1
|
Zheng X, Rong S, Liao Q, Fang Q, Wang X, Lou Y, Li Q, Qian J, Wang J, Wang Y, Zhao X, Xiong B, Wang L, Li H, Yao Y, Zhu Q, Jiang Y, Yang G, Xiao L, Ma C, Huang J. Renal denervation guided and ablated by noninvasive ultrasound in canines. ULTRASONICS 2025; 153:107666. [PMID: 40262440 DOI: 10.1016/j.ultras.2025.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
This study aimed to explore the application and efficacy of a novel stimulation-guided, targeting ablation, and efficacy verification technique based on dual-frequency extracorporeal focused ultrasound interference for renal denervation (RDN) in treating resistant hypertension. Existing RDN techniques are often invasive or lack clear intervention targets and efficacy endpoints, limiting their effectiveness and safety. To address these limitations, we developed a technique using dual-frequency extracorporeal focused ultrasound interference, which modulates acoustic radiation force to stimulate renal nerves for targeted RDN. Initial validation in C57 mice sciatic nerves demonstrated that differential-frequency stimulation (Δf = 40 kHz) achieved effective neuromuscular activation (leg twitching with recorded action potentials) at 0.25 W acoustic power, whereas same-frequency stimulation required significantly higher power (1.25 W) to elicit responses (P < 0.001 for action potential amplitude comparison).In old beagles, acoustic stimulation (with stimulation parameters set at 50 W acoustic power and a Δf = 10 kHz,) was applied across multiple cross-sectional quadrants of the main renal artery to identify and selectively ablate significant blood pressure response sites (≥5 mmHg). Further RDN was achieved through re-stimulation verification and supplementary ablation. Our findings reveal a predominant distribution of positive reaction sites in the proximal segment of the renal artery and that nearly one-third of the response sites still reacted to stimulation after ablation, necessitating additional ablation. When compared to anatomic landmark RDN method, the stimulate-guided RDN demonstrated notably superior reductions in systolic BP (14.4 ± 3.1 vs 9.6 ± 4.4 mmHg, P = 0.026) on day 28. Notably, the implementation of this method did not result in any serious complications. Our study suggests that nerve acoustic stimulation guidance has the potential to be further explored as a non-invasive RDN strategy for targeted ablation and efficacy validation in clinical settings.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; State Key Laboratory of Ultrasound in Medicine and Engineering, National Engineering Research Center of Ultrasound Medicine, Chongqing, China
| | - Qingyao Liao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Fang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Wang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
| | - Yake Lou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiaoqiao Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Qian
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; State Key Laboratory of Ultrasound in Medicine and Engineering, National Engineering Research Center of Ultrasound Medicine, Chongqing, China
| | - Junling Wang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
| | - Yue Wang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Bo Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Li
- Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
| | - Yuanqing Yao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Que Zhu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yonghong Jiang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Yang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Xiao
- Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; State Key Laboratory of Ultrasound in Medicine and Engineering, National Engineering Research Center of Ultrasound Medicine, Chongqing, China.
| |
Collapse
|
2
|
Xu T, Lou Y, Li Q, Huang J. Aorticorenal ganglion ablation for blood pressure lowering in canine models. Hypertens Res 2025; 48:1503-1513. [PMID: 39930021 DOI: 10.1038/s41440-025-02129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 04/08/2025]
Abstract
Studies have shown that renal denervation (RDN) can lower blood pressure (BP) in patients with refractory hypertension, but issues such as renal sympathetic nerve reinnervation and suboptimal BP reduction remain unresolved. In this study, we identified the aorticorenal ganglion (ARG) in canines by observing ambulatory BP responses following electrical stimulation of the ARG. We injected cholera toxin subunit B combined with Alexa Fluor™ 555, a nerve tracer, into the identified ARG and confirmed its innervation of the renal artery and kidney by observing fluorescence in adjacent tissues. Twelve experimental canines were divided equally into an intervention group, which received ARG ablation using 95% ethanol, and a sham control group, which received normal saline. Our results demonstrated that ARG ablation significantly reduced systolic, diastolic, and mean arterial pressures, with minimal impact on heart rate. Additionally, ARG ablation lowered plasma and renal cortex norepinephrine levels, and reduced tyrosine hydroxylase expression in the renal cortex. No adverse events were observed during the 3-month follow-up period. These findings suggest that the ARG may serve as a novel target for RDN and could offer a therapeutic alternative for patients who do not respond to or experience elevated BP after RDN.
Collapse
Affiliation(s)
- Teng Xu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yake Lou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiaoqiao Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Jiang H, Kittipibul V, Mahfoud F, Böhm M, Sobotka PA, Esler M, Wang J, Fudim M. The road to renal denervation for hypertension and beyond (HF): two decades of failed, succeeded, and to be determined. Heart Fail Rev 2025; 30:293-314. [PMID: 39509056 DOI: 10.1007/s10741-024-10463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Activation of the sympathetic nervous system has been attributed to the development of hypertension. Two established approaches for treating hypertension are pharmacotherapy and lifestyle changes. With an improved understanding of renal nerve anatomy and physiology, renal denervation has been proposed as an alternative treatment for hypertension. Specifically, it has been shown that the interruption of sympathetic nerves connecting the kidney and the sympathetic nervous system can reduce blood pressure. Here, we present a review on how renal denervation can help hypertension patients, specifically focusing on our novel understanding of renal nerve anatomy, denervation technique, and subsequent clinical trials, and how it may be used to treat other cardiovascular diseases like heart failure.
Collapse
Affiliation(s)
- Haoran Jiang
- Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Veraprapas Kittipibul
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Felix Mahfoud
- Department of Cardiology, University Heart Center, University Hospital Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, Basel, Switzerland
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Böhm
- Department of Internal Medicine III - Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Paul A Sobotka
- Department of Cardiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Murray Esler
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Jie Wang
- The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, Columbia, NY, USA
| | - Marat Fudim
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
4
|
Wang J, Yin Y, Lu C, Lu Z, Hu J, Wang Y, Ge J, Jiang H, Yao C, Yan X, Ma W, Qi X, Dang Y, Chen S, Zhu J, Wang D, Ding C, Wang W, Liu J, Wang Y, Li H, Pan Z, Cui K, Li C, Liang X, Chen W, Sobotka PA, Zhang J, Esler M, Sun N, Chen M, Huo Y. Efficacy and safety of sympathetic mapping and ablation of renal nerves for the treatment of hypertension (SMART): 6-month follow-up of a randomised, controlled trial. EClinicalMedicine 2024; 72:102626. [PMID: 38756107 PMCID: PMC11096821 DOI: 10.1016/j.eclinm.2024.102626] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Background Previous trials of renal denervation (RDN) have been designed to investigate reduction of blood pressure (BP) as the primary efficacy endpoint using non-selective RDN without intraoperatively verified RDN success. It is an unmet clinical need to map renal nerves, selectively denervate renal sympathetic nerves, provide readouts for the interventionalists and avoid futile RDN. We aimed to examine the safety and efficacy of renal nerve mapping/selective renal denervation (msRDN) in patients with uncontrolled hypertension (HTN) and determine whether antihypertensive drug burden is reduced while office systolic BP (OSBP) is controlled to target level (<140 mmHg). Methods We conducted a randomized, prospective, multicenter, single-blinded, sham-controlled trial. The study combined two efficacy endpoints at 6 months as primary outcomes: The control rate of patients with OSBP <140 mmHg (non-inferior outcome) and change in the composite index of antihypertensive drugs (Drug Index) in the treatment versus Sham group (superior outcome). This design avoids confounding from excess drug-taking in the Sham group. Antihypertensive drug burden was assessed by a composite index constructed as: Class N (number of classes of antihypertensive drugs) × (sum of doses). 15 hospitals in China participated in the study and 220 patients were enrolled in a 1:1 ratio (msRDN vs Sham). The key inclusion criteria included: age (18-65 years old), history of essential HTN (at least 6 months), heart rate (≥70 bpm), OSBP (≥150 mmHg and ≤180 mmHg), ambulatory BP monitoring (ABPM, 24-h SBP ≥130 mmHg or daytime SBP ≥135 mmHg or nighttime SBP ≥120 mmHg), renal artery stenosis (<50%) and renal function (eGFR >45 mL/min/1.73 m2). The catheter with both stimulation and ablation functions was inserted in the distal renal main artery. The RDN site (hot spot) was selected if SBP increased (≥5 mmHg) by intra-renal artery (RA) electrical stimulation; an adequate RDN was confirmed by repeated electronic stimulation if no increase in BP otherwise, a 2nd ablation was performed at the same site. At sites where there was decreased SBP (≥5 mmHg, cold spot) or no BP response (neutral spot) to stimulation, no ablation was performed. The mapping, ablation and confirmation procedure was repeated until the entire renal main artery had been tested then either treated or avoided. After msRDN, patients had to follow a predefined, vigorous drug titration regimen in order to achieve target OSBP (<140 mmHg). Drug adherence was monitored by liquid chromatography-tandem mass spectrometry analysis using urine. This study is registered with ClinicalTrials.gov (NCT02761811) and 5-year follow-up is ongoing. Findings Between July 8, 2016 and February 23, 2022, 611 patients were consented, 220 patients were enrolled in the study who received standardized antihypertensive drug treatments (at least two drugs) for at least 28 days, presented OSBP ≥150 mmHg and ≤180 mmHg and met all inclusion and exclusion criteria. In left RA and right RA, mapped sites were 8.2 (3.0) and 8.0 (2.7), hot/ablated sites were 3.7 (1.4) and 4.0 (1.6), cold spots were 2.4 (2.6) and 2.0 (2.2), neutral spots were 2.0 (2.1) and 2.0 (2.1), respectively. Hot, cold and neutral spots was 48.0%, 27.5% and 24.4% of total mapped sites, respectively. At 6 M, the Control Rate of OSBP was comparable between msRDN and Sham group (95.4% vs 92.8%, p = 0.429), achieved non-inferiority margin -10% (2.69%; 95% CI -4.11%, 9.83%, p < 0.001 for non-inferiority); the change in Drug Index was significantly lower in msRDN group compared to Sham group (4.37 (6.65) vs 7.61 (10.31), p = 0.010) and superior to Sham group (-3.25; 95% CI -5.56, -0.94, p = 0.003), indicating msRDN patients need significantly fewer drugs to control OSBP <140 mmHg. 24-hour ambulatory SBP decreased from 146.8 (13.9) mmHg by 10.8 (14.1) mmHg, and from 149.8 (12.8) mmHg by 10.0 (14.0) mmHg in msRDN and Sham groups, respectively (p < 0.001 from Baseline; p > 0.05 between groups). Safety profiles were comparable between msRDN and Sham groups, demonstrating the safety and efficacy of renal mapping/selective RDN to treat uncontrolled HTN. Interpretation The msRDN therapy achieved the goals of reducing the drug burden of HTN patients and controlling OSBP <140 mmHg, with only approximately four targeted ablations per renal main artery, much lower than in previous trials. Funding SyMap Medical (Suzhou), LTD, Suzhou, China.
Collapse
Affiliation(s)
- Jie Wang
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, NY, 10032, USA
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, 300190, China
| | - Zhibing Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yue Wang
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen Yao
- Peking University Health Science Center, Beijing, 100034, China
| | - Xiaoyan Yan
- Peking University Health Science Center, Beijing, 100034, China
| | - Wei Ma
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Xiaoyong Qi
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050057, China
| | - Yi Dang
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050057, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing, 210012, China
| | - Jiancheng Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing, 210012, China
| | - Dongmei Wang
- Department of Cardiology, Norman Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Chao Ding
- Department of Cardiology, Norman Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Weimin Wang
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China
| | - Jian Liu
- Department of Cardiology, Peking University People's Hospital, Beijing, 100044, China
| | - Yanbin Wang
- Department of Cardiology, Taiyuan Central Hospital, Taiyuan, 030009, China
| | - Hui Li
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing, 163458, China
| | - Zhenhua Pan
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing, 163458, China
| | - Kaijun Cui
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 332001, China
| | - Chengzong Li
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xinjian Liang
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong, 430060, China
| | - Weijie Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Paul A. Sobotka
- Department of Cardiology, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | | | - Murray Esler
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Ningling Sun
- Department of Hypertension, Heart Center, Peking University People's Hospital, Beijing, 100044, China
| | - Minglong Chen
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
5
|
Goyal A, Jain H, Verma A, Jain J, Shamim U, Kanagala SG, Motwani J, Dey RC, Chunawala Z, Sohail AH, Belur AD. The role of renal denervation in cardiology and beyond: An updated comprehensive review and future directives. Curr Probl Cardiol 2024; 49:102196. [PMID: 37952794 DOI: 10.1016/j.cpcardiol.2023.102196] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Renal denervation (RDN) is a minimally invasive intervention performed by denervation of the nervous fibers in the renal plexus, which decreases sympathetic activity. These sympathetic nerves influence various physiological functions that regulate blood pressure (BP), including intravascular volume, electrolyte composition, and vascular tone. Although proven effective in some trials, controversial trials, such as the Controlled Trial of Renal Denervation for Resistant Hypertension (SYMPLICITY-HTN3), have demonstrated contradictory results for the effectiveness of RDN in resistant hypertension (HTN). In the treatment of HTN, individuals with primary HTN are expected to experience greater benefits compared to those with secondary HTN due to the diverse underlying causes of secondary HTN. Beyond its application for HTN, RDN has also found utility in addressing cardiac arrhythmias, such as atrial fibrillation, and managing cases of heart failure. Non-cardiogenic applications of RDN include reducing the intensity of obstructive sleep apnea (OSA), overcoming insulin resistance, and in chronic kidney disease (CKD) patients. This article aims to provide a comprehensive review of RDN and its uses in cardiology and beyond, along with providing future directions and perspectives.
Collapse
Affiliation(s)
- Aman Goyal
- Department of Internal Medicine, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Amogh Verma
- Department of Medicine and Surgery, Rama Medical College Hospital and Research Centre, Hapur, India
| | - Jyoti Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Urooj Shamim
- Department of Internal Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Sai Gautham Kanagala
- Department of Internal Medicine, Metropolitan Hospital Center, NY, New York, United States
| | - Jatin Motwani
- Department of Internal Medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Rohit Chandra Dey
- Department of Internal Medicine, Altai State Medical University, Barnaul, Altai Krai, Russia
| | - Zainali Chunawala
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas, United States
| | - Amir H Sohail
- Department of Surgery, University of New Mexico Health Sciences, Albuquerque, NM, United States
| | - Agastya D Belur
- Department of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
6
|
Verdecchia P, Cavallini C, Sclafani R, Santucci A, Notaristefano F, Zingarini G, Colombo GA, Angeli F. Catheter-based renal artery denervation: facts and expectations. Eur J Intern Med 2023; 117:66-77. [PMID: 37544846 DOI: 10.1016/j.ejim.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Catheter-based renal artery denervation (RAD) is entering a new era. After the disappointing results of SYMPLICITY-HTN 3 trial in year 2014, several technical and methodological advancements led to execution of important SHAM-controlled randomized trials with promising results. Now, the 2023 ESH Guidelines give RAD a class of recommendation II with a Level of Evidence B. Currently, catheter-based RAD has two main areas of application: (a) Hypertensive patients who are still untreated, in whom RAD is a sort of a first-line treatment; (b) Difficult-to-control or true resistant hypertensive patients. Notably, randomized SHAM-controlled trials met their primary end-point in both these conditions. So far, we do not dispose of established predictors of the antihypertensive response to RAD. Some data suggest that younger patients with systo-diastolic hypertension, absence of diffuse atherosclerosis and evidence of sympathetic nervous system overactivity experience a better BP response to the procedure. We reviewed the available data on catheter-based RAD and included an updated meta-analysis of the results of the available SHAM-controlled trials. Overall, the reduction in 24-h systolic blood pressure (BP) after RAD exceeded that after SHAM by 4.58 mmHg (95% CI 3.07-6.10) in untreated patients, and by 3.82 mmHg (95% CI 2.46-5.18) in treated patients, without significant heterogeneity across trials, patient phenotype (untreated versus treated patients) and technique (radiofrequency versus ultrasound). There were no important safety signals related to the procedure. Notably, some data suggest that RAD could be an effective additional approach in patients with atrial fibrillation and other conditions characterized by sympathetic nervous system overactivity.
Collapse
Affiliation(s)
- Paolo Verdecchia
- Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy.
| | - Claudio Cavallini
- Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy
| | - Rocco Sclafani
- Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy
| | - Andrea Santucci
- Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy
| | | | - Gianluca Zingarini
- Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy
| | - Giovanni Andrea Colombo
- Department of Medicine and Technological Innovation (DiMIT), University of Insubria, Varese and Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy
| | - Fabio Angeli
- Department of Medicine and Technological Innovation (DiMIT), University of Insubria, Varese and Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy
| |
Collapse
|
7
|
Wang J, Sun N, Ge J, Jiang H, Yin Y, Chen M, Wang Y, Yao C, Yan X, Sobotka PA, Huo Y. Rationale and Design of Sympathetic Mapping/Ablation of Renal Nerves Trial (SMART) for the Treatment of Hypertension: a Prospective, Multicenter, Single-Blind, Randomized and Sham Procedure-Controlled Study. J Cardiovasc Transl Res 2023; 16:358-370. [PMID: 36042146 DOI: 10.1007/s12265-022-10307-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Renal denervation (RDN) is proposed as a durable and patient compliance independent treatment for hypertension. However, 20-30% non-responder after RDN treatment weakened the therapeutic effect, which may be due to blind ablation. The renal nerve mapping/selective ablation system developed by SyMap Medical Ltd (Suzhou), China, has the function of mapping renal sympathetic/parasympathetic nerve sites and selectively removing renal sympathetic nerves and is expected to meet the urgent unmet clinical need of targeted RDN. The "Sympathetic Mapping/Ablation of Renal Nerves Trial" (SMART) is a prospective, multicenter, randomized, single-blinded, sham procedure-controlled trial, to evaluate the safety and efficacy of targeted renal sympathetic denervation in patients with essential and uncontrolled hypertension. The study is the first clinical registry trial using a targeted RDN for the treatment of uncontrolled hypertension; the dual-endpoint design can answer the question of how many antihypertensive drugs can be reduced in patients after RDN. The trial is registered on clinicaltrials.gov NCT02761811.
Collapse
Affiliation(s)
- Jie Wang
- Division of Cardiology, Department of Medicine, College of Physician and Surgeons, Columbia University, New York, NY, 10032, USA.
- Academy of Clinical and Translational Research Jiangsu Province, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.
| | - Ningling Sun
- Department of Hypertension, Heart Center, Peking University People's Hospital, Beijing, 100044, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Minglong Chen
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Yue Wang
- Academy of Clinical and Translational Research Jiangsu Province, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Chen Yao
- Peking University Clinical Research Institute, Beijing, 100191, China
- Department of Biostatistics, Peking University First Hospital, Beijing, 100034, China
| | - Xiaoyan Yan
- Peking University Clinical Research Institute, Beijing, 100191, China
| | | | - Yong Huo
- Division of Cardiology, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
8
|
Xiong B, Chen S, Chen W, Yin Y, Ling Z. Advances in Renal Denervation in the Treatment of Hypertension. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2023. [DOI: 10.15212/cvia.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Hypertension significantly increases the risk of cardiovascular events and it is associated with high rates of disability and mortality. Hypertension is a common cause of cardiovascular and cerebrovascular accidents, which severely affect patients’ quality of life and lifespan. Current treatment strategies for hypertension are based primarily on medication and lifestyle interventions. The renal sympathetic nervous system plays an important role in the pathogenesis of hypertension, and catheter-based renal denervation (RDN) has provided a new concept for the treatment of hypertension. In recent years, studies on RDN have been performed worldwide. This article reviews the latest preclinical research and clinical evidence for RDN.
Collapse
|
9
|
Liu H, Li Y, Zhou H, Chen W, Xu Y, Du H, Zhang B, Xia T, Li D, Ou Z, Tang R, Chen Q, Zhao B, Yin Y. Renal nerve stimulation identifies renal innervation and optimizes the strategy for renal denervation in canine. J Transl Med 2023; 21:100. [PMID: 36759871 PMCID: PMC9912587 DOI: 10.1186/s12967-023-03919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Renal denervation (RDN) was still performed without any intra-procedural method for nerve mapping. Whether renal nerve stimulation (RNS) is an efficient way to identify renal autonomic innervation and optimize the strategy for RDN remain to be worthy for further exploration. METHODS The characteristics of renal autonomic innervation at the sites with different blood pressure (BP) responses to RNS were explored. Then, dogs anatomically eligible for RDN were randomly assigned into elevated BP response ablation group, reduced BP response ablation group, and RNS-control group. The postoperative outcomes were measured at baseline and after 4 weeks follow-up. RESULTS The proportion of afferent sensory nerve was higher at elevated BP response sites (ERS) than reduced BP response sites (RRS) and non-response sites (NRS) (P = 0.012 and P = 0.004). Conversely, the proportion of parasympathetic nerve at RRS was the highest (RRS vs. ERS, P = 0.017; RRS vs. NRS, P = 0.023). More importantly, there was a significant correlation between systolic blood pressure changes and the area ratios of afferent sensory and parasympathetic nerve (R = 0.859; P < 0.001). In addition, ablation at BP-elevation sites can result in a significant decrease in BP and plasma norepinephrine (NE) after 4 weeks (P = 0.002; P = 0.008), while ablation at BP-reduction sites can lead to significant increases in BP and plasma NE (P = 0.016; P = 0.033). CONCLUSIONS RNS is an effective method to identify renal autonomic innervation. It could not only help to identify optimal target sites, but also avoid ablation of sympathetic-inhibitory areas during RDN.
Collapse
Affiliation(s)
- Hang Liu
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Yidan Li
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Hao Zhou
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Weijie Chen
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Yanping Xu
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Huaan Du
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Bo Zhang
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Tianli Xia
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Dan Li
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Zhenhong Ou
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Ruotian Tang
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Qingsong Chen
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Binyi Zhao
- grid.412461.40000 0004 9334 6536Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing, China. .,Chongqing Key Laboratory of Arrhythmia, Chongqing, China.
| |
Collapse
|
10
|
Lai Y, Zhou H, Chen W, Liu H, Liu G, Xu Y, Du H, Zhang B, Li Y, Woo K, Yin Y. The intrarenal blood pressure modulation system is differentially altered after renal denervation guided by different intensities of blood pressure responses. Hypertens Res 2023; 46:456-467. [PMID: 36202981 DOI: 10.1038/s41440-022-01047-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate alterations in the intrarenal blood pressure (BP) regulation system after renal denervation (RDN) guided by renal nerve stimulation (RNS). Twenty-one dogs were randomized to receive RDN at strong (SRA group, n = 7) or weak (WRA group, n = 7) BP-elevation response sites identified by RNS or underwent RNS only (RNS-control, RSC, n = 7). After 4 weeks of follow-up, renal sympathetic components, the main components of renin-angiotensin system (RAS) and the major transporters involved in sodium and water reabsorption were assessed by immunohistochemical analysis. Compared with RSC treatment, RDN therapy significantly reduced renal norepinephrine and tyrosine hydroxylase levels, decreased the renin content and inhibited the onsite generation of angiotensinogen. Moreover, the expression of exciting axis components, including angiotensin-converting enzyme (ACE), angiotensin II and angiotensin II type-1 receptor, was downregulated, while protective axis components for the cardiovascular system, including ACE2 and Mas receptors, were upregulated in both WRA and SRA groups. Moreover, RDN reduced the abundance of aquaporin-1 and aquaporin-2 in kidneys. Although RDN had a minimal effect on overall NKCC2 expression, its activation (p-NKCC2) and directional enrichment in the apical membrane (mNKCC2) were dramatically blunted. All these changes were more obvious in the SRA group than WRA group. Selective RDN guided by RNS effectively reduced systemic BP by affecting the renal neurohormone system, as well as the sodium and water transporter system, and these effects at sites with a strong BP response were more superior.
Collapse
Affiliation(s)
- Yinchuan Lai
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
- Department of Cardiology, the Second People's Hospital of Yibin & West China Hospital, Sichuan University Yibin Hospital, Yibin City, Sichuan, China
| | - Hao Zhou
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Weijie Chen
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Hang Liu
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Guangliang Liu
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Yanping Xu
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Huaan Du
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Bo Zhang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Yidan Li
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China
| | - Kamsang Woo
- Institute of Future Cities, the Chinese University of Hong Kong, Hong Kong, China
| | - Yuehui Yin
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmia Therapeutic Service Center, Chongqing Key Laboratory of Arrhythmia, Chongqing, China.
| |
Collapse
|
11
|
Kassab K, Soni R, Kassier A, Fischell TA. The Potential Role of Renal Denervation in the Management of Heart Failure. J Clin Med 2022; 11:jcm11144147. [PMID: 35887912 PMCID: PMC9324976 DOI: 10.3390/jcm11144147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Sympathetic nervous system activation in patients with heart failure is one of the main pathophysiologic mechanisms associated with the worse outcomes. Pharmacotherapies targeting neurohormonal activation have been at the center of heart failure management. Despite the advancement of therapies and the available treatments, heart failure continues to have an overall poor prognosis. Renal denervation was originally developed to lower systemic blood pressure in patients with poorly controlled hypertension, by modulating sympathetic outflow. However, more recently, multiple studies have investigated the effect of renal denervation in heart failure patients with both preserved (HFpEF) and reduced ejection fractions (HFrEF). This paper provides an overview of the potential effect of renal denervation in altering the various pathophysiologic, sympathetically mediated pathways that contribute to heart failure, and reviews the literature that supports its future use in those patients.
Collapse
Affiliation(s)
- Kameel Kassab
- Division of Cardiology, Borgess Heart Institute, 1521 Gull Road, Kalamazoo, MI 49048, USA; (R.S.); (A.K.); (T.A.F.)
- Division of Cardiology, Michigan State University, Kalamazoo, MI 49048, USA
- Correspondence:
| | - Ronak Soni
- Division of Cardiology, Borgess Heart Institute, 1521 Gull Road, Kalamazoo, MI 49048, USA; (R.S.); (A.K.); (T.A.F.)
- Division of Cardiology, Michigan State University, Kalamazoo, MI 49048, USA
| | - Adnan Kassier
- Division of Cardiology, Borgess Heart Institute, 1521 Gull Road, Kalamazoo, MI 49048, USA; (R.S.); (A.K.); (T.A.F.)
- Division of Cardiology, Michigan State University, Kalamazoo, MI 49048, USA
| | - Tim A. Fischell
- Division of Cardiology, Borgess Heart Institute, 1521 Gull Road, Kalamazoo, MI 49048, USA; (R.S.); (A.K.); (T.A.F.)
- Division of Cardiology, Michigan State University, Kalamazoo, MI 49048, USA
| |
Collapse
|
12
|
Rao VN, Fudim M, Wang J. Beyond the Anatomy of Renal Nerves: Functional Diversity of Renal Nerves. J Cardiovasc Transl Res 2022; 15:27-28. [PMID: 35212975 DOI: 10.1007/s12265-022-10222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Vishal N Rao
- Department of Cardiology, Duke University Medical Center, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Durham, NC, 27710, USA
| | - Marat Fudim
- Department of Cardiology, Duke University Medical Center, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Durham, NC, 27710, USA
| | - Jie Wang
- Department of Cardiology, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA. .,Jiangsu Province Hospital, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
13
|
Li L, Hu Z, Xiong Y, Yao Y. Device-Based Sympathetic Nerve Regulation for Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:803984. [PMID: 34957267 PMCID: PMC8695731 DOI: 10.3389/fcvm.2021.803984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 12/05/2022] Open
Abstract
Sympathetic overactivation plays an important role in promoting a variety of pathophysiological processes in cardiovascular diseases (CVDs), including ventricular remodeling, vascular endothelial injury and atherosclerotic plaque progression. Device-based sympathetic nerve (SN) regulation offers a new therapeutic option for some CVDs. Renal denervation (RDN) is the most well-documented method of device-based SN regulation in clinical studies, and several large-scale randomized controlled trials have confirmed its value in patients with resistant hypertension, and some studies have also found RDN to be effective in the control of heart failure and arrhythmias. Pulmonary artery denervation (PADN) has been clinically shown to be effective in controlling pulmonary hypertension. Hepatic artery denervation (HADN) and splenic artery denervation (SADN) are relatively novel approaches that hold promise for a role in cardiovascular metabolic and inflammatory-immune related diseases, and their first-in-man studies are ongoing. In addition, baroreflex activation, spinal cord stimulation and other device-based therapies also show favorable outcomes. This review summarizes the pathophysiological rationale and the latest clinical evidence for device-based therapies for some CVDs.
Collapse
Affiliation(s)
| | | | | | - Yan Yao
- National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Fu Wai Hospital, Beijing, China
| |
Collapse
|
14
|
Zhou H, Li Y, Xu Y, Liu H, Lai Y, Tan K, Liu X, Ou Z, Chen W, Du H, Liu Z, Yin Y. Mapping Renal Innervations by Renal Nerve Stimulation and Characterizations of Blood Pressure Response Patterns. J Cardiovasc Transl Res 2021; 15:29-37. [PMID: 34282540 DOI: 10.1007/s12265-021-10149-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
Increased sympathetic nervous activity is one of main contributors to pathogenesis and progression of hypertension. Renal denervation (RDN) has been demonstrated as a potential therapy for treatment of hypertension; however, lack of indicators of intra-/post-procedure results in inconsistent clinical outcomes. Renal nerve stimulation (RNS), a simple and promising method, could evoke elevated blood pressure as an intraoperative indicator for RDN. But related researches on patterns of blood pressure responses to RNS are still incomplete. To investigate and categorize the phenotypes of blood pressure response to RNS and heart rate alteration before and after RNS, 24 Chinese Kunming dogs were used to perform RNS from bifurcation to ostium of renal arteries after angiography, and a total of 483 stimulated sites were complete. We identified five different patterns of blood pressure response to RNS in 483 stimulated sites, (1) continuous ascending and finally keeping steady above baseline (26.9%), (2) declining and then rising over baseline (11.8%), (3) declining and then rising but below baseline (14.5%), (4) fluctuating in the vicinity of baseline (39.5%), and (5) continuous declining and finally keeping steady below baseline (7.2%), and found no difference in RR intervals among five blood pressure responses before and after renal nerve stimulation. Renal nerve stimulation could elicit different patterns of blood pressure response, which could potentially assist in distinguishing sympathetic-excitatory sites and sympathetic-inhibitory sites from mixed nerve components, which might help to improve the efficacy of RDN.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Yidan Li
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Yanping Xu
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Hang Liu
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Yinchuan Lai
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Kunyue Tan
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Xueyuan Liu
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Zhenhong Ou
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Weijie Chen
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Huaan Du
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Zengzhang Liu
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China
| | - Yuehui Yin
- Department of Cardiology, Chongqing Cardiac Arrhythmias Therapeutic Service Center, The Second Affiliated Hospital of Chongqing Medical University, No. 288 Tianwen Avenue, Nan'an District, Chongqing, China.
| |
Collapse
|
15
|
Monitoring Antihypertensive Medication Adherence by LC-MS/MS: Method Establishment and Clinical Application. J Cardiovasc Pharmacol 2021; 78:581-596. [PMID: 34269698 DOI: 10.1097/fjc.0000000000001105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/26/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Proper medication compliance is critical for the integrity of clinical practice, directly related to the success of clinical trials to evaluate both pharmacological and device-based therapies. Here, we established a liquid chromatography tandem mass spectrometry (LC-MS/MS) method to accurately detect 55 chemical entities in human urine sample, which accounting for the most commonly used 172 antihypertensive drugs in China. The established method had good accuracy, intra-day and inter-day precision for all analyses in both bench tests and validated in 21 hospitalized patients. We utilized this method to monitor and ensure drug compliance, and exclude the inferring impacts of medication compliance as a key confounder for our pivotal trial of a catheter-based, renal mapping and selective renal denervation to treat hypertension. It is found that in the urine samples from 92 consecutive subjects, 85 subjects (92.4%) were consistent with their prescriptions after 28 days run-in periods, 90 (97.8%) and 85 (95.5%) patients completely complied with their medications during the 3-month and 6-month follow-up period, respectively. Thus, using LC-MS/MS method with specificity, accuracy and precision, we ensured drug compliance of patients, excluded the key confounder of drug interferences and ensured the quality of our device-based clinical trial for treatment of hypertension.
Collapse
|
16
|
Jorbenadze A, Fudim M, Mahfoud F, Adamson PB, Bekfani T, Wachter R, Sievert H, Ponikowski PP, Cleland JGF, Anker SD. Extra-cardiac targets in the management of cardiometabolic disease: Device-based therapies. ESC Heart Fail 2021; 8:3327-3338. [PMID: 34002946 PMCID: PMC8318435 DOI: 10.1002/ehf2.13361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/14/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) does not occur in a vacuum and is commonly defined and exacerbated by its co‐morbid conditions. Neurohormonal imbalance and systemic inflammation are some of the key pathomechanisms of HF but also commonly encountered co‐morbidities such as arterial hypertension, diabetes mellitus, cachexia, obesity and sleep‐disordered breathing. A cornerstone of HF management is neurohormonal blockade, which in HF with reduced ejection fraction has been tied to a reduction in morbidity and mortality. Pharmacological treatment effective in patients with HF with reduced ejection fraction did not show substantial effects in HF with preserved ejection fraction. Here, we review novel device‐based therapies using neuromodulation of extra‐cardiac targets to treat cardiometabolic disease.
Collapse
Affiliation(s)
| | - Marat Fudim
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Felix Mahfoud
- Department of Internal Medicine III, Cardiology, Angiology, and Intensive Care Medicine, Saarland University, Saarbrücken, Germany
| | | | - Tarek Bekfani
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Magdeburg, Otto von Guericke University, Magdeburg, Germany
| | - Rolf Wachter
- Clinic and Polyclinic for Cardiology, University Hospital Leipzig, Leipzig, Germany
| | | | | | - John G F Cleland
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Stefan D Anker
- Division of Cardiology and Metabolism - Heart Failure, Cachexia & Sarcopenia, Department of Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Fudim M, Sobotka PA, Piccini JP, Patel MR. Renal Denervation for Patients With Heart Failure: Making a Full Circle. Circ Heart Fail 2021; 14:e008301. [PMID: 33706548 DOI: 10.1161/circheartfailure.121.008301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marat Fudim
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.F., J.P.P., M.R.P.).,Duke Clinical Research Institute, Durham, NC (M.F., J.P.P., M.R.P.)
| | - Paul A Sobotka
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.F., J.P.P., M.R.P.).,The Ohio State University, Columbus (P.A.S.)
| | | | - Manesh R Patel
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC (M.F., J.P.P., M.R.P.).,Duke Clinical Research Institute, Durham, NC (M.F., J.P.P., M.R.P.)
| |
Collapse
|
18
|
Soloveva A, Fedorova D, Villevalde S, Zvartau N, Mareev Y, Sitnikova M, Shlyakhto E, Fudim M. Addressing Orthostatic Hypotension in Heart Failure: Pathophysiology, Clinical Implications and Perspectives. J Cardiovasc Transl Res 2020; 13:549-569. [PMID: 32748206 DOI: 10.1007/s12265-020-10044-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022]
Abstract
Heart failure (HF)is a condition at high risk for orthostatic hypotension (OH)given the large proportion of patients at an advanced age and high burden of comorbidities contributing to OH, as well as a high prevalence of medications with neurovascular and volume modulating properties. Early identification of OH in HF seems to be crucial as OH can have an impact on patient symptoms, activity level and independence, be a marker of specific pathophysiological changes or be an indicator of need for personalized treatment. OH might contribute significantly to bad enough prognosis in HF, as, besides a risk of falls and cognitive decline, it was found to be associated with cardiovascular morbidity and mortality. In this review, we aimed to incentivize the routine use of orthostatic testing in HF, as well as stimulate future research in this field, which could lead to significant advances in the treatment and outcomes.
Collapse
Affiliation(s)
- Anzhela Soloveva
- Almazov National Medical Research Centre, Saint Petersburg, Russian Federation.
| | - Darya Fedorova
- Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Svetlana Villevalde
- Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Nadezhda Zvartau
- Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Yury Mareev
- National Medical Research Centre for Therapy and Preventive Medicine, Moscow, Russian Federation
| | - Mariya Sitnikova
- Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Evgeny Shlyakhto
- Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Marat Fudim
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
19
|
Lobo MD, Sharp ASP, Kapil V, Davies J, de Belder MA, Cleveland T, Bent C, Chapman N, Dasgupta I, Levy T, Mathur A, Matson M, Saxena M, Cappuccio FP. Joint UK societies' 2019 consensus statement on renal denervation. Heart 2019; 105:1456-1463. [PMID: 31292190 PMCID: PMC6817707 DOI: 10.1136/heartjnl-2019-315098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
Improved and durable control of hypertension is a global priority for healthcare providers and policymakers. There are several lifestyle measures that are proven to result in improved blood pressure (BP) control. Moreover, there is incontrovertible evidence from large scale randomised controlled trials (RCTs) that antihypertensive drugs lower BP safely and effectively in the long-term resulting in substantial reduction in cardiovascular morbidity and mortality. Importantly, however, evidence is accumulating to suggest that patients neither sustain long-term healthy behaviours nor adhere to lifelong drug treatment regimens and thus alternative measures to control hypertension warrant further investigation. Endovascular renal denervation (RDN) appears to hold some promise as a non-pharmacological approach to lowering BP and achieves renal sympathectomy using either radiofrequency energy or ultrasound-based approaches. This treatment modality has been evaluated in clinical trials in humans since 2009 but initial studies were compromised by being non-randomised, without sham control and small in size. Subsequently, clinical trial design and rigour of execution has been greatly improved resulting in recent sham-controlled RCTs that demonstrate short-term reduction in ambulatory BP without any significant safety concerns in both medication-naïve and medication-treated hypertensive patients. Despite this, the joint UK societies still feel that further evaluation of this therapy is warranted and that RDN should not be offered to patients outside of the context of clinical trials. This document reviews the updated evidence since our last consensus statement from 2014 and provides a research agenda for future clinical studies.
Collapse
Affiliation(s)
- Melvin D Lobo
- William Harvey Research Institute, Centre for Clinical Pharmacology, NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK
- Department of Cardiovascular Medicine, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Andrew S P Sharp
- Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Department of Cardiology, Exeter Hospital, University of Exeter, Exeter, UK
| | - Vikas Kapil
- William Harvey Research Institute, Centre for Clinical Pharmacology, NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK
- Department of Cardiovascular Medicine, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Justin Davies
- Department of Cardiology, Imperial College Healthcare Trust, London, UK
| | - Mark A de Belder
- Department of Cardiology, James Cook University Hospital, Middlesborough, UK
- The National Institute for Cardiovascular Outcomes Research, Barts Health NHS Trust, London, UK
| | - Trevor Cleveland
- Sheffield Vascular Institute, Sheffield Teaching Hospitals NHSFT, Northern General Hospital, Sheffield, UK
| | - Clare Bent
- Department of Interventional Radiology, The Royal Bournemouth and Christchurch Hospitals NHS Foundation Trust, Bournemouth, UK
| | - Neil Chapman
- Department of Cardiology, Imperial College Healthcare Trust, London, UK
| | - Indranil Dasgupta
- Department of Renal Medicine, Birmingham Heartlands Hospital, Birmingham, UK
| | - Terry Levy
- Department of Interventional Radiology, The Royal Bournemouth and Christchurch Hospitals NHS Foundation Trust, Bournemouth, UK
| | - Anthony Mathur
- William Harvey Research Institute, Centre for Clinical Pharmacology, NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK
- Department of Cardiovascular Medicine, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | | | - Manish Saxena
- William Harvey Research Institute, Centre for Clinical Pharmacology, NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK
- Department of Cardiovascular Medicine, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Francesco P Cappuccio
- Warwick Medical School, University of Warwick, Coventry, UK
- University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
| |
Collapse
|
20
|
Selective renal denervation guided by renal nerve stimulation: mapping renal nerves for unmet clinical needs. J Hum Hypertens 2019; 33:716-724. [DOI: 10.1038/s41371-019-0244-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 01/01/2023]
|
21
|
Liu H, Chen W, Lai Y, Du H, Wang Z, Xu Y, Ling Z, Fan J, Xiao P, Zhang B, Wang J, Gyawali L, Zrenner B, Woo K, Yin Y. Selective Renal Denervation Guided by Renal Nerve Stimulation in Canine. Hypertension 2019; 74:536-545. [DOI: 10.1161/hypertensionaha.119.12680] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Renal nerve stimulation (RNS) can result in substantial blood pressure (BP) elevation, and the change was significantly blunted when repeated stimulation after ablation. However, whether RNS could provide a meaningful renal nerve mapping for identification of optimal ablation targets in renal denervation (RDN) is not fully clear. Here, we compared the antihypertensive effects of selective RDN guided by two different BP responses to RNS and explored the nerve innervations at these sites in Kunming dogs. Our data indicated that ablation at strong-response sites showed a more systolic BP-lowering effect than at weak-response sites (
P
=0.002), as well as lower levels of tyrosine hydroxylase and norepinephrine in kidney and a greater reduction in plasma norepinephrine (
P
=0.004 for tyrosine hydroxylase,
P
=0.002 for both renal and plasma norepinephrine). Strong-response sites showed a greater total area and mean number of renal nerves than weak-response sites (
P
=0.012 for total area and
P
<0.001 for mean number). Systolic BP-elevation response to RNS before RDN and blunted systolic BP-elevation to RNS after RDN were correlated with systolic BP changes at 4 weeks follow-up (
R
=0.649;
P
=0.012 and
R
=0.643;
P
=0.013). Changes of plasma norepinephrine and renal norepinephrine levels at 4 weeks were also correlated with systolic BP changes at 4 weeks (
R
=0.837,
P
<0.001 and
R
=0.927,
P
<0.001). These data suggest that selective RDN at sites with strong BP-elevation response to RNS could lead to a more efficient RDN. RNS is an effective method to identify the nerve-enriched area during RDN procedure and improve the efficacy of RDN.
Collapse
Affiliation(s)
- Hang Liu
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Weijie Chen
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Yinchuan Lai
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Huaan Du
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Zihao Wang
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Yanping Xu
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Zhiyu Ling
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Jinqi Fan
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Peilin Xiao
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Bo Zhang
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Jie Wang
- Department of Cardiology, College of Physicians and Surgeons, Columbia University, New York, NY (J.W.)
| | - Laxman Gyawali
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| | - Bernhard Zrenner
- Medizinische Klinik I, Krankenhaus Landshut/Achdorf, Germany (B.Z.)
| | - Kamsang Woo
- Institute of Future Cities, the Chinese University of Hong Kong, China (K.W.)
| | - Yuehui Yin
- From the Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, China (H.L., Y.L., W.C., H.D., Z.W., Y.X., Z.L., J.F., P.X., B.Z., L.G., Y.Y.)
| |
Collapse
|
22
|
Waldron NH, Fudim M, Mathew JP, Piccini JP. Neuromodulation for the Treatment of Heart Rhythm Disorders. JACC Basic Transl Sci 2019; 4:546-562. [PMID: 31468010 PMCID: PMC6712352 DOI: 10.1016/j.jacbts.2019.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Derangement of autonomic nervous signaling is an important contributor to cardiac arrhythmogenesis. Modulation of autonomic nervous signaling holds significant promise for the prevention and treatment of cardiac arrhythmias. Further clinical investigation is necessary to establish the efficacy and safety of autonomic modulatory therapies in reducing cardiac arrhythmias.
There is an increasing recognition of the importance of interactions between the heart and the autonomic nervous system in the pathophysiology of arrhythmias. These interactions play a role in both the initiation and maintenance of arrhythmias and are important in both atrial and ventricular arrhythmia. Given the importance of the autonomic nervous system in the pathophysiology of arrhythmias, there has been notable effort in the field to improve existing therapies and pioneer additional interventions directed at cardiac-autonomic targets. The interventions are targeted to multiple and different anatomic targets across the neurocardiac axis. The purpose of this review is to provide an overview of the rationale for neuromodulation in the treatment of arrhythmias and to review the specific treatments under evaluation and development for the treatment of both atrial fibrillation and ventricular arrhythmias.
Collapse
Key Words
- AERP, atrial effective refractory period
- AF, atrial fibrillation
- AGP, autonomic ganglionic plexus
- ANS, autonomic nervous system
- CABG, coronary artery bypass grafting
- HRV, heart rate variability
- ICD, implantable cardioverter-defibrillator
- LLVNS, low-level vagal nerve stimulation
- OSA, obstructive sleep apnea
- POAF, post-operative atrial fibrillation
- PVI, pulmonary vein isolation
- RDN, renal denervation
- SCS, spinal cord stimulation
- SGB, stellate ganglion blockade
- SNS, sympathetic nervous system
- VF, ventricular fibrillation
- VNS, vagal nerve stimulation
- VT, ventricular tachycardia
- arrhythmia
- atrial fibrillation
- autonomic nervous system
- ganglionated plexi
- neuromodulation
- ventricular arrhythmias
Collapse
Affiliation(s)
- Nathan H Waldron
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Marat Fudim
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesia, Duke University Medical Center, Durham, North Carolina.,Duke Clinical Research Institute, Durham, North Carolina
| | - Jonathan P Piccini
- Duke Clinical Research Institute, Durham, North Carolina.,Electrophysiology Section, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
23
|
Lurz P, Fengler K. Lessons Learned from RADIOSOUND-HTN: Different Technologies and Techniques for Catheter-based Renal Denervation and Their Effect on Blood Pressure. Interv Cardiol 2019; 14:102-106. [PMID: 31178937 PMCID: PMC6545992 DOI: 10.15420/icr.2019.03.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
The interest in renal denervation (RDN) as a treatment for arterial hypertension has returned with three proof of principle trials that have shown recently RDN to be superior to sham treatment. Nevertheless, many questions about this treatment remain open, including those around the optimal interventional technique and technology. To clarify this important question, the authors designed and conducted the Randomized Trial of Different Renal Denervation Devices and Techniques in Patients with Resistant Hypertension (RADIOSOUND-HTN) trial, which compared three RDN treatment arms in a prospective randomised clinical trial. In this article, they comment on the background and results of this trial, and discuss which conclusions can be drawn from the trial, and which questions remain open for future studies in this field.
Collapse
Affiliation(s)
- Philipp Lurz
- Department of Cardiology, Heart Center Leipzig, University of Leipzig Leipzig, Germany
| | - Karl Fengler
- Department of Cardiology, Heart Center Leipzig, University of Leipzig Leipzig, Germany
| |
Collapse
|
24
|
Kiuchi MG, Esler MD, Fink GD, Osborn JW, Banek CT, Böhm M, Denton KM, DiBona GF, Everett TH, Grassi G, Katholi RE, Knuepfer MM, Kopp UC, Lefer DJ, Lohmeier TE, May CN, Mahfoud F, Paton JF, Schmieder RE, Pellegrino PR, Sharabi Y, Schlaich MP. Renal Denervation Update From the International Sympathetic Nervous System Summit. J Am Coll Cardiol 2019; 73:3006-3017. [DOI: 10.1016/j.jacc.2019.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
|
25
|
Frame AA, Carmichael CY, Kuwabara JT, Cunningham JT, Wainford RD. Role of the afferent renal nerves in sodium homeostasis and blood pressure regulation in rats. Exp Physiol 2019; 104:1306-1323. [PMID: 31074108 PMCID: PMC6675646 DOI: 10.1113/ep087700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
New Findings What is the central question of this study? What are the differential roles of the mechanosensitive and chemosensitive afferent renal nerves in the reno‐renal reflex that promotes natriuresis, sympathoinhibition and normotension during acute and chronic challenges to sodium homeostasis? What is the main finding and its importance? The mechanosensitive afferent renal nerves contribute to an acute natriuretic sympathoinhibitory reno‐renal reflex that may be integrated within the paraventricular nucleus of the hypothalamus. Critically, the afferent renal nerves are required for the maintenance of salt resistance in Sprague–Dawley and Dahl salt‐resistant rats and attenuate the development of Dahl salt‐sensitive hypertension.
Abstract These studies tested the hypothesis that in normotensive salt‐resistant rat phenotypes the mechanosensitive afferent renal nerve (ARN) reno‐renal reflex promotes natriuresis, sympathoinhibition and normotension during acute and chronic challenges to fluid and electrolyte homeostasis. Selective ARN ablation was conducted prior to (1) an acute isotonic volume expansion (VE) or 1 m NaCl infusion in Sprague–Dawley (SD) rats and (2) chronic high salt intake in SD, Dahl salt‐resistant (DSR), and Dahl salt‐sensitive (DSS) rats. ARN responsiveness following high salt intake was assessed ex vivo in response to noradrenaline and sodium concentration (SD, DSR and DSS) and via in vivo manipulation of renal pelvic pressure and sodium concentration (SD and DSS). ARN ablation attenuated the natriuretic and sympathoinhibitory responses to an acute VE [peak natriuresis (µeq min−1) sham 52 ± 5 vs. ARN ablation 28 ± 3, P < 0.05], but not a hypertonic saline infusion in SD rats. High salt (HS) intake enhanced ARN reno‐renal reflex‐mediated natriuresis in response to direct increases in renal pelvic pressure (mechanoreceptor stimulus) in vivo and ARN responsiveness to noradrenaline ex vivo in SD, but not DSS, rats. In vivo and ex vivo ARN responsiveness to increased renal pelvic sodium concentration (chemoreceptor stimulus) was unaltered during HS intake. ARN ablation evoked sympathetically mediated salt‐sensitive hypertension in SD rats [MAP (mmHg): sham normal salt 102 ± 2 vs. sham HS 104 ± 2 vs. ARN ablation normal salt 103 ± 2 vs. ARN ablation HS 121 ± 2, P < 0.05] and DSR rats and exacerbated DSS hypertension. The mechanosensitive ARNs mediate an acute sympathoinhibitory natriuretic reflex and counter the development of salt‐sensitive hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Casey Y Carmichael
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Jill T Kuwabara
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
26
|
|