1
|
Colinet M, Chiver I, Bonafina A, Masset G, Almansa D, Di Valentin E, Twizere JC, Nguyen L, Espuny-Camacho I. SARS-CoV2 infection triggers inflammatory conditions and astrogliosis-related gene expression in long-term human cortical organoids. Stem Cells 2025; 43:sxaf010. [PMID: 40103011 PMCID: PMC12121356 DOI: 10.1093/stmcls/sxaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
SARS-CoV2, severe acute respiratory syndrome coronavirus 2, is frequently associated with neurological manifestations. Despite the presence of mild to severe CNS-related symptoms in a cohort of patients, there is no consensus whether the virus can infect directly brain tissue or if the symptoms in patients are a consequence of peripheral infectivity of the virus. Here, we use long-term human stem cell-derived cortical organoids to assess SARS-CoV2 infectivity of brain cells and unravel the cell-type tropism and its downstream pathological effects. Our results show consistent and reproducible low levels of SARS-CoV2 infection of astrocytes, deep projection neurons, upper callosal neurons, and inhibitory neurons in 6 months of human cortical organoids. Interestingly, astrocytes showed the highest infection rate among all infected cell populations which led to changes in their morphology and upregulation of SERPINA3, CD44, and S100A10 astrogliosis markers. Further, transcriptomic analysis revealed overall changes in expression of genes related to cell metabolism, astrogliosis and, inflammation and further, upregulation of cell survival pathways. Thus, local and minor infectivity of SARS-CoV2 in the brain may induce widespread adverse effects and lead to the resilience of dysregulated neurons and astrocytes within an inflammatory environment.
Collapse
Affiliation(s)
- Mathilde Colinet
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Ioana Chiver
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Antonela Bonafina
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Gérald Masset
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Daniel Almansa
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Emmanuel Di Valentin
- GIGA Viral Vector Platform, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
- WELBIO Department, WEL Research Institute, Wavre 1300, Belgium
| | - Ira Espuny-Camacho
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, Liège 4000, Belgium
- GIGA HIPS, GIGA Institute, University of Liège, Liège 4000, Belgium
| |
Collapse
|
2
|
Trueblood CT, Singh A, Cusimano MA, Hou S. Autonomic Dysreflexia in Spinal Cord Injury: Mechanisms and Prospective Therapeutic Targets. Neuroscientist 2024; 30:597-611. [PMID: 38084412 PMCID: PMC11166887 DOI: 10.1177/10738584231217455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
High-level spinal cord injury (SCI) often results in cardiovascular dysfunction, especially the development of autonomic dysreflexia. This disorder, characterized as an episode of hypertension accompanied by bradycardia in response to visceral or somatic stimuli, causes substantial discomfort and potentially life-threatening symptoms. The neural mechanisms underlying this dysautonomia include a loss of supraspinal control to spinal sympathetic neurons, maladaptive plasticity of sensory inputs and propriospinal interneurons, and excessive discharge of sympathetic preganglionic neurons. While neural control of cardiovascular function is largely disrupted after SCI, the renin-angiotensin system (RAS), which mediates blood pressure through hormonal mechanisms, is up-regulated after injury. Whether the RAS engages in autonomic dysreflexia, however, is still controversial. Regarding therapeutics, transplantation of embryonic presympathetic neurons, collected from the brainstem or more specific raphe regions, into the injured spinal cord may reestablish supraspinal regulation of sympathetic activity for cardiovascular improvement. This treatment reduces the occurrence of spontaneous autonomic dysreflexia and the severity of artificially triggered dysreflexic responses in rodent SCI models. Though transplanting early-stage neurons improves neural regulation of blood pressure, hormonal regulation remains high and baroreflex dysfunction persists. Therefore, cell transplantation combined with selected RAS inhibition may enhance neuroendocrine homeostasis for cardiovascular recovery after SCI.
Collapse
Affiliation(s)
- Cameron T. Trueblood
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Anurag Singh
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Marissa A. Cusimano
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Shaoping Hou
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Hotowy A, Strojny-Cieślak B, Ostrowska A, Zielińska-Górska M, Kutwin M, Wierzbicki M, Sosnowska M, Jaworski S, Chwalibóg A, Kotela I, Sawosz Chwalibóg E. Silver and Carbon Nanomaterials/Nanocomplexes as Safe and Effective ACE2-S Binding Blockers on Human Skin Cell Lines. Molecules 2024; 29:3581. [PMID: 39124987 PMCID: PMC11313757 DOI: 10.3390/molecules29153581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
(1) Background: Angiotensin-converting enzyme 2 (ACE2) is a crucial functional receptor of the SARS-CoV-2 virus. Although the scale of infections is no longer at pandemic levels, there are still fatal cases. The potential of the virus to infect the skin raises questions about new preventive measures. In the context of anti-SARS-CoV-2 applications, the interactions of antimicrobial nanomaterials (silver, Ag; diamond, D; graphene oxide, GO and their complexes) were examined to assess their ability to affect whether ACE2 binds with the virus. (2) Methods: ACE2 inhibition competitive tests and in vitro treatments of primary human adult epidermal keratinocytes (HEKa) and primary human adult dermal fibroblasts (HDFa) were performed to assess the blocking capacity of nanomaterials/nanocomplexes and their toxicity to cells. (3) Results: The nanocomplexes exerted a synergistic effect compared to individual nanomaterials. HEKa cells were more sensitive than HDFa cells to Ag treatments and high concentrations of GO. Cytotoxic effects were not observed with D. In the complexes, both carbonic nanomaterials had a soothing effect against Ag. (4) Conclusions: The Ag5D10 and Ag5GO10 nanocomplexes seem to be most effective and safe for skin applications to combat SARS-CoV-2 infection by blocking ACE2-S binding. These nanocomplexes should be evaluated through prolonged in vivo exposure. The expected low specificity enables wider applications.
Collapse
Affiliation(s)
- Anna Hotowy
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Marlena Zielińska-Górska
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Marta Kutwin
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| | - André Chwalibóg
- Section of Production, Nutrition and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Ireneusz Kotela
- Department of Orthopaedics, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland;
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
| | - Ewa Sawosz Chwalibóg
- Department of Nanobiotechnology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (B.S.-C.); (A.O.); (M.Z.-G.); (M.K.); (M.W.); (M.S.); (S.J.); (E.S.C.)
| |
Collapse
|
4
|
Bhullar SK, Dhalla NS. Adaptive and maladaptive roles of different angiotensin receptors in the development of cardiac hypertrophy and heart failure. Can J Physiol Pharmacol 2024; 102:86-104. [PMID: 37748204 DOI: 10.1139/cjpp-2023-0226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Angiotensin II (Ang II) is formed by the action of angiotensin-converting enzyme (ACE) in the renin-angiotensin system. This hormone is known to induce cardiac hypertrophy and heart failure and its actions are mediated by the interaction of both pro- and antihypertrophic Ang II receptors (AT1R and AT2R). Ang II is also metabolized by ACE 2 to Ang-(1-7), which elicits the activation of Mas receptors (MasR) for inducing antihypertrophic actions. Since heart failure under different pathophysiological situations is preceded by adaptive and maladaptive cardiac hypertrophy, we have reviewed the existing literature to gain some information regarding the roles of AT1R, AT2R, and MasR in both acute and chronic conditions of cardiac hypertrophy. It appears that the activation of AT1R may be involved in the development of adaptive and maladaptive cardiac hypertrophy as well as subsequent heart failure because both ACE inhibitors and AT1R antagonists exert beneficial effects. On the other hand, the activation of both AT2R and MasR may prevent the occurrence of maladaptive cardiac hypertrophy and delay the progression of heart failure, and thus therapy with different activators of these antihypertrophic receptors under chronic pathological stages may prove beneficial. Accordingly, it is suggested that a great deal of effort should be made to develop appropriate activators of both AT2R and MasR for the treatment of heart failure subjects.
Collapse
Affiliation(s)
- Sukhwinder K Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
5
|
Demeuse J, Huyghebaert L, Determe W, Schoumacher M, Grifnée E, Massonnet P, Dubrowski T, Rechchad M, Segura JF, Peeters S, Cavalier E, Le Goff C. Development and validation of an LC-MS/MS method for the simultaneous quantitation of angiotensin (1-7), (1-8), (1-9) and (1-10) in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123943. [PMID: 38039597 DOI: 10.1016/j.jchromb.2023.123943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Cardiovascular diseases have cast a significant negative impact on the lives of millions worldwide. Over the years, extensive efforts have been dedicated to enhancing diagnostic and prognostic tools for these diseases. A growing body of evidence indicates that the angiotensin convertase enzyme (ACE) and the angiotensin convertase enzyme 2 (ACE2), and angiotensin peptide levels could hold a pivotal role in assisting clinicians with the management of cardiovascular conditions, notably hypertension and heart failure. However, despite the considerable body of knowledge in this domain, a void remains in the field of analytical methodologies for these molecules. In this study, we present a fully validated LC-MS/MS method for the precise quantitation of plasma angiotensin (1-7), (1-8), (1-9), and (1-10), following the guidelines set by the Clinical and Laboratory Standards Institute (CLSI). Our method not only enables the accurate quantification of angiotensin peptides but also provides a means to assess ACE and ACE2 activity. Remarkably, our method achieved a Lower Limit of Measurement Interval (LLMI) as low as 5 pg/mL. This has enabled the detection of angiotensin (1-7), (1-8), (1-9) and (1-10) and the accurate quantitation of angiotensin (1-7), (1-8) and (1-10) in all analyzed groups, including healthy controls, patients with high blood pressure, and patients with chronic kidney disease. To our knowledge, our method represents the most sensitive approach allowing for simultaneous quantitation of these four angiotensin peptides. A distinct advantage of our method, when compared to immunoassays, is its high sensitivity combined with comprehensive chromatographic separation of all currently known angiotensin peptides. This combination translates to an exceptional level of selectivity, underscoring the value and potential of our methodology in advancing cardiovascular disease research.
Collapse
Affiliation(s)
- Justine Demeuse
- Department of Clinical Chemistry, CIRM, University of Liège, Belgium
| | - Loreen Huyghebaert
- Department of Clinical Chemistry, University Hospital of Liège, Belgium.
| | - William Determe
- Department of Clinical Chemistry, CIRM, University of Liège, Belgium
| | | | - Elodie Grifnée
- Department of Clinical Chemistry, University Hospital of Liège, Belgium
| | | | - Thomas Dubrowski
- Department of Clinical Chemistry, University Hospital of Liège, Belgium
| | - Marwa Rechchad
- Department of Clinical Chemistry, University Hospital of Liège, Belgium
| | | | - Stéphanie Peeters
- Department of Clinical Chemistry, University Hospital of Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CIRM, University of Liège, Belgium; Department of Clinical Chemistry, University Hospital of Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, CIRM, University of Liège, Belgium; Department of Clinical Chemistry, University Hospital of Liège, Belgium
| |
Collapse
|
6
|
León-Moreno LC, Reza-Zaldívar EE, Hernández-Sapiéns MA, Villafaña-Estarrón E, García-Martin M, Ojeda-Hernández DD, Matias-Guiu JA, Gomez-Pinedo U, Matias-Guiu J, Canales-Aguirre AA. Mesenchymal Stem Cell-Based Therapies in the Post-Acute Neurological COVID Syndrome: Current Landscape and Opportunities. Biomolecules 2023; 14:8. [PMID: 38275749 PMCID: PMC10813738 DOI: 10.3390/biom14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
One of the main concerns related to SARS-CoV-2 infection is the symptoms that could be developed by survivors, known as long COVID, a syndrome characterized by persistent symptoms beyond the acute phase of the infection. This syndrome has emerged as a complex and debilitating condition with a diverse range of manifestations affecting multiple organ systems. It is increasingly recognized for affecting the Central Nervous System, in which one of the most prevalent manifestations is cognitive impairment. The search for effective therapeutic interventions has led to growing interest in Mesenchymal Stem Cell (MSC)-based therapies due to their immunomodulatory, anti-inflammatory, and tissue regenerative properties. This review provides a comprehensive analysis of the current understanding and potential applications of MSC-based interventions in the context of post-acute neurological COVID-19 syndrome, exploring the underlying mechanisms by which MSCs exert their effects on neuroinflammation, neuroprotection, and neural tissue repair. Moreover, we discuss the challenges and considerations specific to employing MSC-based therapies, including optimal delivery methods, and functional treatment enhancements.
Collapse
Affiliation(s)
- Lilia Carolina León-Moreno
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | | | - Mercedes Azucena Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Erika Villafaña-Estarrón
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Marina García-Martin
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Doddy Denise Ojeda-Hernández
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jordi A. Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Ulises Gomez-Pinedo
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jorge Matias-Guiu
- Departamento de Neurología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Arturo Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| |
Collapse
|
7
|
Cappelletti P, Gallo G, Marino R, Palaniappan S, Corbo M, Savoia C, Feligioni M. From cardiovascular system to brain, the potential protective role of Mas Receptors in COVID-19 infection. Eur J Pharmacol 2023; 959:176061. [PMID: 37775018 DOI: 10.1016/j.ejphar.2023.176061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been declared a new pandemic in March 2020. Although most patients are asymptomatic, those with underlying cardiovascular comorbidities may develop a more severe systemic infection which is often associated with fatal pneumonia. Nonetheless, neurological and cardiovascular manifestations could be present even without respiratory symptoms. To date, no COVID-19-specific drugs are able for preventing or treating the infection and generally, the symptoms are relieved with general anti-inflammatory drugs. Angiotensin-converting-enzyme 2 (ACE2) may function as the receptor for virus entry within the cells favoring the progression of infection in the organism. On the other hand, ACE2 is a relevant enzyme in renin angiotensin system (RAS) cascade fostering Ang1-7/Mas receptor activation which promotes protective effects in neurological and cardiovascular systems. It is known that RAS is composed by two functional countervailing axes the ACE/AngII/AT1 receptor and the ACE/AngII/AT2 receptor which counteracts the actions mediated by AngII/AT1 receptor by inducing anti-inflammatory, antioxidant and anti-growth functions. Subsequently an "alternative" ACE2/Ang1-7/Mas receptor axis has been described with functions similar to the latter protective arm. Here, we discuss the neurological and cardiovascular effects of COVID-19 highlighting the role of the stimulation of the RAS "alternative" protective arm in attenuating pulmonary, cerebral and cardiovascular damages. In conclusion, only two clinical trials are running for Mas receptor agonists but few other molecules are in preclinical phase and if successful these drugs might represent a successful strategy for the treatment of the acute phase of COVID-19 infection.
Collapse
Affiliation(s)
- Pamela Cappelletti
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Rachele Marino
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Rome, Italy
| | | | - Massimo Corbo
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Carmine Savoia
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Marco Feligioni
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy; European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Rome, Italy.
| |
Collapse
|
8
|
Hong L, Junjie C, Pengyu Z, Ping L, Wei C. The mechanism of oxidative stress in keloid fibroblasts and the experimental study of early application of angiotensin-converting enzyme inhibitor. Indian J Dermatol Venereol Leprol 2023; 89:842-849. [PMID: 37067128 DOI: 10.25259/ijdvl_323_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/12/2022] [Indexed: 03/31/2023]
Abstract
Objective To investigate the protective effects of an angiotensin-converting enzyme inhibitor after inducing oxidative stress on keloid fibroblasts. Methods Primary keloid fibroblasts were isolated and cultured by enzyme digestion combined with the tissue adhesion method in vitro, and the third to fifth generations of cells were selected for the experiment. For 24 hours, keloid fibroblasts were treated with different concentrations of hydrogen peroxide. Different concentrations of angiotensin-converting enzyme inhibitor were added to the keloid fibroblast culture medium, and then the cells were treated with hydrogen peroxide for 24 hours. Results With the increase of hydrogen peroxide concentration, the growth of keloid fibroblasts was inhibited and the levels of malondialdehyde, superoxide dismutase, and reactive oxygen species increased gradually, accompanied by an increase in the expression of nicotinamide adenine dinucleotide phosphate oxidase and collagen I mRNA. The expression of nicotinamide adenine dinucleotide phosphate oxidase-mRNA in keloid fibroblasts and the formation of reactive oxygen species in keloid fibroblasts were induced by different concentrations of angiotensin II, and the most significant effect was at 10-5 mmol/mL. The effects of diphenyleneiodonium chloride (NOX inhibitor), N-acetylcysteine (reactive oxygen species inhibitor) and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) RNA treatment on angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase and collagen I increased significantly. Hydrogen peroxide and angiotensin II alone or combined can induce NADPH oxidase and reactive oxygen species expression in keloid fibroblasts. When the angiotensin-converting enzyme inhibitor was added, the expression of NADPH oxidase and reactive oxygen species in keloid induced by hydrogen peroxide and angiotensin II could be inhibited. Conclusion Oxidative stress can lead to increased expression of reactive oxygen species, NADPH oxidase and collagen I in keloid fibroblasts, suggesting oxidative stress mediates the migration of human keloid fibroblasts and extracellular matrix synthesis.
Collapse
Affiliation(s)
- Li Hong
- Department of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, China
| | - Chen Junjie
- Department of Aesthetic and Plastic Burn Surgery, West China Hospital of Sichuan University, Huaxi, China
| | - Zhao Pengyu
- Department of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, China
| | - Liu Ping
- Department of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, China
| | - Chen Wei
- Department of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, China
| |
Collapse
|
9
|
Mohammed M, Ogunlade B, Elgazzaz M, Berdasco C, Lakkappa N, Ghita I, Guidry JJ, Sriramula S, Xu J, Restivo L, Mendiola Plá MA, Bowles DE, Beyer AM, Yue X, Lazartigues E, Filipeanu CM. Nedd4-2 up-regulation is associated with ACE2 ubiquitination in hypertension. Cardiovasc Res 2023; 119:2130-2141. [PMID: 37161607 PMCID: PMC10478751 DOI: 10.1093/cvr/cvad070] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 05/11/2023] Open
Abstract
AIMS Angiotensin-converting enzyme 2 (ACE2) is a critical component of the compensatory renin-angiotensin system that is down-regulated during the development of hypertension, possibly via ubiquitination. However, little is known about the mechanisms involved in ACE2 ubiquitination in neurogenic hypertension. This study aimed at identifying ACE2 ubiquitination partners, establishing causal relationships and clinical relevance, and testing a gene therapy strategy to mitigate ACE2 ubiquitination in neurogenic hypertension. METHODS AND RESULTS Bioinformatics and proteomics were combined to identify E3 ubiquitin ligases associated with ACE2 ubiquitination in chronically hypertensive mice. In vitro gain/loss of function experiments assessed ACE2 expression and activity to validate the interaction between ACE2 and the identified E3 ligase. Mutation experiments were further used to generate a ubiquitination-resistant ACE2 mutant (ACE2-5R). Optogenetics, blood pressure telemetry, pharmacological blockade of GABAA receptors in mice expressing ACE2-5R in the bed nucleus of the stria terminalis (BNST), and capillary western analysis were used to assess the role of ACE2 ubiquitination in neurogenic hypertension. Ubiquitination was first validated as leading to ACE2 down-regulation, and Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) was identified as a E3 ligase up-regulated in hypertension and promoting ACE2 ubiquitination. Mutation of lysine residues in the C-terminal of ACE2 was associated with increased activity and resistance to angiotensin (Ang)-II-mediated degradation. Mice transfected with ACE2-5R in the BNST exhibited enhanced GABAergic input to the paraventricular nucleus (PVN) and a reduction in hypertension. ACE2-5R expression was associated with reduced Nedd4-2 levels in the BNST. CONCLUSION Our data identify Nedd4-2 as the first E3 ubiquitin ligase involved in ACE2 ubiquitination in Ang-II-mediated hypertension. We demonstrate the pivotal role of ACE2 on GABAergic neurons in the maintenance of an inhibitory tone to the PVN and the regulation of pre-sympathetic activity. These findings provide a new working model where Nedd4-2 could contribute to ACE2 ubiquitination, leading to the development of neurogenic hypertension and highlighting potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Mazher Mohammed
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, 1900 Perdido Street New Orleans, LA 70112, USA
| | - Blessing Ogunlade
- Department of Pharmacology, School of Medicine, Howard University, 520 W St, NW, Washington, DC 20059, USA
| | - Mona Elgazzaz
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, 1900 Perdido Street New Orleans, LA 70112, USA
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Clara Berdasco
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, 1900 Perdido Street New Orleans, LA 70112, USA
| | - Navya Lakkappa
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, 1900 Perdido Street New Orleans, LA 70112, USA
| | - Ioana Ghita
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Jessie J Guidry
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, 1900 Perdido Street New Orleans, LA 70112, USA
| | - Srinivas Sriramula
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, 1900 Perdido Street New Orleans, LA 70112, USA
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Jiaxi Xu
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, 1900 Perdido Street New Orleans, LA 70112, USA
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University, School of Medicine, Xi’an, 710061, China
| | - Luke Restivo
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
| | - Michelle A Mendiola Plá
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Dawn E Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Andreas M Beyer
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xinping Yue
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Eric Lazartigues
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, 1900 Perdido Street New Orleans, LA 70112, USA
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans LA 70112, USA
| | - Catalin M Filipeanu
- Department of Pharmacology, School of Medicine, Howard University, 520 W St, NW, Washington, DC 20059, USA
| |
Collapse
|
10
|
Xi H, Li X, Zhou Y, Sun Y. The Regulatory Effect of the Paraventricular Nucleus on Hypertension. Neuroendocrinology 2023; 114:1-13. [PMID: 37598678 DOI: 10.1159/000533691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Hypertension is among the most harmful factors of cardiovascular and cerebrovascular diseases and poses an urgent problem for the development of human society. In addition to previous studies on its pathogenesis focusing on the peripheral sympathetic nervous system, investigating the central causes of high blood pressure involving the neuroendocrine and neuroinflammatory mechanisms of the hypothalamic paraventricular nucleus (PVN) is paramount. This nucleus is considered to regulate the output of neurohormones and sympathetic nerve activity. In this article, we focussed on the neuroendocrine mechanism, primarily exploring the specific contributions and interactions of various neurons and neuroendocrine hormones, including GABAergic and glutamatergic neurons, nitric oxide, arginine vasopressin, oxytocin, and the renin-angiotensin system. Additionally, the neuroinflammatory mechanism in the PVN was discussed, encompassing microglia, reactive oxygen species, inflammatory factors, and pathways, as well as immune connections between the brain and extracerebral organs. Notably, the two central mechanisms involved in the PVN not only exist independently but also communicate with each other, jointly maintaining the hypertensive state of the body. Furthermore, we introduce well-known molecules and signal transduction pathways within the PVN that can play a regulatory role in the two mechanisms to provide a basis and inspire ideas for further research.
Collapse
Affiliation(s)
- Hanyu Xi
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xingru Li
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yun Zhou
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Nephrology, Shanxi Provincial Integrated Traditional Chinese Medicine and Western Medicine Hospital, Taiyuan, China
| | - Yaojun Sun
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Wen J, Tang B, Guo L, Chen W, Tang X. miR-145 Alleviates Smooth Muscle Cell Phenotype Transition via ADAM17-Mediated ACE2 Shedding. Int J Hypertens 2023; 2023:9497716. [PMID: 37521117 PMCID: PMC10374374 DOI: 10.1155/2023/9497716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
It has been shown that miR-145 is involved in the differentiation of vascular smooth muscle cells (VSMCs) and may regulate vascular remodeling. However, the molecular mechanisms behind these pathological processes in hypertension are not fully elucidated. The present study was to examine whether miR-145 modulates phenotypic transformation of VSMCs under normal state and synthetic state and to explore the possible role of ADAM17-mediated ACE2 shedding and ACE2-Ang-(1-7)-Mas receptor axis. Wistar rats were fed with high-sucrose/high-fat diet for 30 weeks to establish a metabolic hypertension animal model. VSMCs were cultured and treated with Ang II with or without miR-145 mimics or miR-145 inhibitor. Results showed the expression of contractile markers α-SMA and SM22α, miR-145, ACE2, and Mas receptor reduced in the thoracic aorta of metabolic hypertensive rats (MHRs), while that of synthetic marker OPN increased as compared to the control group. In in vitro study, miR-145 inhibitor inhibited the expression of α-SMA, SM22α, ACE2, Mas receptor, and the Ang-(1-7) excretion and induced the expression of synthetic markers OPN, EREG, and MMP2. However, miR-145 mimic produced opposite effects on the VSMCs. In addition, in the synthetic VSMC induced by Ang II, miR-145 inhibitor partially reversed the induced expression of OPN, EREG, and MMP2 by Ang II, while further decreasing the expression of α-SMA and SM22α and ACE2-Ang-(1-7)-Mas receptor. Cotreatment with ADAM17 siRNA partially reversed the inducible effect of miR-145 inhibitor on the EREG and MMP2, induced Ang-(1-7) excretion, and upregulated ACE2 and Mas receptor expression. In conclusion, miR-145 alleviates phenotype transition from contractile to synthetic type via ADAM17-mediated ACE2 shedding in VSMCs and retains the activation of ACE2-Ang-(1-7)-Mas axis, which may benefit the vascular structural remodeling in the metabolic hypertension.
Collapse
Affiliation(s)
- Juan Wen
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Baiyi Tang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Lan Guo
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Wei Chen
- School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiaohong Tang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
12
|
Kunvariya AD, Dave SA, Modi ZJ, Patel PK, Sagar SR. Exploration of multifaceted molecular mechanism of angiotensin-converting enzyme 2 (ACE2) in pathogenesis of various diseases. Heliyon 2023; 9:e15644. [PMID: 37153428 PMCID: PMC10160752 DOI: 10.1016/j.heliyon.2023.e15644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a homolog of ACE (a transmembrane bound dipeptidyl peptidase enzyme). ACE2 converts angiotensinogen to the heptapeptide angiotensin-(1-7). ACE2 and its product, angiotensin-(1-7), have counteracting effects against the adverse actions of other members of renin-angiotensin system (RAS). ACE2 and its principal product, angiotensin-(1-7), were considered an under recognized arm of the RAS. The COVID-19 pandemic brought to light this arm of RAS with special focus on ACE2. Membrane bound ACE2 serves as a receptor for SARS-CoV-2 viral entry through spike proteins. Apart from that, ACE2 is also involved in the pathogenesis of various other diseases like cardiovascular disease, cancer, respiratory diseases, neurodegenerative diseases and infertility. The present review focuses on the molecular mechanism of ACE2 in neurodegenerative diseases, cancer, cardiovascular disease, infertility and respiratory diseases, including SARS-CoV-2. This review summarizes unveiled roles of ACE2 in the pathogenesis of various diseases which further provides intriguing possibilities for the use of ACE2 activators and RAS modulating agents for various diseases.
Collapse
Affiliation(s)
- Aditi D. Kunvariya
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Shivani A. Dave
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Zeal J. Modi
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Paresh K. Patel
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Sneha R. Sagar
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
- Corresponding author.
| |
Collapse
|
13
|
Bommarito G, Garibotto V, Frisoni GB, Assal F, Lalive PH, Allali G. The Two-Way Route between Delirium Disorder and Dementia: Insights from COVID-19. NEURODEGENER DIS 2023; 22:91-103. [PMID: 37054684 DOI: 10.1159/000530566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Delirium disorder is a frequent neurological complication of SARS-CoV-2 infection and associated with increased disease severity and mortality. Cognitive impairment is a major risk factor for developing delirium disorder during COVID-19, which, in turn, increases the risk of subsequent neurological complications and cognitive decline. SUMMARY The bidirectional connection between delirium disorder and dementia likely resides at multiple levels, and its pathophysiological mechanisms during COVID-19 include endothelial damage, blood-brain barrier dysfunction, and local inflammation, with activation of microglia and astrocytes. Here, we describe the putative pathogenic pathways underlying delirium disorder during COVID-19 and highlight how they cross with the ones leading to neurodegenerative dementia. KEY MESSAGES The analysis of the two-sided link can offer useful insights for confronting with long-term neurological consequences of COVID-19 and framing future prevention and early treatment strategies.
Collapse
Affiliation(s)
- Giulia Bommarito
- Department of Clinical Neurosciences, Lausanne University Hospitals and University of Lausanne, Lausanne, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTlab, University of Geneva, Geneva, Switzerland
| | - Giovanni B Frisoni
- Memory Center and LANVIE-Laboratory of Neuroimaging of Aging, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Frédéric Assal
- Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Patrice H Lalive
- Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Gilles Allali
- Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Division of Cognitive and Motor Aging, Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
- Leenaards Memory Center, Lausanne University Hospitals and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Steardo L, Steardo L, Scuderi C. Astrocytes and the Psychiatric Sequelae of COVID-19: What We Learned from the Pandemic. Neurochem Res 2023; 48:1015-1025. [PMID: 35922744 PMCID: PMC9362636 DOI: 10.1007/s11064-022-03709-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
COVID-19, initially regarded as specific lung disease, exhibits an extremely broad spectrum of symptoms. Extrapulmonary manifestations of the disease also include important neuropsychiatric symptoms with atypical characteristics. Are these disturbances linked to stress accompanying every systemic infection, or are due to specific neurobiological changes associated with COVID-19? Evidence accumulated so far indicates that the pathophysiology of COVID-19 is characterized by systemic inflammation, hypoxia resulting from respiratory failure, and neuroinflammation (either due to viral neurotropism or in response to cytokine storm), all affecting the brain. It is reasonable to hypothesize that all these events may initiate or worsen psychiatric and cognitive disorders. Damage to the brain triggers a specific type of reactive response mounted by neuroglia cells, in particular by astrocytes which are the homeostatic cell par excellence. Astrocytes undergo complex morphological, biochemical, and functional remodeling aimed at mobilizing the regenerative potential of the central nervous system. If the brain is not directly damaged, resolution of systemic pathology usually results in restoration of the physiological homeostatic status of neuroglial cells. The completeness and dynamics of this process in pathological conditions remain largely unknown. In a subset of patients, glial cells could fail to recover after infection thus promoting the onset and progression of COVID-19-related neuropsychiatric diseases. There is evidence from post-mortem examinations of the brains of COVID-19 patients of alterations in both astrocytes and microglia. In conclusion, COVID-19 activates a huge reactive response of glial cells, that physiologically act as the main controller of the inflammatory, protective and regenerative events. However, in some patients the restoration of glial physiological state does not occur, thus compromising glial function and ultimately resulting in homeostatic failure underlying a set of specific neuropsychiatric symptoms related to COVID-19.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
- Università Giustino Fortunato, Benevento, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Moccia L, Kotzalidis GD, Bartolucci G, Ruggiero S, Monti L, Biscosi M, Terenzi B, Ferrara OM, Mazza M, Di Nicola M, Janiri D, Simonetti A, Caroppo E, Janiri L, Sani G. COVID-19 and New-Onset Psychosis: A Comprehensive Review. J Pers Med 2023; 13:104. [PMID: 36675765 PMCID: PMC9865730 DOI: 10.3390/jpm13010104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Psychosis is a multifactorial condition that typically involves delusions, hallucinations, and disorganized thought, speech or behavior. The observation of an association between infectious epidemics and acute psychosis dates back to the last century. Recently, concerns have been expressed regarding COVID-19 and the risk for the development of new-onset psychosis. This article reviewed the current evidence of a possible link between SARS-CoV-2 and risk of psychosis as an acute or post-infectious manifestation of COVID-19. We here discuss potential neurobiological and environmental factors as well as a number of challenges in ascribing a causal pathogenic relationship between SARS-CoV-2 infection and new-onset psychosis.
Collapse
Affiliation(s)
- Lorenzo Moccia
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Georgios D. Kotzalidis
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| | - Giovanni Bartolucci
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sara Ruggiero
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Monti
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
| | - Marco Biscosi
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Beatrice Terenzi
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ottavia M. Ferrara
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marianna Mazza
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco Di Nicola
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Delfina Janiri
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessio Simonetti
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Emanuele Caroppo
- Department of Mental Health, Local Health Authority ROMA 2, 00159 Rome, Italy
| | - Luigi Janiri
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.go Agostino Gemelli 8, 00168 Rome, Italy
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
16
|
The Heart as a Target of Vasopressin and Other Cardiovascular Peptides in Health and Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms232214414. [PMID: 36430892 PMCID: PMC9699305 DOI: 10.3390/ijms232214414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The automatism of cardiac pacemaker cells, which is tuned, is regulated by the autonomic nervous system (ANS) and multiple endocrine and paracrine factors, including cardiovascular peptides. The cardiovascular peptides (CPs) form a group of essential paracrine factors affecting the function of the heart and vessels. They may also be produced in other organs and penetrate to the heart via systemic circulation. The present review draws attention to the role of vasopressin (AVP) and some other cardiovascular peptides (angiotensins, oxytocin, cytokines) in the regulation of the cardiovascular system in health and cardiovascular diseases, especially in post-infarct heart failure, hypertension and cerebrovascular strokes. Vasopressin is synthesized mostly by the neuroendocrine cells of the hypothalamus. There is also evidence that it may be produced in the heart and lungs. The secretion of AVP and other CPs is markedly influenced by changes in blood volume and pressure, as well as by other disturbances, frequently occurring in cardiovascular diseases (hypoxia, pain, stress, inflammation). Myocardial infarction, hypertension and cardiovascular shock are associated with an increased secretion of AVP and altered responsiveness of the cardiovascular system to its action. The majority of experimental studies show that the administration of vasopressin during ventricular fibrillation and cardiac arrest improves resuscitation, however, the clinical studies do not present consisting results. Vasopressin cooperates with the autonomic nervous system (ANS), angiotensins, oxytocin and cytokines in the regulation of the cardiovascular system and its interaction with these regulators is altered during heart failure and hypertension. It is likely that the differences in interactions of AVP with ANS and other CPs have a significant impact on the responsiveness of the cardiovascular system to vasopressin in specific cardiovascular disorders.
Collapse
|
17
|
Effects of Varying Glucose Concentrations on ACE2's Hypothalamic Expression and Its Potential Relation to COVID-19-Associated Neurological Dysfunction. Int J Mol Sci 2022; 23:ijms23179645. [PMID: 36077041 PMCID: PMC9455961 DOI: 10.3390/ijms23179645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has negatively impacted millions of lives, despite several vaccine interventions and strict precautionary measures. The main causative organism of this disease is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which infects the host via two key players: the angiotensin-converting enzyme 2 (ACE2) and the transmembrane protease, serine 2 (TMPRSS2). Some reports revealed that patients with glycemic dysregulation could have increased susceptibility to developing COVID-19 and its related neurological complications. However, no previous studies have looked at the involvement of these key molecules within the hypothalamus, which is the central regulator of glucose in the brain. By exposing embryonic mouse hypothalamic neurons to varying glucose concentrations, we aimed to investigate the expression of ACE2 and TMPRSS2 using quantitative real time polymerase chain reaction and western blotting. A significant and time-dependent increase and decrease was observed on the viability of hypothalamic neurons with increasing and decreasing glucose concentrations, respectively (p < 0.01 and p < 0.001, respectively). Under the same increasing and decreasing glucose conditions, the expression of hypothalamic ACE2 also revealed a significant and time-dependent increase (p < 0.01). These findings suggest that SARS-CoV-2 invades the hypothalamic circuitry. In addition, it highlights the importance of strict glycemic control for COVID-19 in diabetic patients.
Collapse
|
18
|
Epidemiology, clinical features, and treatment modalities of facial nerve palsy in COVID-19 patients: a systematic review. Acta Neurol Belg 2022; 122:1419-1432. [PMID: 35917018 PMCID: PMC9345018 DOI: 10.1007/s13760-022-02026-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/07/2022] [Indexed: 12/11/2022]
Abstract
Background Coronavirus disease 2019 (COVID-19) is responsible for a wide variety of multi-system clinical features. Facial nerve palsy (FNP) is identified as one of the neurological complications of the virus. This work aims to systematically review the clinical picture, laboratory/imaging findings, treatment options, and prognostic factors of FNP in COVID-19 patients. Methods Using six online databases, a search was conducted to include all articles with patients infected with COVID-19 and presenting with unilateral or bilateral FNP. Screening for eligibility and data extraction were done by three and four independent reviewers, respectively. Descriptive analyses and data visualizations were done using Google Sheets. Survival analysis and Kaplan–Meier plotting were done by R software. Results The data from 22 studies included 32 patients who were infected with COVID-19 and presented with clinical features of FNP. Fourteen patients were male while 18 were female. FNP affected 29 patients unilaterally and 3 patients bilaterally. The imaging findings confirmed that complications of FNP were COVID-19 related. Additionally, antivirals combined with steroids had the lowest median time (21, IQR = 8) to clinical improvement compared to steroid-only (30, IQR = 15) and antiviral-only (33, IQR = 3.5) treatments. Conclusion This study has shown a potential correlation between the increased incidence of FNP and COVID-19. We have also found that combining antivirals with steroids may have better outcomes in patients with FNP and COVID-19 although the evidence to support this claim is not strong enough. Further studies are required to assess the extent of linkage between the two conditions and how to properly manage FNP when encountered in COVID-19 patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13760-022-02026-8.
Collapse
|
19
|
Togha M, Hashemi SM, Yamani N, Martami F, Salami Z. A Review on Headaches Due to COVID-19 Infection. Front Neurol 2022; 13:942956. [PMID: 35911910 PMCID: PMC9327440 DOI: 10.3389/fneur.2022.942956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Since December 2019, the time when the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was spotted, numerous review studies have been published on COVID-19 and its neuro invasion. A growing number of studies have reported headaches as a common neurological manifestation of COVID-19. Although several hypotheses have been proposed regarding the association between headache and the coronavirus, no solid evidence has been presented for the mechanism and features of headache in COVID-19. Headache also is a common complaint with the omicron variant of the virus. COVID-19 vaccination also is a cause of new-onset headaches or aggravation of the previous headache in migraine or tension headache sufferers. In this review study, the types of headaches reported in previous studies and their possible pathogenic mechanisms are outlined. To accomplish this objective, various types of headaches are classified and their patterns are discussed according to ICHD-3 diagnostic criteria, including, headaches attributed to systemic viral infection, viral meningitis or encephalitis, non-infectious inflammatory intracranial disease, hypoxia and/or hypercapnia, cranial or cervical vascular disorder, increased cerebrospinal fluid (CSF) pressure, refractive error, external-compression headache, and cough headache. Then, their pathogeneses are categorized into three main categories, direct trigeminal involvement, vascular invasion, and inflammatory mediators. Furthermore, persistent headache after recovery and the predictors of intensity is further investigated. Post-vaccination headache is also discussed in this review.
Collapse
Affiliation(s)
- Mansoureh Togha
- Headache Department, Iranian Center of Neurological Researches, Institute of Neuroscience, Tehran University of Medical Sciences, Tehran, Iran
- Headache Department, Neurology Ward, Sina Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Melika Hashemi
- Headache Department, Iranian Center of Neurological Researches, Institute of Neuroscience, Tehran University of Medical Sciences, Tehran, Iran
| | - Nooshin Yamani
- Neurology Department, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fahimeh Martami
- Headache Department, Iranian Center of Neurological Researches, Institute of Neuroscience, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhale Salami
- Headache Department, Iranian Center of Neurological Researches, Institute of Neuroscience, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Impaired Vagal Activity in Long-COVID-19 Patients. Viruses 2022; 14:v14051035. [PMID: 35632776 PMCID: PMC9147759 DOI: 10.3390/v14051035] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022] Open
Abstract
Long-COVID-19 refers to the signs and symptoms that continue or develop after the “acute COVID-19” phase. These patients have an increased risk of multiorgan dysfunction, readmission, and mortality. In Long-COVID-19 patients, it is possible to detect a persistent increase in D-Dimer, NT-ProBNP, and autonomic nervous system dysfunction. To verify the dysautonomia hypothesis in Long-COVID-19 patients, we studied heart rate variability using 12-lead 24-h ECG monitoring in 30 Long-COVID-19 patients and 20 No-COVID patients. Power spectral analysis of heart rate variability was lower in Long-COVID-19 patients both for total power (7.46 ± 0.5 vs. 8.08 ± 0.6; p < 0.0001; Cohens-d = 1.12) and for the VLF (6.84 ± 0.8 vs. 7.66 ± 0.6; p < 0.0001; Cohens-d = 1.16) and HF (4.65 ± 0.9 vs. 5.33 ± 0.9; p = 0.015; Cohens-d = 0.76) components. The LF/HF ratio was significantly higher in Long-COVID-19 patients (1.46 ± 0.27 vs. 1.23 ± 0.13; p = 0.001; Cohens-d = 1.09). On multivariable analysis, Long-COVID-19 is significantly correlated with D-dimer (standardized β-coefficient = 0.259), NT-ProBNP (standardized β-coefficient = 0.281), HF component of spectral analysis (standardized β-coefficient = 0.696), and LF/HF ratio (standardized β-coefficient = 0.820). Dysautonomia may explain the persistent symptoms in Long COVID-19 patients. The persistence of a procoagulative state and an elevated myocardial strain could explain vagal impairment in these patients. In Long-COVID-19 patients, impaired vagal activity, persistent increases of NT-ProBNP, and a prothrombotic state require careful monitoring and appropriate intervention.
Collapse
|
21
|
Razi O, Tartibian B, Laher I, Govindasamy K, Zamani N, Rocha-Rodrigues S, Suzuki K, Zouhal H. Multimodal Benefits of Exercise in Patients With Multiple Sclerosis and COVID-19. Front Physiol 2022; 13:783251. [PMID: 35492581 PMCID: PMC9048028 DOI: 10.3389/fphys.2022.783251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/31/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by plaque formation and neuroinflammation. The plaques can present in various locations, causing a variety of clinical symptoms in patients with MS. Coronavirus disease-2019 (COVID-19) is also associated with systemic inflammation and a cytokine storm which can cause plaque formation in several areas of the brain. These concurring events could exacerbate the disease burden of MS. We review the neuro-invasive properties of SARS-CoV-2 and the possible pathways for the entry of the virus into the central nervous system (CNS). Complications due to this viral infection are similar to those occurring in patients with MS. Conditions related to MS which make patients more susceptible to viral infection include inflammatory status, blood-brain barrier (BBB) permeability, function of CNS cells, and plaque formation. There are also psychoneurological and mood disorders associated with both MS and COVID-19 infections. Finally, we discuss the effects of exercise on peripheral and central inflammation, BBB integrity, glia and neural cells, and remyelination. We conclude that moderate exercise training prior or after infection with SARS-CoV-2 can produce health benefits in patients with MS patients, including reduced mortality and improved physical and mental health of patients with MS.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Sports Injuries, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, India
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Silvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), Quinta de Prados, Edifício Ciências de Desporto, Vila Real, Portugal
- Tumor & Microenvironment Interactions Group, i3S, Porto, Portugal
| | | | - Hassane Zouhal
- Laboratoire Mouvement, Sport, Santé, University of Rennes, Rennes, France
- Institut International des Sciences du Sport (2I2S), Irodouer, France
| |
Collapse
|
22
|
Quarleri J, Delpino MV. SARS-CoV-2 interacts with renin-angiotensin system: impact on the central nervous system in elderly patients. GeroScience 2022; 44:547-565. [PMID: 35157210 PMCID: PMC8853071 DOI: 10.1007/s11357-022-00528-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 is a recently identified coronavirus that causes the current pandemic disease known as COVID-19. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as a receptor, suggesting that the initial steps of SARS-CoV-2 infection may have an impact on the renin-angiotensin system (RAS). Several processes are influenced by RAS in the brain. The neurological symptoms observed in COVID-19 patients, including reduced olfaction, meningitis, ischemic stroke, cerebral thrombosis, and delirium, could be associated with RAS imbalance. In this review, we focus on the potential role of disturbances in the RAS as a cause for central nervous system sequelae of SARS-CoV-2 infection in elderly patients.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Universidad de Buenos Aires-CONICET, Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina.
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Universidad de Buenos Aires-CONICET, Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina.
| |
Collapse
|
23
|
Cárdenas G, Fragoso G, Sciutto E. Neuroinflammation in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection: Pathogenesis and clinical manifestations. Curr Opin Pharmacol 2022; 63:102181. [PMID: 35074661 PMCID: PMC8782621 DOI: 10.1016/j.coph.2021.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022]
Abstract
Peripheral inflammation and neuroinflammation are host-mounted to eliminate injury, infection, or toxin to restore homeostasis. However, when inflammation persists, it may promote collateral tissue damage that ultimately culminates in pathological peripheral damage or neurodegeneration. Since the beginning of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, responsible of Coronavirus disease 2019 (COVID-19), accumulating evidence describes neurological manifestations and complications worldwide particularly in approximately one-third of patients with COVID-19 particularly in those affected with the severe forms of the disease. Different access routes to the central nervous system have been identified. One immediately used is the entrance by the olfactory and trigeminus nervous affecting olfactory and sensory nerve endings when individuals get the infection by the intranasal route. It can also reach the central nervous system through the choroid plexuses and periventricular areas that lack blood-brain barrier or by its disruption by the exacerbated peripheral inflammation. Until now, the long-term sequelae of SARS-CoV-2 infection is still under research and the post-COVID syndrome. This review focuses on the consequences of the neuroinflammatory response in patients with COVID-19 considering its potential relevance in the appearance of neurological sequelae including neurodegenerative disorders.
Collapse
Affiliation(s)
- Graciela Cárdenas
- Department of Neurology. Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Gladis Fragoso
- Department of Immunology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edda Sciutto
- Department of Immunology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
24
|
COVID-19, Oxidative Stress, and Neuroinflammation in the Depression Route. J Mol Neurosci 2022; 72:1166-1181. [PMID: 35322375 PMCID: PMC8942178 DOI: 10.1007/s12031-022-02004-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 02/08/2023]
Abstract
COVID-19 is associated with oxidative stress, peripheral hyper inflammation, and neuroinflammation, especially in individuals with a more severe form of the disease. Some studies provide evidence on the onset or exacerbation of major depressive disorder (MDD), among other psychiatric disorders due to COVID-19. Oxidative stress and neuroinflammation are associated conditions, especially in the more severe form of MDD and in refractoriness to available therapeutic strategies. Inflammatory cytokines in the COVID-19 hyper inflammation process can activate the hypothalamic–pituitary–adrenal (HPA) axis and the indoleamine-2,3-dioxygenase (IDO) enzyme. IDO activation can reduce tryptophan and increase toxic metabolites of the kynurenine pathway, which increases glial activation, neuroinflammation, toxicity, and neuronal death. This review surveyed a number of studies and analyzed the mechanisms of oxidative stress, inflammation, and neuroinflammation involved in COVID-19 and depression. Finally, the importance of more protocols that can help elucidate the interaction between these mechanisms underlying COVID-19 and MDD and the possible therapeutic strategies involved in the interaction of these mechanisms are highlighted.
Collapse
|
25
|
Quan Y, Li L, Yin Z, Chen S, Yi J, Lang J, Zhang L, Yue Q, Zhao J. Bulbus Fritillariae Cirrhosae as a Respiratory Medicine: Is There a Potential Drug in the Treatment of COVID-19? Front Pharmacol 2022; 12:784335. [PMID: 35126123 PMCID: PMC8811224 DOI: 10.3389/fphar.2021.784335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Bulbus fritillariae cirrhosae (BFC) is one of the most used Chinese medicines for lung disease, and exerts antitussive, expectorant, anti-inflammatory, anti-asthmatic, and antioxidant effects, which is an ideal therapeutic drug for respiratory diseases such as ARDS, COPD, asthma, lung cancer, and pulmonary tuberculosis. Through this review, it is found that the therapeutic mechanism of BFC on respiratory diseases exhibits the characteristics of multi-components, multi-targets, and multi-signaling pathways. In particular, the therapeutic potential of BFC in terms of intervention of “cytokine storm”, STAT, NF-κB, and MAPK signaling pathways, as well as the renin-angiotensin system (RAS) that ACE is involved in. In the “cytokine storm” of SARS-CoV-2 infection there is an intense inflammatory response. ACE2 regulates the RAS by degradation of Ang II produced by ACE, which is associated with SARS-CoV-2. For COVID-19, may it be a potential drug? This review summarized the research progress of BFC in the respiratory diseases, discussed the development potentiality of BFC for the treatment of COVID-19, explained the chemical diversity and biological significance of the alkaloids in BFC, and clarified the material basis, molecular targets, and signaling pathways of BFC for the respiratory diseases. We hope this review can provide insights on the drug discovery of anti-COVID-19.
Collapse
Affiliation(s)
- Yunyun Quan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- Department of Pharmacognosy, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Shilong Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jing Yi
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jirui Lang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Qianhua Yue
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- Department of Pharmacognosy, West China School of Pharmacy Sichuan University, Chengdu, China
- *Correspondence: Junning Zhao,
| |
Collapse
|
26
|
Xu J, Lazartigues E. Expression of ACE2 in Human Neurons Supports the Neuro-Invasive Potential of COVID-19 Virus. Cell Mol Neurobiol 2022; 42:305-309. [PMID: 32623546 PMCID: PMC7334623 DOI: 10.1007/s10571-020-00915-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/27/2020] [Indexed: 01/08/2023]
Abstract
The recent outbreak of 2019 coronavirus disease (COVID-19), caused by a novel coronavirus, has now spread quickly worldwide. Like the severe acute respiratory syndrome coronavirus (SARS-CoV), this novel type of coronavirus, SARS-CoV-2, has been demonstrated to utilize angiotensin-converting enzyme 2 (ACE2) as an entry point to the cells. There is a growing body of reports indicating that COVID-19 patients, especially those in severe condition, exhibit neurological symptoms, thus supporting the possibility that SARS-CoV-2 could infect and damage neurons within the central nervous system in humans. Using human pluripotent stem cells-derived neurons, here we show the expression of ACE2 in human neurons via immunocytochemistry. From this perspective, we elaborate on the idea that the neuro-invasive potential of SARS-CoV-2 should be considered as a possible contributory factor, as well as a therapeutic target, for the severe respiratory symptoms in critical COVID-19 cases.
Collapse
Affiliation(s)
- Jiaxi Xu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, 710061, China.
| | - Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA.
- SouthEast Louisiana Veterans Health Care System, New Orleans, LA, 70119, USA.
| |
Collapse
|
27
|
Romero A, Ramos E, López-Muñoz F, Gil-Martín E, Escames G, Reiter RJ. Coronavirus Disease 2019 (COVID-19) and Its Neuroinvasive Capacity: Is It Time for Melatonin? Cell Mol Neurobiol 2022; 42:489-500. [PMID: 32772307 PMCID: PMC7415199 DOI: 10.1007/s10571-020-00938-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023]
Abstract
The world faces an exceptional new public health concern caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), subsequently termed the coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO). Although the clinical symptoms mostly have been characterized, the scientific community still doesn´t know how SARS-CoV-2 successfully reaches and spreads throughout the central nervous system (CNS) inducing brain damage. The recent detection of SARS-CoV-2 in the cerebrospinal fluid (CSF) and in frontal lobe sections from postmortem examination has confirmed the presence of the virus in neural tissue. This finding reveals a new direction in the search for a neurotherapeutic strategy in the COVID-19 patients with underlying diseases. Here, we discuss the COVID-19 outbreak in a neuroinvasiveness context and suggest the therapeutic use of high doses of melatonin, which may favorably modulate the immune response and neuroinflammation caused by SARS-CoV-2. However, clinical trials elucidating the efficacy of melatonin in the prevention and clinical management in the COVID-19 patients should be actively encouraged.
Collapse
Affiliation(s)
- Alejandro Romero
- grid.4795.f0000 0001 2157 7667Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Eva Ramos
- grid.4795.f0000 0001 2157 7667Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- grid.449750.b0000 0004 1769 4416Faculty of Health Sciences, University Camilo José Cela, C/ Castillo de Alarcón 49, 28692 Villanueva de la Cañada, Madrid, Spain ,grid.144756.50000 0001 1945 5329Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i+12), Avda. Córdoba, s/n, 28041 Madrid, Spain ,grid.410919.40000 0001 2152 2367Portucalense Institute of Neuropsychology and Cognitive and Behavioural Neurosciences (INPP), Portucalense University, R. Dr. António Bernardino de Almeida 541, 4200-072 Porto, Portugal ,grid.413448.e0000 0000 9314 1427Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, Madrid, Spain
| | - Emilio Gil-Martín
- grid.6312.60000 0001 2097 6738Nutrition and Food Science Group, Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Germaine Escames
- grid.4489.10000000121678994Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain ,grid.4489.10000000121678994Department of Physiology, University of Granada, 18016 Granada, Spain ,grid.507088.2Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Investigación Biosanitaria CIBERFES, IBS. Granada, Granada Hospital Complex, 18016 Granada, Spain
| | - Russel J. Reiter
- grid.267309.90000 0001 0629 5880Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
28
|
Kurtoğlu E, Afsin A, Aktaş İ, Aktürk E, Kutlusoy E, Çağaşar Ö. Altered cardiac autonomic function after recovery from COVID-19. Ann Noninvasive Electrocardiol 2022; 27:e12916. [PMID: 34817120 PMCID: PMC8739610 DOI: 10.1111/anec.12916] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Autonomic dysfunction may occur during the acute phase of COVID-19. Heart rate variability (HRV) is a useful tool for the assessment of cardiac sympathetic and parasympathetic balance. We aimed to evaluate cardiac autonomic function by using HRV in subjects after recovery from COVID-19 who had previously symptomatic and were followed outpatiently. METHODS The study group composed of 50 subjects with a confirmed history of COVID-19 and the control group composed of 50 healthy subjects without a history of COVID-19 and vaccination. All the study participants underwent 2-dimensional, pulsed- and tissue-Doppler echocardiographic examinations and 24-hour Holter monitoring for HRV analysis. RESULTS Time domain parameters of SDNN, SDANN, SDNNi, RMSSD, pNN50, and HRV triangular index were all decreased in the study group when compared with the control group. Frequency domain parameters of TP, VLF, LF, HF, and HFnu were also decreased in the study group in comparison with the control group. LFnu was similar between groups. Nonlinear parameters of HRV including α1 and α2 decreased in the study group. By contrast, Lmax, Lmean, DET, REC, and Shannon entropy increased in the study population. Approximate and sample entropies also enhanced in the study group. CONCLUSIONS The present study showed that all three domain HRV significantly altered in patients after recovery from COVID-19 indicating some degree of dysfunction in cardiac autonomic nervous system. HRV may be a useful tool for the detection of preclinical autonomic dysfunction in this group of patients.
Collapse
Affiliation(s)
- Ertuğrul Kurtoğlu
- Clinic of CardiologyMalatya Turgut Ozal University Faculty of MedicineMalatyaTurkey
| | - Abdulmecit Afsin
- Clinic of CardiologyAdıyaman Training and Research HospitalAdıyamanTurkey
| | - İbrahim Aktaş
- Clinic of CardiologyMalatya Turgut Ozal University Faculty of MedicineMalatyaTurkey
| | - Erdal Aktürk
- Clinic of CardiologyMalatya Turgut Ozal University Faculty of MedicineMalatyaTurkey
| | - Ergün Kutlusoy
- Clinic of CardiologyMalatya Turgut Ozal University Faculty of MedicineMalatyaTurkey
| | - Özlem Çağaşar
- Clinic of Infectious DiseasesMalatya Training and Research HospitalMalatyaTurkey
| |
Collapse
|
29
|
Perrotta M, Carnevale D. Brain Areas Involved in Modulating the Immune Response Participating in Hypertension and Its Target Organ Damage. Antioxid Redox Signal 2021; 35:1515-1530. [PMID: 34269604 DOI: 10.1089/ars.2021.0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Hypertension is a multifactorial disease ensuing from the continuous challenge imposed by several risk factors on the cardiovascular system. Classically known pathophysiological alterations associated with hypertension comprise neurogenic mechanisms dysregulating the autonomic nervous system (ANS), vascular dysfunction, and excessive activation of the renin angiotensin system. During the past few years, a considerable number of studies indicated that immune activation and inflammation also have an important role in the onset and maintenance of hypertension. Critical Issues: On these premises, it has been necessary to reconsider the pathophysiological mechanisms underlying hypertension development, taking into account the potential interactions established between classically known determinants of high blood pressure and the immune system. Recent Advances: Interestingly, central nervous system areas controlling cardiovascular functions are enriched with Angiotensin II receptors. Observations showing that these brain areas are crucial for mediating peripheral ANS and immune responses were suggestive of a critical role of neuroimmune interactions in hypertension. In fact, the ANS, characterized by an intricate network of afferent and efferent fibers, represents an intermediate between the brain and peripheral responses that are essential for blood pressure regulation. Future Directions: In this review, we will summarize studies showing how specific brain areas can modulate immune responses that are involved in hypertension. Antioxid. Redox Signal. 35, 1515-1530.
Collapse
Affiliation(s)
- Marialuisa Perrotta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Daniela Carnevale
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
30
|
Tran S, Kuruppu S, Rajapakse NW. Chronic Renin-Angiotensin System Activation Induced Neuroinflammation: Common Mechanisms Underlying Hypertension and Dementia? J Alzheimers Dis 2021; 85:943-955. [PMID: 34897090 DOI: 10.3233/jad-215231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertension is a major risk factor for the pathogenesis of vascular dementia and Alzheimer's disease. Chronic activation of the renin-angiotensin system (RAS) contributes substantially to neuroinflammation. We propose that neuroinflammation arising from chronic RAS activation can initiate and potentiate the onset of hypertension and related dementia. Neuroinflammation induced by chronic activation of the RAS plays a key role in the pathogenesis of dementia. Increased levels of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and transforming growth factor (TGF)-β have been reported in brain tissue of vascular dementia patients and animal models of vascular dementia induced by either angiotensin II infusion or transverse aortic coarctation. It is proposed that neuronal cell death and synaptic dysfunction induced by neuroinflammation lead to cognitive impairment in dementia. The neuroprotective RAS pathway, regulated by angiotensin-converting enzyme 2 (ACE2) which converts angiotensin II into angiotensin-(1-7), can attenuate hypertension and dementia. Furthermore, the use of anti-hypertensive medications in preventing dementia or cognitive decline in hypertensive patients and animal models of dementia have mostly been beneficial. Current evidence suggests a strong link between RAS induced neuroinflammation and the onset of hypertension and dementia, which warrants further investigation. Strategies to counteract an overactive RAS and enhance the neuroprotective arm of the RAS may help prevent or improve cognitive impairment associated with hypertension.
Collapse
Affiliation(s)
- Shirley Tran
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Sanjaya Kuruppu
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia.,Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Niwanthi W Rajapakse
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
31
|
Wan D, Du T, Hong W, Chen L, Que H, Lu S, Peng X. Neurological complications and infection mechanism of SARS-COV-2. Signal Transduct Target Ther 2021; 6:406. [PMID: 34815399 PMCID: PMC8609271 DOI: 10.1038/s41392-021-00818-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023] Open
Abstract
Currently, SARS-CoV-2 has caused a global pandemic and threatened many lives. Although SARS-CoV-2 mainly causes respiratory diseases, growing data indicate that SARS-CoV-2 can also invade the central nervous system (CNS) and peripheral nervous system (PNS) causing multiple neurological diseases, such as encephalitis, encephalopathy, Guillain-Barré syndrome, meningitis, and skeletal muscular symptoms. Despite the increasing incidences of clinical neurological complications of SARS-CoV-2, the precise neuroinvasion mechanisms of SARS-CoV-2 have not been fully established. In this review, we primarily describe the clinical neurological complications associated with SARS-CoV-2 and discuss the potential mechanisms through which SARS-CoV-2 invades the brain based on the current evidence. Finally, we summarize the experimental models were used to study SARS-CoV-2 neuroinvasion. These data form the basis for studies on the significance of SARS-CoV-2 infection in the brain.
Collapse
Affiliation(s)
- Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tingfu Du
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
- State Key Laboratory of Medical Molecular Biology, Department of Molecular, Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
32
|
de Freitas RF, Torres SC, Martín-Sánchez FJ, Carbó AV, Lauria G, Nunes JPL. Syncope and COVID-19 disease - A systematic review. Auton Neurosci 2021; 235:102872. [PMID: 34500351 PMCID: PMC8393505 DOI: 10.1016/j.autneu.2021.102872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/08/2021] [Accepted: 08/21/2021] [Indexed: 12/04/2022]
Abstract
BACKGROUND Syncope is not a common manifestation of COVID-19, but it may occur in this context and it can be the presenting symptom in some cases. Different mechanisms may explain the pathophysiology behind COVID-19 related syncope. In this report, we aimed to examine the current frequency and etiology of syncope in COVID-19. METHODS A systematic review across PubMed, ISI Web of Knowledge and SCOPUS was performed, according to PRISMA guidelines, in order to identify all relevant articles regarding both COVID-19 and syncope. RESULTS We identified 136 publications, of which 99 were excluded. The frequency of syncope and pre-syncope across the selected studies was 4.2% (604/14,437). Unexplained syncope was the most common type (87.9% of the episodes), followed by reflex syncope (7.8% of the cases). Orthostatic hypotension was responsible for 2.2% of the cases and syncope of presumable cardiac cause also accounted for 2.2% of cases. Arterial hypertension was present in 52.0% of syncope patients. The use of angiotensin receptor blockers or angiotensin converting enzyme inhibitors were not associated with an increased incidence of syncope (chi-square test 1.07, p 0.30), unlike the use of beta-blockers (chi-square test 12.48, p < 0.01). CONCLUSION Syncope, although not considered a typical symptom of COVID-19, can be associated with it, particularly in early stages. Different causes of syncope were seen in this context. A reevaluation of blood pressure in patients with COVID-19 is suggested, including reassessment of antihypertensive therapy, especially in the case of beta-blockers.
Collapse
Affiliation(s)
| | - Sofia Cardoso Torres
- Department of Cardiology, Centro Hospitalar Universitário São João, Porto, Portugal
| | | | - Adrián Valls Carbó
- Departments of Emergency and of Neurology, Hospital Clínico San Carlos, Madrid, Spain
| | - Giuseppe Lauria
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - José Pedro L Nunes
- Department of Medicine, Faculdade de Medicina da Universidade do Porto, Porto, Portugal; Department of Cardiology, Centro Hospitalar Universitário São João, Porto, Portugal.
| |
Collapse
|
33
|
Dąbrowska E, Galińska-Skok B, Waszkiewicz N. Depressive and Neurocognitive Disorders in the Context of the Inflammatory Background of COVID-19. Life (Basel) 2021; 11:1056. [PMID: 34685427 PMCID: PMC8541562 DOI: 10.3390/life11101056] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023] Open
Abstract
The dysfunctional effects of the coronavirus disease 2019 (COVID-19) infection on the nervous system are established. The manifestation of neuropsychiatric symptoms during and after infection is influenced by the neuroinvasive and neurotrophic properties of SARS-CoV-2 as well as strong inflammation characterised by a specific "cytokine storm". Research suggests that a strong immune response to a SARS-CoV-2 infection and psychological stressors related to the pandemic may cause chronic inflammatory processes in the body with elevated levels of inflammatory markers contributing to the intensification of neurodegenerative processes. It is suggested that neuroinflammation and associated central nervous system changes may significantly contribute to the etiopathogenesis of depressive disorders. In addition, symptoms after a COVID-19 infection may persist for up to several weeks after an acute infection as a post-COVID-19 syndrome. Moreover, previous knowledge indicates that among SSRI (selective serotonin reuptake inhibitor) group antidepressants, fluoxetine is a promising drug against COVID-19. In conclusion, further research, observation and broadening of the knowledge of the pathomechanism of a SARS-CoV-2 infection and the impact on potential complications are necessary. It is essential to continue research in order to assess the long-term neuropsychiatric effects in COVID-19 patients and to find new therapeutic strategies.
Collapse
Affiliation(s)
- Eliza Dąbrowska
- Department of Psychiatry, Medical University of Bialystok, pl. Brodowicza 1, 16-070 Choroszcz, Poland; (B.G.-S.); (N.W.)
| | | | | |
Collapse
|
34
|
Skazkina VV, Krasikova NS, Borovkova EI, Ishbulatov YM, Gorshkov AY, Korolev AI, Dadaeva VA, Fedorovich AA, Kuligin AV, Drapkina OM, Karavaev AS, Kiselev AR. Synchronization Of Autonomic Control Loops Of Blood Circulation In Patients With COVID-19. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study aims to investigate the strength of synchronization between the autonomic control loops of the cardiovascular system (CVS) in patients with COronaVIrus Disease 2019 (COVID-19). Methods — We calculated the total percent of phase synchronization index (S index) between the loops of autonomic control of heart rate and vascular tone in two sample groups: healthy individuals and COVID-19 patients. Results — The group-average value of the S index in COVID-19 patients is lower comparing to healthy individuals, the Mann-Whitney U-test confirmed that the differences are statistically significant. Conclusion — Obtained results suggest that the decreased value of the S index reflects the presence of a viral disease, and the S index is a promising basis for non-invasive screening diagnostics of viral diseases, particularly of COVID-19.
Collapse
Affiliation(s)
- Viktoriia V. Skazkina
- Saratov State University, Saratov, Russia; Lappeenranta University of Technology, Finland
| | | | - Ekaterina I. Borovkova
- Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences, Saratov, Russia; Saratov State Medical University, Saratov, Russia; Saratov State University, Saratov, Russia
| | - Yurii M. Ishbulatov
- Saratov State Medical University, Saratov, Russia; Saratov State University, Saratov, Russia
| | | | - Andrei I. Korolev
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Valida A. Dadaeva
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Andrei A. Fedorovich
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia; Research Center – Institute of Biomedical Problems of the Russian Academy of Sciences (IBMP), Moscow, Russia
| | | | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Anatoly S. Karavaev
- Saratov State University, Saratov, Russia; Saratov State Medical University, Saratov, Russia; Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences, Saratov, Russia
| | - Anton R. Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia; Saratov State Medical University, Saratov, Russia; Saratov State University, Saratov, Russia
| |
Collapse
|
35
|
Anand H, Ende V, Singh G, Qureshi I, Duong TQ, Mehler MF. Nervous System-Systemic Crosstalk in SARS-CoV-2/COVID-19: A Unique Dyshomeostasis Syndrome. Front Neurosci 2021; 15:727060. [PMID: 34512253 PMCID: PMC8430330 DOI: 10.3389/fnins.2021.727060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 01/05/2023] Open
Abstract
SARS-CoV-2 infection is associated with a spectrum of acute neurological syndromes. A subset of these syndromes promotes higher in-hospital mortality than is predicted by traditional parameters defining critical care illness. This suggests that deregulation of components of the central and peripheral nervous systems compromises the interplay with systemic cellular, tissue and organ interfaces to mediate numerous atypical manifestations of COVID-19 through impairments in organismal homeostasis. This unique dyshomeostasis syndrome involves components of the ACE-2/1 lifecycles, renin-angiotensin system regulatory axes, integrated nervous system functional interactions and brain regions differentially sculpted by accelerated evolutionary processes and more primordial homeostatic functions. These biological contingencies suggest a mechanistic blueprint to define long-term neurological sequelae and systemic manifestations such as premature aging phenotypes, including organ fibrosis, tissue degeneration and cancer. Therapeutic initiatives must therefore encompass innovative combinatorial agents, including repurposing FDA-approved drugs targeting components of the autonomic nervous system and recently identified products of SARS-CoV-2-host interactions.
Collapse
Affiliation(s)
- Harnadar Anand
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Victoria Ende
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Gurinder Singh
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Irfan Qureshi
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
- Biohaven Pharmaceuticals, New Haven, CT, United States
| | - Tim Q. Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mark F. Mehler
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, United States
- Rose F. Kennedy Center for Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Center for Epigenomics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
36
|
Williams ME, Fielding BC. Insult to Injury-Potential Contribution of Coronavirus Disease-19 to Neuroinflammation and the Development of HIV-Associated Neurocognitive Disorders. AIDS Res Hum Retroviruses 2021; 37:601-609. [PMID: 32993321 DOI: 10.1089/aid.2020.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 is responsible for a new coronavirus disease known as coronavirus disease-19 (COVID-19). SARS-CoV-2 reports neurotropic properties and may have neurological implications, and this creates another health burden for people living with HIV. As yet, the impact of COVID-19 on (neuro)inflammation and the development of HIV-associated neurocognitive disorders (HAND) is not fully known. Here, we reviewed preliminary evidence that provides clues that COVID-19 may exacerbate inflammatory mechanisms related to the development of HAND.
Collapse
Affiliation(s)
| | - Burtram Clinton Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
37
|
Almutlaq M, Alamro AA, Alroqi F, Barhoumi T. Classical and Counter-Regulatory Renin-Angiotensin System: Potential Key Roles in COVID-19 Pathophysiology. CJC Open 2021; 3:1060-1074. [PMID: 33875979 PMCID: PMC8046706 DOI: 10.1016/j.cjco.2021.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
In the current COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 uses angiotensin-converting enzyme-2 (ACE-2) receptors for cell entry, leading to ACE-2 dysfunction and downregulation, which disturb the balance between the classical and counter-regulatory renin-angiotensin system (RAS) in favor of the classical RAS. RAS dysregulation is one of the major characteristics of several cardiovascular diseases; thus, adjustment of this system is the main therapeutic target. RAS inhibitors-particularly angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II type 1 receptor blockers (ARBs)-are commonly used for treatment of hypertension and cardiovascular disease. Patients with cardiovascular diseases are the group most commonly seen among those with COVID-19 comorbidity. At the beginning of this pandemic, a dilemma occurred regarding the use of ACEIs and ARBs, potentially aggravating cardiovascular and pulmonary dysfunction in COVID-19 patients. Urgent clinical trials from different countries and hospitals reported that there is no association between RAS inhibitor treatment and COVID-19 infection or comorbidity complication. Nevertheless, the disturbance of the RAS that is associated with COVID-19 infection and the potential treatment targeting this area have yet to be resolved. In this review, the link between the dysregulation of classical RAS and counter-regulatory RAS activities in COVID-19 patients with cardiovascular metabolic diseases is investigated. In addition, the latest findings based on ACEI and ARB administration and ACE-2 availability in relation to COVID-19, which may provide a better understanding of the RAS contribution to COVID-19 pathology, are discussed, as they are of the utmost importance amid the current pandemic.
Collapse
Affiliation(s)
- Moudhi Almutlaq
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Moudhi Almutlaq, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fayhan Alroqi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Corresponding authors: Dr Tlili Barhoumi, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| |
Collapse
|
38
|
Zanza C, Tassi MF, Romenskaya T, Piccolella F, Abenavoli L, Franceschi F, Piccioni A, Ojetti V, Saviano A, Canonico B, Montanari M, Zamai L, Artico M, Robba C, Racca F, Longhitano Y. Lock, Stock and Barrel: Role of Renin-Angiotensin-Aldosterone System in Coronavirus Disease 2019. Cells 2021; 10:1752. [PMID: 34359922 PMCID: PMC8306543 DOI: 10.3390/cells10071752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Since the end of 2019, the medical-scientific community has been facing a terrible pandemic caused by a new airborne viral agent known as SARS-CoV2. Already in the early stages of the pandemic, following the discovery that the virus uses the ACE2 cell receptor as a molecular target to infect the cells of our body, it was hypothesized that the renin-angiotensin-aldosterone system was involved in the pathogenesis of the disease. Since then, numerous studies have been published on the subject, but the exact role of the renin-angiotensin-aldosterone system in the pathogenesis of COVID-19 is still a matter of debate. RAAS represents an important protagonist in the pathogenesis of COVID-19, providing the virus with the receptor of entry into host cells and determining its organotropism. Furthermore, following infection, the virus is able to cause an increase in plasma ACE2 activity, compromising the normal function of the RAAS. This dysfunction could contribute to the establishment of the thrombo-inflammatory state characteristic of severe forms of COVID-19. Drugs targeting RAAS represent promising therapeutic options for COVID-19 sufferers.
Collapse
Affiliation(s)
- Christian Zanza
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
- Foundation Ospedale Alba-Bra and Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, 12051 Verduno, Italy
| | - Michele Fidel Tassi
- Department of Emergency Medicine, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Tatsiana Romenskaya
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Fabio Piccolella
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Francesco Franceschi
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Andrea Piccioni
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Veronica Ojetti
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Angela Saviano
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
| | - Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
- National Institute for Nuclear Physics (INFN)-Gran Sasso National Laboratory (LNGS), 67100 Assergi L’Aquila, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy;
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy;
| | - Fabrizio Racca
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Yaroslava Longhitano
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
- Foundation Ospedale Alba-Bra and Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, 12051 Verduno, Italy
| |
Collapse
|
39
|
Baker J, Incognito AV, Wilson RJA, Raj SR. Syncope and silent hypoxemia in COVID-19: Implications for the autonomic field. Auton Neurosci 2021; 235:102842. [PMID: 34246957 PMCID: PMC8258030 DOI: 10.1016/j.autneu.2021.102842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/22/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus-19 (COVID-19), the infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has wreaked havoc across the globe since its emergence in December 2019. Reports of patients presenting with syncope and pre-syncope, as well as hypoxemia without symptoms of dyspnea (“silent hypoxemia”), have led researchers to speculate whether SARS-CoV-2 can alter autonomic nervous system function. As viral infections are commonly reported triggers of altered autonomic control, we must consider whether SARS-CoV-2 can also interfere with autonomic activity, at least in some patients. As we are still in the early stages of understanding COVID-19, we still do not know whether syncope and silent hypoxemia are more strongly associated with COVID-19 compared to any other viral infections that severely compromise gas exchange. Therefore, in this perspective we discuss these two intriguing clinical presentations, as they relate to autonomic nervous system function. In our discussion, we will explore COVID-specific, as well as non-COVID specific mechanisms that may affect autonomic activity and potential therapeutic targets. As we move forward in our understanding of COVID-19, well-designed prospective studies with appropriate control and comparator groups will be necessary to identify potential unique effects of COVID-19 on autonomic function.
Collapse
Affiliation(s)
- Jacquie Baker
- Libin Cardiovascular Institute, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Anthony V Incognito
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Richard J A Wilson
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Satish R Raj
- Libin Cardiovascular Institute, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Barrantes FJ. The unfolding palette of COVID-19 multisystemic syndrome and its neurological manifestations. Brain Behav Immun Health 2021; 14:100251. [PMID: 33842898 PMCID: PMC8019247 DOI: 10.1016/j.bbih.2021.100251] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
Although our current knowledge of the pathophysiology of COVID-19 is still fragmentary, the information so far accrued on the tropism and life cycle of its etiological agent SARS-CoV-2, together with the emerging clinical data, suffice to indicate that the severe acute pulmonary syndrome is the main, but not the only manifestation of COVID-19. Necropsy studies are increasingly revealing underlying endothelial vasculopathies in the form of micro-haemorrhages and micro-thrombi. Intertwined with defective antiviral responses, dysregulated coagulation mechanisms, abnormal hyper-inflammatory reactions and responses, COVID-19 is disclosing a wide pathophysiological palette. An additional property in categorising the disease is the combination of tissue (e.g. neuro- and vasculo-tropism) with organ tropism, whereby the virus preferentially attacks certain organs with highly developed capillary beds, such as the lungs, gastrointestinal tract, kidney and brain. These multiple clinical presentations confirm that the acute respiratory syndrome as described initially is increasingly unfolding as a more complex nosological entity, a multiorgan syndrome of systemic breadth. The neurological manifestations of COVID-19, the focus of this review, reflect this manifold nature of the disease.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| |
Collapse
|
41
|
Marazziti D, Cianconi P, Mucci F, Foresi L, Chiarantini I, Della Vecchia A. Climate change, environment pollution, COVID-19 pandemic and mental health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145182. [PMID: 33940721 PMCID: PMC7825818 DOI: 10.1016/j.scitotenv.2021.145182] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 05/06/2023]
Abstract
Converging data would indicate the existence of possible relationships between climate change, environmental pollution and epidemics/pandemics, such as the current one due to SARS-CoV-2 virus. Each of these phenomena has been supposed to provoke detrimental effects on mental health. Therefore, the purpose of this paper was to review the available scientific literature on these variables in order to suggest and comment on their eventual synergistic effects on mental health. The available literature report that climate change, air pollution and COVID-19 pandemic might influence mental health, with disturbances ranging from mild negative emotional responses to full-blown psychiatric conditions, specifically, anxiety and depression, stress/trauma-related disorders, and substance abuse. The most vulnerable groups include elderly, children, women, people with pre-existing health problems especially mental illnesses, subjects taking some types of medication including psychotropic drugs, individuals with low socio-economic status, and immigrants. It is evident that COVID-19 pandemic uncovers all the fragility and weakness of our ecosystem, and inability to protect ourselves from pollutants. Again, it underlines our faults and neglect towards disasters deriving from climate change or pollution, or the consequences of human activities irrespective of natural habitats and constantly increasing the probability of spillover of viruses from animals to humans. In conclusion, the psychological/psychiatric consequences of COVID-19 pandemic, that currently seem unavoidable, represent a sharp cue of our misconception and indifference towards the links between our behaviour and their influence on the "health" of our planet and of ourselves. It is time to move towards a deeper understanding of these relationships, not only for our survival, but for the maintenance of that balance among man, animals and environment at the basis of life in earth, otherwise there will be no future.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy; UniCamillus - Saint Camillus University of Health Sciences, Rome, Italy
| | - Paolo Cianconi
- Institute of Psychiatry, Department of Neurosciences, Catholic University, Rome, Italy
| | - Federico Mucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Department of Psychiatry, North-Western Tuscany Region, NHS Local Health Unit, Italy
| | - Lara Foresi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Ilaria Chiarantini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.
| |
Collapse
|
42
|
Dadkhah M, Talei S, Doostkamel D, Molaei S, Rezaei N. The impact of COVID-19 on diagnostic biomarkers in neuropsychiatric and neuroimmunological diseases: a review. Rev Neurosci 2021; 33:79-92. [PMID: 34087964 DOI: 10.1515/revneuro-2020-0154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/24/2021] [Indexed: 12/17/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious respiratory disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidence-based emerging reports of neurological manifestations show that SARS-CoV-2 can attack the nervous system. However, little is known about the biomarkers in disease in neuropsychiatric and neuroimmunological disorders. One of the important keys in the management of COVID-19 is an accurate diagnosis. Biomarkers could provide valuable information in the early detection of disease etiology, diagnosis, further treatment, and prognosis. Moreover, ongoing investigations on hematologic, biochemical, and immunologic biomarkers in nonsevere, severe, or fatal forms of COVID-19 patients provide an urgent need for the identification of clinical and laboratory predictors. In addition, several cytokines acting through mechanisms to emerge immune response against SARS-CoV-2 infection are known to play a major role in neuroinflammation. Considering the neuroinvasive potential of SARS-CoV-2, which can be capable of triggering a cytokine storm, the current evidence on inflammation in psychiatry and neurodegenerative by emerging neuroinflammation is discussed in this review. We also highlighted the hematologic, biochemical, and immunologic biomarkers in COVID-19 diagnosis. COVID-19 prognostic biomarkers in patients with neuropsychiatric and neuroimmunological diseases are also explained.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Donya Doostkamel
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran.,USERN Ardabil Office, Universal Scientific Education and Research Network (USERN), Ardabil 5618985991, Iran
| | - Soheila Molaei
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
43
|
Carlos-Escalante JA, de Jesús-Sánchez M, Rivas-Castro A, Pichardo-Rojas PS, Arce C, Wegman-Ostrosky T. The Use of Antihypertensive Drugs as Coadjuvant Therapy in Cancer. Front Oncol 2021; 11:660943. [PMID: 34094953 PMCID: PMC8173186 DOI: 10.3389/fonc.2021.660943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Cancer is a complex group of diseases that constitute the second largest cause of mortality worldwide. The development of new drugs for treating this disease is a long and costly process, from the discovery of the molecule through testing in phase III clinical trials, a process during which most candidate molecules fail. The use of drugs currently employed for the management of other diseases (drug repurposing) represents an alternative for developing new medical treatments. Repurposing existing drugs is, in principle, cheaper and faster than developing new drugs. Antihypertensive drugs, primarily belonging to the pharmacological categories of angiotensin-converting enzyme inhibitors, angiotensin II receptors, direct aldosterone antagonists, β-blockers and calcium channel blockers, are commonly prescribed and have well-known safety profiles. Additionally, some of these drugs have exhibited pharmacological properties useful for the treatment of cancer, rendering them candidates for drug repurposing. In this review, we examine the preclinical and clinical evidence for utilizing antihypertensive agents in the treatment of cancer.
Collapse
Affiliation(s)
- José A. Carlos-Escalante
- Plan de Estudios Combinados En Medicina (PECEM) (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcela de Jesús-Sánchez
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Orizaba-Córdoba, Mexico
| | - Alejandro Rivas-Castro
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Claudia Arce
- Medical Oncology/Breast Tumors, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Talia Wegman-Ostrosky
- Basic Research Subdirection, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
44
|
Elhamzaoui H, Rebahi H, Hachimi A. Coronavirus disease 2019 (COVID-19) pathogenesis: a concise narrative review. Pan Afr Med J 2021; 39:8. [PMID: 34178236 PMCID: PMC8197062 DOI: 10.11604/pamj.2021.39.8.23546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/01/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is the third zoonotic coronavirus. Since December 2019, it has spread through the globe and infects more than four million patients (as of May 10th, 2020). The disease was named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO). It involves many organs and systems in the human organism. We aimed to describe the pathogenesis of the COVID-19.
Collapse
Affiliation(s)
- Hamza Elhamzaoui
- Critical Care Department, Mohammed VIth University Hospital of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Houssam Rebahi
- Critical Care Department, Mohammed VIth University Hospital of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Abdelhamid Hachimi
- Critical Care Department, Mohammed VIth University Hospital of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
45
|
Diab AM, Carleton BC, Goralski KB. COVID-19 pathophysiology and pharmacology: what do we know and how did Canadians respond? A review of Health Canada authorized clinical vaccine and drug trials. Can J Physiol Pharmacol 2021; 99:577-588. [PMID: 33852809 DOI: 10.1139/cjpp-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has resulted in the death of over 18 000 Canadians and has impacted the lives of all Canadians. Many Canadian research groups have expanded their research programs to include COVID-19. Over the past year, our knowledge of this novel disease has grown and has led to the initiation of a number of clinical vaccine and drug trials for the prevention and treatment of COVID-19. Here, we review SARS-CoV-2 (the coronavirus that causes COVID-19) and the natural history of COVID-19, including a timeline of disease progression after SARS-CoV-2 exposure. We also review the pathophysiological effects of COVID-19 on the organ systems that have been implicated in the disease, including the lungs, upper respiratory tract, immune system, central nervous system, cardiovascular system, gastrointestinal organs, the liver, and the kidneys. Then we review general therapeutics strategies that are being applied and investigated for the prevention or treatment of COVID-19, including vaccines, antivirals, immune system enhancers, pulmonary supportive agents, immunosuppressants and (or) anti-inflammatories, and cardiovascular system regulators. Finally, we provide an overview of all current Health Canada authorized clinical drug and vaccine trials for the prevention or treatment of COVID-19.
Collapse
Affiliation(s)
- Antonios M Diab
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Kerry B Goralski
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Division of Hematology/Oncology, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
46
|
Ultramicronized Palmitoylethanolamide (um-PEA): A New Possible Adjuvant Treatment in COVID-19 patients. Pharmaceuticals (Basel) 2021; 14:ph14040336. [PMID: 33917573 PMCID: PMC8067485 DOI: 10.3390/ph14040336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.
Collapse
|
47
|
Nordvig AS, Fong KT, Willey JZ, Thakur KT, Boehme AK, Vargas WS, Smith CJ, Elkind MSV. Potential Neurologic Manifestations of COVID-19. Neurol Clin Pract 2021; 11:e135-e146. [PMID: 33842082 PMCID: PMC8032406 DOI: 10.1212/cpj.0000000000000897] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Neurologic complications are increasingly recognized in the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This coronavirus is related to severe acute respiratory syndrome coronavirus (SARS-CoV) and other human coronavirus-related illnesses that are associated with neurologic symptoms. These symptoms raise the question of a neuroinvasive potential of SARS-CoV-2. RECENT FINDINGS Potential neurologic symptoms and syndromes of SARS-CoV-2 include headache, fatigue, dizziness, anosmia, ageusia, anorexia, myalgias, meningoencephalitis, hemorrhage, altered consciousness, Guillain-Barré syndrome, syncope, seizure, and stroke. In addition, we discuss neurologic effects of other coronaviruses, special considerations for management of neurologic patients, and possible long-term neurologic and public health sequelae. SUMMARY As SARS-CoV-2 is projected to infect a large part of the world's population, understanding the potential neurologic implications of COVID-19 will help neurologists and others recognize and intervene in neurologic morbidity during and after the pandemic of 2020.
Collapse
Affiliation(s)
- Anna S Nordvig
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Kathryn T Fong
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Joshua Z Willey
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Kiran T Thakur
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Amelia K Boehme
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Wendy S Vargas
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Craig J Smith
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - Mitchell S V Elkind
- Department of Neurology (ASN, KTF, JZW, KTT, AKB, WSV, MSVE), Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital; Department of Epidemiology (AKB, MSVE), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Sciences (CJS), Lydia Becker Institute of Immunology and Inflammation, University of Manchester; and Manchester Centre for Clinical Neurosciences (CJS), Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| |
Collapse
|
48
|
Rahmawati PL, Tini K, Susilawathi NM, Wijayanti IAS, Samatra DP. Pathomechanism and Management of Stroke in COVID-19: Review of Immunopathogenesis, Coagulopathy, Endothelial Dysfunction, and Downregulation of ACE2. J Clin Neurol 2021; 17:155-163. [PMID: 33835735 PMCID: PMC8053537 DOI: 10.3988/jcn.2021.17.2.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) can reportedly manifest as an acute stroke, with most cases presenting as large vessel ischemic stroke in patients with or without comorbidities. The exact pathomechanism of stroke in COVID-19 remains ambiguous. The findings of previous studies indicate that the most likely underlying mechanisms are cerebrovascular pathological conditions following viral infection, inflammation-induced endothelial dysfunction, and hypercoagulability. Acute endothelial damage due to inflammation triggers a coagulation cascade, thrombosis propagation, and destabilization of atherosclerosis plaques, leading to large-vessel occlusion and plaque ulceration with concomitant thromboemboli, and manifests as ischemic stroke. Another possible mechanism is the downregulation of angiotensin-converting enzyme 2 as the target action of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Acute stroke management protocols need to be modified during the COVID-19 pandemic in order to adequately manage stroke patients with COVID-19.
Collapse
Affiliation(s)
- Putu Lohita Rahmawati
- Department of Neurology, Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia.
| | - Kumara Tini
- Department of Neurology, Udayana University, Udayana University Hospital, Bali, Indonesia
| | - Ni Made Susilawathi
- Department of Neurology, Udayana University, Udayana University Hospital, Bali, Indonesia
| | - I A Sri Wijayanti
- Department of Neurology, Udayana University, Udayana University Hospital, Bali, Indonesia
| | - Dpg Purwa Samatra
- Department of Neurology, Udayana University, Udayana University Hospital, Bali, Indonesia
| |
Collapse
|
49
|
Aghayari Sheikh Neshin S, Shahjouei S, Koza E, Friedenberg I, Khodadadi F, Sabra M, Kobeissy F, Ansari S, Tsivgoulis G, Li J, Abedi V, Wolk DM, Zand R. Stroke in SARS-CoV-2 Infection: A Pictorial Overview of the Pathoetiology. Front Cardiovasc Med 2021; 8:649922. [PMID: 33855053 PMCID: PMC8039152 DOI: 10.3389/fcvm.2021.649922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Since the early days of the pandemic, there have been several reports of cerebrovascular complications during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Numerous studies proposed a role for SARS-CoV-2 in igniting stroke. In this review, we focused on the pathoetiology of stroke among the infected patients. We pictured the results of the SARS-CoV-2 invasion to the central nervous system (CNS) via neuronal and hematogenous routes, in addition to viral infection in peripheral tissues with extensive crosstalk with the CNS. SARS-CoV-2 infection results in pro-inflammatory cytokine and chemokine release and activation of the immune system, COVID-19-associated coagulopathy, endotheliitis and vasculitis, hypoxia, imbalance in the renin-angiotensin system, and cardiovascular complications that all may lead to the incidence of stroke. Critically ill patients, those with pre-existing comorbidities and patients taking certain medications, such as drugs with elevated risk for arrhythmia or thrombophilia, are more susceptible to a stroke after SARS-CoV-2 infection. By providing a pictorial narrative review, we illustrated these associations in detail to broaden the scope of our understanding of stroke in SARS-CoV-2-infected patients. We also discussed the role of antiplatelets and anticoagulants for stroke prevention and the need for a personalized approach among patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Shima Shahjouei
- Neurology Department, Neuroscience Institute, Geisinger Health System, Danville, PA, United States
| | - Eric Koza
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Isabel Friedenberg
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | | | - Mirna Sabra
- Neurosciences Research Center (NRC), Lebanese University/Medical School, Beirut, Lebanon
| | - Firas Kobeissy
- Program of Neurotrauma, Neuroproteomics and Biomarker Research (NNBR), University of Florida, Gainesville, FL, United States
| | - Saeed Ansari
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, United States
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, "Attikon" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Jiang Li
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, United States
| | - Vida Abedi
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, United States.,Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States
| | - Donna M Wolk
- Molecular and Microbial Diagnostics and Development, Diagnostic Medicine Institute, Laboratory Medicine, Geisinger Health System, Danville, PA, United States
| | - Ramin Zand
- Neurology Department, Neuroscience Institute, Geisinger Health System, Danville, PA, United States
| |
Collapse
|
50
|
Verney C, Legouis D, Voiriot G, Fartoukh M, Labbé V. Inappropriate Heart Rate Response to Hypotension in Critically Ill COVID-19-Associated Acute Kidney Injury. J Clin Med 2021; 10:1317. [PMID: 33806780 PMCID: PMC8005163 DOI: 10.3390/jcm10061317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) receptor of severe acute respiratory syndrome coronavirus 2 is involved in baroreflex control mechanisms. We hypothesize that severe coronavirus infectious disease 2019 (COVID-19) patients may show an alteration in baroreflex-mediated heart rate changes in response to arterial hypotension. A pilot study was conducted to assess the response to hypotension in relation to continuous venovenous hemodiafiltration (CVVHDF) in critically ill patients with PCR-confirmed COVID-19 (from February to April 2020) and in critically ill non-COVID-19 patients with sepsis (from February 2018 to February 2020). The endpoint was a change in the heart rate in response to CVVHDF-induced hypotension. The association between COVID-19 status and heart rate change was estimated using linear regression. The study population included 6 COVID-19 patients (67% men; age 58 (53-64) years) and 12 critically ill non-COVID-19 patients (58% men; age 67 (51-71) years). Baseline characteristics, laboratory findings, hemodynamic parameters, and management before CVVHDF-induced hypotension were similar between the two groups, with the exception of a higher positive end-expiratory pressure and doses of propofol and midazolam administered in COVID-19 patients. Changes in the heart rate were significantly lower in COVID-19 patients as compared to critically ill non-COVID-19 patients (-7 (-9; -2) vs. 2 (2;5) bpm, p = 0.003), while the decrease in mean arterial blood pressure was similar between groups. The COVID-19 status was independently associated with a lower change in the heart rate (-11 (-20; -2) bpm; p = 0.03). Our findings suggest an inappropriate heart rate response to hypotension in severe COVID-19 patients compared to critically ill non-COVID-19 patients.
Collapse
Affiliation(s)
- Charles Verney
- Service de Médecine Intensive Réanimation, Hôpital Tenon, Département Médico-Universitaire APPROCHES, Assistance Publique-Hôpitaux de Paris (AP-HP), 75020 Paris, France; (C.V.); (G.V.); (M.F.)
- Service de Maladie Infectieuses et Tropicales, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris (AP-HP), 75020 Paris, France
| | - David Legouis
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, 1205 Geneva, Switzerland;
- Laboratory of Nephrology, Department of Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Department of Cell Physiology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Hôpital Tenon, Département Médico-Universitaire APPROCHES, Assistance Publique-Hôpitaux de Paris (AP-HP), 75020 Paris, France; (C.V.); (G.V.); (M.F.)
- Sorbonne Université, 75006 Paris, France
- Groupe de Recherche Clinique CARMAS, Université Paris Est Créteil, 94000 Créteil, France
| | - Muriel Fartoukh
- Service de Médecine Intensive Réanimation, Hôpital Tenon, Département Médico-Universitaire APPROCHES, Assistance Publique-Hôpitaux de Paris (AP-HP), 75020 Paris, France; (C.V.); (G.V.); (M.F.)
- Sorbonne Université, 75006 Paris, France
- Groupe de Recherche Clinique CARMAS, Université Paris Est Créteil, 94000 Créteil, France
| | - Vincent Labbé
- Service de Médecine Intensive Réanimation, Hôpital Tenon, Département Médico-Universitaire APPROCHES, Assistance Publique-Hôpitaux de Paris (AP-HP), 75020 Paris, France; (C.V.); (G.V.); (M.F.)
- Sorbonne Université, 75006 Paris, France
- Groupe de Recherche Clinique CARMAS, Université Paris Est Créteil, 94000 Créteil, France
| |
Collapse
|