympathetic abnormalities, although their detailed pathology and significance remain contentious. We reported that cardiac sympathetic rejuvenation occurs in cardiac hypertrophy and, moreover, interleukin-6 cytokines secreted from the failing myocardium induce cholinergic transdifferentiation of the cardiac sympathetic system via a gp130 signaling pathway, affecting cardiac performance and prognosis. In this review, we summarize the molecular mechanisms involved in sympathetic development, maturation, and transdifferentiation, and propose their investigation as new therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Kensuke Kimura
- Division of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
24
|
Lazaroni TL, Raslan ACS, Fontes WR, de Oliveira ML, Bader M, Alenina N, Moraes MF, dos Santos RA, Pereira GS. Angiotensin-(1–7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol Learn Mem 2012; 97:113-23. [DOI: 10.1016/j.nlm.2011.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 09/28/2011] [Accepted: 10/17/2011] [Indexed: 12/22/2022]
|
25
|
Subramanian M, Balasubramanian P, Garver H, Northcott C, Zhao H, Haywood JR, Fink GD, MohanKumar SMJ, MohanKumar PS. Chronic estradiol-17β exposure increases superoxide production in the rostral ventrolateral medulla and causes hypertension: reversal by resveratrol. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1560-8. [PMID: 21411770 DOI: 10.1152/ajpregu.00020.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Women are exposed to estrogen in several forms, such as oral contraceptive pills and hormone replacement therapy. Although estrogen was believed to be cardioprotective, lately, its beneficial effects are being questioned. Recent studies indicate that oxidative stress in the rostral ventrolateral medulla (RVLM) may play a role in the development of hypertension. Therefore, we hypothesized that chronic exposure to low levels of estradiol-17β (E(2)) leads to hypertension in adult-cycling female Sprague Dawley (SD) rats potentially through generation of superoxide in the RVLM. To test this hypothesis, young adult (3 or 4 mo old) female SD rats were either sham-implanted or implanted (subcutaneously) with slow-release E(2) pellets (20 ng/day) for 90 days. A group of control and E(2)-treated animals were fed lab chow or chow containing resveratrol (0.84 g/kg of chow), an antioxidant. Rats were implanted with telemeters to continuously monitor blood pressure (BP) and heart rate (HR). At the end of treatment, the RVLM was isolated for measurements of superoxide. E(2) treatment significantly increased mean arterial pressure (mmHg) and HR (beats/min) compared with sham rats (119.6 ± 0.8 vs. 105.1 ± 0.7 mmHg and 371.7 ± 1.5 vs. 354.4 ± 1.3 beats/min, respectively; P < 0.0001). Diastolic and systolic BP were significantly increased in E(2)-treated rats compared with control animals. Superoxide levels in the RVLM increased significantly in the E(2)-treated group (0.833 ± 0.11 nmol/min·mg) compared with control (0.532 ± 0.04 nmol/min·mg; P < 0.05). Treatment with resveratrol reversed the E(2)-induced increases in BP and superoxide levels in the RVLM. In conclusion, these findings support the hypothesis that chronic exposure to low levels of E(2) induces hypertension and increases superoxide levels in the RVLM and that this effect can be reversed by resveratrol treatment.
Collapse
Affiliation(s)
- Madhan Subramanian
- Department of Pathobiology and Diagnostic Investigation, Colleges of Veterinary, Osteopathic and Human Medicine, Michigan State University, East Lansing, 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Oxidative stress in the cardiovascular center has a pivotal role in the sympathetic activation in hypertension. Hypertens Res 2011; 34:407-12. [PMID: 21346766 DOI: 10.1038/hr.2011.14] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the sympathetic nervous system has an important role in the pathogenesis of hypertension. However, the precise mechanisms involved are not fully understood. Oxidative stress may be important in hypertension as well as in other cardiovascular disorders. We investigated the role of oxidative stress, particularly in the rostral ventrolateral medulla (RVLM), which is known as the cardiovascular center in the brainstem, in the activation of the sympathetic nervous system in hypertension. We observed that the reactive oxygen species (ROS) production increases in the RVLM in hypertensive rats, thereby enhancing the central sympathetic outflow, which leads to hypertension. Furthermore, the environmental factors of high salt intake and a high-calorie diet may also increase the ROS production in the RVLM, thereby activating the central sympathetic outflow and increasing the risk of hypertension. The activation of the nicotinamide adenine dinucleotide phosphate oxidase via the angiotensin type 1 (AT1) receptors is suggested to be the major source of ROS production, and an altered downstream signaling pathway is involved in the activation of the RVLM neurons, leading to enhanced central sympathetic outflow and hypertension. Thus, the brain AT1 receptors may be novel therapeutic targets, and, in fact, oral treatment with angiotensin receptor blockers has been found to inhibit the central AT1 receptors, despite the blood-brain barrier.
Collapse
|
27
|
Zimmerman MC. Angiotensin II and angiotensin-1-7 redox signaling in the central nervous system. Curr Opin Pharmacol 2011; 11:138-43. [PMID: 21257347 DOI: 10.1016/j.coph.2011.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are important intra-neuronal signaling intermediates in angiotensin II (AngII)-related neuro-cardiovascular diseases associated with excessive sympathoexcitation, including hypertension and heart failure. ROS-sensitive effector mechanisms, such as modulation of ion channel activity, indicate that elevated levels of ROS increase neuronal activity. Nitric oxide, which may work to counter the effects of ROS, particularly superoxide, has been identified as a signaling molecule in angiotensin-1-7 (Ang-(1-7)) stimulated neurons. This review focuses on recent studies that have revealed details on the AngII-activated sources of ROS, the downstream redox-sensitive effectors, Ang-(1-7)-stimulated increase in nitric oxide, and the neuro-cardiovascular (patho)physiological responses modulated by these reactive species. Understanding these intra-neuronal signaling mechanisms should provide insight for the development of new redox-based therapeutics for the improved treatment of angiotensin-dependent neuro-cardiovascular diseases.
Collapse
Affiliation(s)
- Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
28
|
Nagasu H, Satoh M, Kuwabara A, Yorimitsu D, Sakuta T, Tomita N, Kashihara N. Renal denervation reduces glomerular injury by suppressing NAD(P)H oxidase activity in Dahl salt-sensitive rats. Nephrol Dial Transplant 2010; 25:2889-98. [DOI: 10.1093/ndt/gfq139] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
29
|
Hilzendeger AM, Goncalves ACDC, Plehm R, Diedrich A, Gross V, Pesquero JB, Bader M. Autonomic dysregulation in ob/ob mice is improved by inhibition of angiotensin-converting enzyme. J Mol Med (Berl) 2009; 88:383-90. [PMID: 20012594 DOI: 10.1007/s00109-009-0569-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/12/2009] [Accepted: 11/23/2009] [Indexed: 01/29/2023]
Abstract
The leptin-deficient ob/ob mice are insulin resistant and obese. However, the control of blood pressure in this model is not well defined. The goal of this study was to evaluate the role of leptin and of the renin-angiotensin system in the cardiovascular abnormalities observed in obesity using a model lacking leptin. To this purpose, we measured blood pressure in ob/ob and control animals by radiotelemetry combined with fast Fourier transformation before and after both leptin and enalapril treatment. Autonomic function was assessed pharmacologically. Blood pressure during daytime was slightly higher in the ob/ob compared to control mice, while no difference in heart rate was observed. Blood pressure response to trimetaphane and heart rate response to metoprolol were greater in ob/ob mice than in control littermates indicating an activated sympathetic nervous system. Heart rate response to atropine was attenuated. Baroreflex sensitivity and heart rate variability were blunted in ob/ob mice, while low frequency of systolic blood pressure variability was found increased. Chronic leptin replacement reduced blood pressure and reversed the impaired autonomic function observed in ob/ob mice. Inhibition of angiotensin-converting enzyme by enalapril treatment had similar effects, prior to the loss of weight. These findings suggest that the renin-angiotensin system is involved in the autonomic dysfunction caused by the lack of leptin in ob/ob mice and support a role of this interplay in the pathogenesis of obesity, hypertension, and metabolic syndrome.
Collapse
Affiliation(s)
- Aline M Hilzendeger
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Bourassa EA, Sved AF, Speth RC. Anteroposterior distribution of AT(1) angiotensin receptors in caudal brainstem cardiovascular regulatory centers of the rat. Brain Res 2009; 1306:69-76. [PMID: 19835848 DOI: 10.1016/j.brainres.2009.09.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 09/26/2009] [Accepted: 09/30/2009] [Indexed: 02/07/2023]
Abstract
Angiotensin II acts on Ang II type 1 (AT(1)) receptors in areas of the caudal brainstem involved in cardiovascular regulation. In particular, activation of AT(1) receptors in the rostral ventrolateral medulla (RVLM) has been suggested to contribute to hypertension. However, the characteristics of AT(1) receptors in the RVLM of rat, the species in which the most experimental work has been done, are not well documented. This study evaluated AT(1) receptor binding along a 2.7-mm length of rat medulla, which included the full extent of the RVLM and the caudal ventrolateral medulla (CVLM). Sections of medulla from female rats cut on a cryostat were incubated with five concentrations of (125)I-sarcosine(1), isoleucine(8) angiotensin II to assess the density (B(max)) and dissociation constant (K(D)) of the receptors for the radioligand. The dorsomedial medulla (DMM) displayed a high density of AT(1) binding (1207+/-100 fmol/g), which peaked at 0.4 mm rostral to the calamus scriptorius (approximately 14 mm caudal to Bregma). The RVLM and CVLM displayed significantly lower (p<0.01) densities of AT(1) binding, 278+/-38 and 379+/-64 fmol/g, respectively. However, the dissociation constants were significantly lower (i.e., higher affinity) in RVLM and CVLM (164+/-38 and 178+/-27 pM, respectively,) than in DMM (328+/-12 pM, p<0.01 and p<0.05, respectively). These results provide an anatomical and pharmacological framework for future studies on the role in cardiovascular regulation of AT(1) receptors in the caudal brainstem.
Collapse
Affiliation(s)
- Erick A Bourassa
- Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | | |
Collapse
|