1
|
Schwarz KG, Pereyra KV, Díaz-Jara E, Vicencio SC, Del Rio R. Brainstem C1 neurons mediate heart failure decompensation and mortality during acute salt loading. Cardiovasc Res 2025; 121:241-253. [PMID: 39775485 PMCID: PMC12012444 DOI: 10.1093/cvr/cvae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025] Open
Abstract
AIMS Heart failure (HF) is an emerging epidemic worldwide. Despite advances in treatment, the morbidity and mortality rate of HF remain high, and the global prevalence continues to rise. Common clinical features of HF include cardiac sympathoexcitation, disordered breathing, and kidney dysfunction; kidney dysfunction strongly contributes to sodium retention and fluid overload, leading to poor outcomes of HF patients. We have previously shown that brainstem pre-sympathetic neurons (C1) from the rostral ventrolateral medulla (RVLM) play a key role in sympathetic regulation in experimental models of HF. However, the role of RVLM-C1 neurons during salt-loading in the context of HF is unknown. This study tests whether RVLM C1 neurons drive cardiorespiratory decompensation and ultimately lead to sudden death in HF rats. METHODS AND RESULTS Adult male Sprague-Dawley rats underwent arteriovenous shunt to induce HF with preserved ejection fraction (HFpEF). Two weeks after HFpEF induction, bilateral selective ablation of RVLM C1 neurons was performed using anti-dopamine β-hydroxylase-saporin toxin. Animals were then fed a high Na+ diet (3% Na+ in food and 2% Na+ in water) for 3 weeks to induce compensated-to-decompensated HF state transition. Echocardiography, cardiac autonomic function, breathing function, and survival were assessed during the progression of HF. Salt loading resulted in marked decompensation in HF rats, as evidenced by a significant decrease in survival rates (survival: 10% vs. 100% HFpEF + Na+ vs. HFpEF). Furthermore, HFpEF + Na+ animals showed a further increase in cardiac sympathetic drive and more severe disordered breathing, including higher hypoxia-related epochs (i.e. apnoeas/hypopnoeas), compared with HF. Ablation of RVLM C1 neurons partly reduced the excessive cardiac sympathoexcitation during salt loading in HF, improved the exaggerated disordered breathing in HFpEF+ Na+ rats, and reduced decompensation-linked mortality. We found that hypoxia, but not high sodium, was the major contributor to impaired calcium handling in isolated adult cardiomyocytes. CONCLUSION Our results strongly suggest that RVLM C1 neurons contribute to acute HF decompensation during salt loading by a mechanism encompassing further increases in sympathetic outflow and hypoxia-related breathing disorders. This mechanism may ultimately impact cardiac contractility through cardiomyocyte calcium mishandling, increasing morbidity and mortality.
Collapse
Affiliation(s)
- Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
| | - Sinay C Vicencio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Av. los Flamencos 01364, Punta Arenas 6210005, Chile
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd HLSIC-2091, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Krittanawong C, Britt WM, Rizwan A, Siddiqui R, Khawaja M, Khan R, Joolharzadeh P, Newman N, Rivera MR, Tang WHW. Clinical Update in Heart Failure with Preserved Ejection Fraction. Curr Heart Fail Rep 2024; 21:461-484. [PMID: 39225910 DOI: 10.1007/s11897-024-00679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW To review the most recent clinical trials and data regarding epidemiology, pathophysiology, diagnosis, and treatment of heart failure with preserved ejection fraction with an emphasis on the recent trends in cardiometabolic interventions. RECENT FINDINGS Heart failure with preserved ejection fraction makes up approximately half of overall heart failure and is associated with significant morbidity, mortality, and overall burden on the healthcare system. It is a complex, heterogenous syndrome and clinical trials, to this point, have not revealed quite as many effective treatment options when compared to heart failure with reduced ejection fraction. Nevertheless, there is an expanding amount of data insight into the pathogenesis of this disease and the potential for newer therapies and management strategies. Heart failure with preserved ejection fraction pathology has been found to be linked to abnormal energetics, myocyte hypertrophy, cell signaling, inflammation, ischemia, and fibrosis. These mechanisms also intricately overlap with the significant comorbidities often associated with heart failure with preserved ejection fraction including, but not limited to, atrial fibrillation, chronic kidney disease, hypertension, obesity and coronary artery disease. Treatment of this disease, therefore, should focus on the management and strict regulation of these comorbidities by pharmacologic and nonpharmacologic means. In this review, a clinical update is provided reviewing the most recent clinical trials and data regarding epidemiology, pathophysiology, diagnosis, and treatment of heart failure with preserved ejection fraction with an emphasis on the recent trend in cardiometabolic interventions.
Collapse
Affiliation(s)
| | - William Michael Britt
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Affan Rizwan
- Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rehma Siddiqui
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Muzamil Khawaja
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Rabisa Khan
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Pouya Joolharzadeh
- John T Milliken Department of Medicine, Division of Cardiovascular Disease, Barnes-Jewish Hospital, St Louis, United States
| | - Noah Newman
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mario Rodriguez Rivera
- Advanced Heart Failure and Transplant, Barnes-Jewish Hospital Washington University in St Louis School of Medicine, St.Louis, MO, USA
| | - W H Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
3
|
Hua L, Zhang R, Chen R, Shao W. A nomogram for predicting the risk of heart failure with preserved ejection fraction. Int J Cardiol 2024; 407:131973. [PMID: 38508321 DOI: 10.1016/j.ijcard.2024.131973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND This study purposed to design and establish a nomogram to predict the risk of having heart failure with preserved ejection fraction. METHOD The clinical data of 1031 patients diagnosed with heart failure (HF) in the First Affiliated Hospital of Jinan University from January 2018 to December 2022 were retrospectively analyzed, among which 618 patients were diagnosed with heart failure with preserved ejection fraction (HFpEF). Patients were randomly divided into a training set (70%, n = 722) and a validation set (30%, n = 309). The prediction model of HFpEF was established by using clinical characteristic data parameters, and the risk of having HFpEF was predicted by using a nomogram. Single-factor analysis was used to select independent risk factors (P < 0.05), and then binary logistic regression was used to screen predictive variables (P < 0.05). The discrimination ability of the model was evaluated by the ROC curve and calculating the area under the curve (AUC). In addition, the predictive ability of the established nomogram was evaluated using calibration curves and the Hosmer-Lemeshow goodness of fit test (HL test), and the clinical net benefit was evaluated using decision curve analysis (DCA). RESULTS The results of binary logistic regression analysis showed that age, gender, hypertension, coronary heart disease, glycosylated hemoglobin, serum creatinine, E/e' septal, relative wall thickness (RWT), left ventricular mass index (LVMI) and pulmonary hypertension (PH) were independent influencing factors for the risk of having HFpEF (P < 0.05). Based on the results of logistic regression analysis, a nomogram was established and calibration curves were made. The prediction model showed that the AUC of the training dataset was 0.876 (95%CI, 0.851-0.902), and 0.837 (95%CI, 0.791-0.883) in the validation set. According to the calibration curves and HL test, the nomogram shows good calibration, and DCA shows that our model is clinically useful. CONCLUSION A nomogram prediction model was constructed to predict the patient's risk of having HFpEF. This prediction model indicated that the combination of creatinine, E/e', RWT, LVMI and PH may be valuable in the diagnosis of HFpEF.
Collapse
Affiliation(s)
- Li Hua
- Department of Emergency, First Affiliated Hospital of Jinan University, West Huangpu Avenue 613, Tianhe District, Guangzhou, Guangdong Province 510630, China.
| | - Rong Zhang
- Department of Emergency, First Affiliated Hospital of Jinan University, West Huangpu Avenue 613, Tianhe District, Guangzhou, Guangdong Province 510630, China
| | - Ruichang Chen
- Department of Emergency, First Affiliated Hospital of Jinan University, West Huangpu Avenue 613, Tianhe District, Guangzhou, Guangdong Province 510630, China
| | - Wenming Shao
- Department of Emergency, First Affiliated Hospital of Jinan University, West Huangpu Avenue 613, Tianhe District, Guangzhou, Guangdong Province 510630, China
| |
Collapse
|
4
|
Chade AR, Sitz R, Kelty TJ, McCarthy E, Tharp DL, Rector RS, Eirin A. Chronic kidney disease and left ventricular diastolic dysfunction (CKD-LVDD) alter cardiac expression of mitochondria-related genes in swine. Transl Res 2024; 267:67-78. [PMID: 38262578 PMCID: PMC11001533 DOI: 10.1016/j.trsl.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024]
Abstract
Cardiovascular disease and heart failure doubles in patients with chronic kidney disease (CKD), but the underlying mechanisms remain obscure. Mitochondria are central to maintaining cellular respiration and modulating cardiomyocyte function. We took advantage of our novel swine model of CKD and left ventricular diastolic dysfunction (CKD-LVDD) to investigate the expression of mitochondria-related genes and potential mechanisms regulating their expression. CKD-LVDD and normal control pigs (n=6/group, 3 males/3 females) were studied for 14 weeks. Renal and cardiac hemodynamics were quantified by multidetector-CT, echocardiography, and pressure-volume loop studies, respectively. Mitochondrial morphology (electron microscopy) and function (Oroboros) were assessed ex vivo. In randomly selected pigs (n=3/group), cardiac mRNA-, MeDIP-, and miRNA-sequencing (seq) were performed to identify mitochondria-related genes and study their pre- and post -transcriptional regulation. CKD-LVDD exhibited cardiac mitochondrial structural abnormalities and elevated mitochondrial H2O2 emission but preserved mitochondrial function. Cardiac mRNA-seq identified 862 mitochondria-related genes, of which 69 were upregulated and 33 downregulated (fold-change ≥2, false discovery rate≤0.05). Functional analysis showed that upregulated genes were primarily implicated in processes associated with oxidative stress, whereas those downregulated mainly participated in respiration and ATP synthesis. Integrated mRNA/miRNA/MeDIP-seq analysis showed that upregulated genes were modulated predominantly by miRNAs, whereas those downregulated were by miRNA and epigenetic mechanisms. CKD-LVDD alters cardiac expression of mitochondria-related genes, associated with mitochondrial structural damage but preserved respiratory function, possibly reflecting intrinsic compensatory mechanisms. Our findings may guide the development of early interventions at stages of cardiac dysfunction in which mitochondrial injury could be prevented, and the development of LVDD ameliorated.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA; Department of Medicine, University of Missouri, Columbia, USA; NextGen Precision Health, University of Missouri, Columbia, USA.
| | - Rhys Sitz
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA; NextGen Precision Health, University of Missouri, Columbia, USA
| | - Taylor J Kelty
- NextGen Precision Health, University of Missouri, Columbia, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, USA
| | - Elizabeth McCarthy
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA; NextGen Precision Health, University of Missouri, Columbia, USA
| | - Darla L Tharp
- NextGen Precision Health, University of Missouri, Columbia, USA; Department of Biomedical Sciences, University of Missouri, Columbia, USA
| | - R Scott Rector
- NextGen Precision Health, University of Missouri, Columbia, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, USA; Research Service, Harry S Truman Memorial Veterans Medical Center, University of Missouri, Columbia, USA; Division of Gastroenterology and Hepatology, University of Missouri, Columbia, USA
| | - Alfonso Eirin
- The Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Diseases Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Zhou R, Xia YY, Li Z, Wu LD, Shi Y, Ling ZY, Zhang JX. HFpEF as systemic disease, insight from a diagnostic prediction model reminiscent of systemic inflammation and organ interaction in HFpEF patients. Sci Rep 2024; 14:5386. [PMID: 38443672 PMCID: PMC10914711 DOI: 10.1038/s41598-024-55996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
Systemic inflammation and reciprocal organ interactions are associated with the pathophysiology of heart failure with preserved ejection fraction (HFpEF). However, the clinical value, especially the diagnositc prediction power of inflammation and extra-cardiac organ dysfunction for HfpEF is not explored. In this cross-sectional study, 1808 hospitalized patients from January 2014 to June 2022 in ChiHFpEF cohort were totally enrolled according to inclusion and exclusion criteria. A diagnostic model with markers from routine blood test as well as liver and renal dysfunction for HFpEF was developed using data from ChiHFpEF-cohort by logistic regression and assessed by receiver operating characteristic curve (ROC) and Brier score. Then, the model was validated by the tenfold cross-validation and presented as nomogram and a web-based online risk calculator as well. Multivariate and LASSO regression analysis revealed that age, hemoglobin, neutrophil to lymphocyte ratio, AST/ALT ratio, creatinine, uric acid, atrial fibrillation, and pulmonary hypertension were associated with HFpEF. The predictive model exhibited reasonably accurate discrimination (ROC, 0.753, 95% CI 0.732-0.772) and calibration (Brier score was 0.200). Subsequent internal validation showed good discrimination and calibration (AUC = 0.750, Brier score was 0.202). In additoin to participating in pathophysiology of HFpEF, inflammation and multi-organ interactions have diagnostic prediction value for HFpEF. Screening and optimizing biomarkers of inflammation and multi-organ interactions stand for a new field to improve noninvasive diagnostic tool for HFpEF.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Intensive Medicine, Qujing No. 1 Hospital, Qujing, 655000, Yunnan, China
| | - Yi-Yuan Xia
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Zheng Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Li-Da Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yi Shi
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Zhi-Yu Ling
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 404100, China.
| | - Jun-Xia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
6
|
Wettersten N, Murray PT. 'Don't Throw the Baby out With the Bathwater' Urine Galectin-3 in Heart Failure With Chronic Kidney Disease: Another Tool to Distinguish Intrinsic Kidney Disease From Chronic, Functional Cardiorenal Syndrome? J Card Fail 2024; 30:347-349. [PMID: 37567496 PMCID: PMC11348678 DOI: 10.1016/j.cardfail.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Affiliation(s)
- Nicholas Wettersten
- Division of Cardiovascular Medicine, San Diego Veterans Affairs Medical Center, San Diego, CA, USA; Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
7
|
Karaban K, Słupik D, Reda A, Gajewska M, Rolek B, Borovac JA, Papakonstantinou PE, Bongiovanni D, Ehrlinder H, Parker WAE, Siniarski A, Gąsecka A. Coagulation Disorders and Thrombotic Complications in Heart Failure With Preserved Ejection Fraction. Curr Probl Cardiol 2024; 49:102127. [PMID: 37802171 DOI: 10.1016/j.cpcardiol.2023.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is associated with multiple cardiovascular and noncardiovascular comorbidities and risk factors which increase the risk of thrombotic complications, such as atrial fibrillation, chronic kidney disease, arterial hypertension and type 2 diabetes mellitus. Subsequently, thromboembolic risk stratification in this population poses a great challenge. Since date from the large randomized clinical trials mostly include both patients with truly preserved EF, and those with heart failure with mildly reduced ejection fraction, there is an unmet need to characterize the patients with truly preserved EF. Considering the significant evidence gap in this area, we sought to describe the coagulation disorders and thrombotic complications in patients with HFpEF and discuss the specific thromboembolic risk factors in patients with HFpEF, with the goal to tailor risk stratification to an individual patient.
Collapse
Affiliation(s)
- Kacper Karaban
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Słupik
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Reda
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Gajewska
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz Rolek
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Josip A Borovac
- Division of Interventional Cardiology, Cardiovascular Diseases Department, University Hospital of Split, Split, Croatia
| | - Panteleimon E Papakonstantinou
- Second Cardiology Department, Evangelismos Hospital, Athens, Greece; First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Dario Bongiovanni
- Department of Internal Medicine I, Cardiology, University Hospital Augsburg, University of Augsburg, Augsburg, Germany; Department of Cardiovascular Medicine, Humanitas Clinical and Research Center IRCCS and Humanitas University, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Hanne Ehrlinder
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - William A E Parker
- Cardiovascular Research Unit, Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Aleksander Siniarski
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; John Paul II Hospital, Cracow, Poland
| | - Aleksandra Gąsecka
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
8
|
Eirin A, Chade AR. Cardiac epigenetic changes in VEGF signaling genes associate with myocardial microvascular rarefaction in experimental chronic kidney disease. Am J Physiol Heart Circ Physiol 2023; 324:H14-H25. [PMID: 36367693 PMCID: PMC9762979 DOI: 10.1152/ajpheart.00522.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Chronic kidney disease (CKD) is common in patients with heart failure and often results in left ventricular diastolic dysfunction (LVDD). However, the mechanisms responsible for cardiac damage in CKD-LVDD remain to be elucidated. Epigenetic alterations may impose long-lasting effects on cellular transcription and function, but their exact role in CKD-LVDD is unknown. We investigate whether changes in cardiac site-specific DNA methylation profiles might be implicated in cardiac abnormalities in CKD-LVDD. CKD-LVDD and normal control pigs (n = 6 each) were studied for 14 wk. Renal and cardiac hemodynamics were quantified by multidetector CT and echocardiography. In randomly selected pigs (n = 3/group), cardiac site-specific 5-methylcytosine (5mC) immunoprecipitation (MeDIP)- and mRNA-sequencing (seq) were performed, followed by integrated (MeDiP-seq/mRNA-seq analysis), and confirmatory ex vivo studies. MeDIP-seq analysis revealed 261 genes with higher (fold change > 1.4; P < 0.05) and 162 genes with lower (fold change < 0.7; P < 0.05) 5mC levels in CKD-LVDD versus normal pigs, which were primarily implicated in vascular endothelial growth factor (VEGF)-related signaling and angiogenesis. Integrated MeDiP-seq/mRNA-seq analysis identified a select group of VEGF-related genes in which 5mC levels were higher, but mRNA expression was lower in CKD-LVDD versus normal pigs. Cardiac VEGF signaling gene and VEGF protein expression were blunted in CKD-LVDD compared with controls and were associated with decreased subendocardial microvascular density. Cardiac epigenetic changes in VEGF-related genes are associated with impaired angiogenesis and cardiac microvascular rarefaction in swine CKD-LVDD. These observations may assist in developing novel therapies to ameliorate cardiac damage in CKD-LVDD.NEW & NOTEWORTHY Chronic kidney disease (CKD) often leads to left ventricular diastolic dysfunction (LVDD) and heart failure. Using a novel translational swine model of CKD-LVDD, we characterize the cardiac epigenetic landscape, identifying site-specific 5-methylcytosine changes in vascular endothelial growth factor (VEGF)-related genes associated with impaired angiogenesis and cardiac microvascular rarefaction. These observations shed light on the mechanisms of cardiac microvascular damage in CKD-LVDD and may assist in developing novel therapies for these patients.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Alejandro R Chade
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
- Department of Medicine, University of Missouri-Columbia, Columbia, Missouri
| |
Collapse
|
9
|
Chade AR, Eirin A. Cardiac micro-RNA and transcriptomic profile of a novel swine model of chronic kidney disease and left ventricular diastolic dysfunction. Am J Physiol Heart Circ Physiol 2022; 323:H659-H669. [PMID: 36018756 PMCID: PMC9512116 DOI: 10.1152/ajpheart.00333.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
Chronic kidney disease (CKD) is an independent risk factor for the development of heart failure, but the underlying mechanisms remain unknown. Using a novel translational swine model of CKD and cardiac dysfunction, we hypothesize that CKD alters the cardiac miRNA and transcriptomic profile that associate with cardiac remodeling and metabolic processes implicated in the development of left ventricular diastolic dysfunction (CKD-LVDD). CKD-LVDD and normal control pigs (n = 6 each) were studied for 14 wk. Renal and cardiac hemodynamics were quantified by multidetector CT and echocardiography. In randomly selected pigs (n = 3/group), cardiac miRNA- and mRNA-sequencing (seq) was performed, validated (qPCR), and followed by confirmatory ex vivo studies. Differential expression analysis identified nine miRNAs and 125 mRNAs upregulated and 17 miRNAs and 172 mRNAs downregulated [fold-change ≥ 2, and false discovery rate (FDR) ≤ 0.05] in CKD-LVDD versus normal controls. Integrated miRNA-/mRNA-seq analysis identified 71 overlappings downregulated mRNA targets of miRNAs upregulated, and 39 overlappings upregulated mRNA targets of miRNAs downregulated in CKD-LVDD versus controls. Functional analysis showed that these genes were primarily implicated in processes associated with cardiac remodeling, including ubiquitination, ATP and fatty acid synthesis, and extracellular matrix remodeling. In agreement, hearts of CKD-LVDD pigs exhibited abnormal diastolic relaxation, mitochondrial injury, moderate LV fibrosis, and myocardial lipid accumulation. Our work comprehensively characterizes the cardiac micro-RNA and transcriptomic profile of a translational model of CKD-LVDD. Our data may set the foundation for new targeted studies to further elucidate LVDD pathophysiology and assist to develop therapeutic interventions.NEW & NOTEWORTHY Chronic kidney disease (CKD) is a progressive disorder in which more than 50% of deaths are attributed to cardiovascular disease. Using a swine model of CKD that develops left ventricular dysfunction (CKD-LVDD), we characterize the cardiac micro-RNA and transcriptomic profile, identifying dysregulated genes associated with cardiac remodeling and fatty acid metabolism that might be post-transcriptionally regulated early in the disease. These findings pinpointed pathological pathways that may open new avenues toward therapeutic research to reduce cardiovascular morbidity in CKD.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Department of Physiology and Biophysics, Medicine, and Radiology, Mayo Clinic, Jackson, Mississippi
| |
Collapse
|
10
|
Abstract
The burden of acute and chronic kidney diseases to the health care system is exacerbated by the high mortality that this disease carries paired with the still limited availability of comprehensive therapies. A reason partially resides in the complexity of the kidney, with multiple potential target cell types and a complex structural environment that complicate strategies to protect and recover renal function after injury. Management of both acute and chronic renal disease, irrespective of the cause, are mainly focused on supportive treatments and renal replacement strategies when needed. Emerging preclinical evidence supports the feasibility of drug delivery technology for the kidney, and recent studies have contributed to building a robust catalog of peptides, proteins, nanoparticles, liposomes, extracellular vesicles, and other carriers that may be fused to therapeutic peptides, proteins, nucleic acids, or small molecule drugs. These fusions can display a precise renal uptake, an enhanced circulating time, and a directed intraorgan biodistribution while protecting their cargo to improve therapeutic efficacy. However, several hurdles that slow the transition towards clinical applications are still in the way, such as solubility, toxicity, and sub-optimal renal targeting. This review will discuss the feasibility and current limitations of drug delivery technologies for the treatment of renal disease, offering an update on their potential and the future directions of these promising strategies.
Collapse
Affiliation(s)
- Alejandro R. Chade
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
11
|
Chade AR, Engel JE, Hall ME, Eirin A, Bidwell GL. Intrarenal modulation of NF-κB activity attenuates cardiac injury in a swine model of CKD: a renal-cardio axis. Am J Physiol Renal Physiol 2021; 321:F411-F423. [PMID: 34396789 DOI: 10.1152/ajprenal.00158.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have a high cardiovascular mortality. CKD and heart failure (HF) coexist in up to 50% of patients, and both associate with inflammation. We aimed to define the cardiac phenotype of a novel swine model of CKD and test the hypothesis that inflammation of renal origin propels the development of precursors of HF in CKD. CKD was induced in 14 pigs, which were followed for 14 wk. Renal (multidetector computed tomography) and cardiac (echocardiography) hemodynamics were quantified before and 8 wk after single intrarenal administration of placebo or a biopolymer-fused peptide inhibitor of NF-κB that blocks NF-κB activity and decreases inflammatory activity (SynB1-ELP-p50i). Blood was collected to quantify cytokines (TNF-α, monocyte chemoattractant protein-1, and interleukins), markers of inflammation (C-reactive protein), and biomarkers of HF (atrial and brain natriuretic peptides). Pigs were then euthanized, and kidneys and hearts were studied ex vivo. Normal pigs were used as time-matched controls. Renal dysfunction in CKD was accompanied by cardiac hypertrophy and fibrosis, diastolic dysfunction, increased renal and cardiac expression of TNF-α, monocyte chemoattractant protein-1, and interleukins, canonical and noncanonical mediators of NF-κB signaling, circulating inflammatory factors, and biomarkers of HF. Notably, most of these changes were improved after intrarenal SynB1-SynB1-ELP-p50i, although cardiac inflammatory signaling remained unaltered. The translational traits of this model support its use as a platform to test novel technologies to protect the kidney and heart in CKD. A targeted inhibition of renal NF-κB signaling improves renal and cardiac function, suggesting an inflammatory renal-cardio axis underlying early HF pathophysiology in CKD.NEW & NOTEWORTHY Chronic kidney disease (CKD) is a progressive disorder with high cardiovascular morbidity and mortality. This work supports the role of inflammatory cytokines of renal origin in renal-cardio pathophysiology in CKD and that the heart may be a target. Furthermore, it supports the feasibility of a new strategy in a translational fashion, using targeted inhibition of renal NF-κB signaling to offset the development of cardiac injury in CKD.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, grid.410721.1University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jason E Engel
- Department of Physiology and Biophysics, grid.410721.1University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael E Hall
- Department of Physiology and Biophysics, grid.410721.1University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Pharmacology and Experimental Therapeutics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
12
|
Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 2021; 18:400-423. [PMID: 33432192 PMCID: PMC8574228 DOI: 10.1038/s41569-020-00480-6] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/30/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) affects half of all patients with heart failure worldwide, is increasing in prevalence, confers substantial morbidity and mortality, and has very few effective treatments. HFpEF is arguably the greatest unmet medical need in cardiovascular disease. Although HFpEF was initially considered to be a haemodynamic disorder characterized by hypertension, cardiac hypertrophy and diastolic dysfunction, the pandemics of obesity and diabetes mellitus have modified the HFpEF syndrome, which is now recognized to be a multisystem disorder involving the heart, lungs, kidneys, skeletal muscle, adipose tissue, vascular system, and immune and inflammatory signalling. This multiorgan involvement makes HFpEF difficult to model in experimental animals because the condition is not simply cardiac hypertrophy and hypertension with abnormal myocardial relaxation. However, new animal models involving both haemodynamic and metabolic disease, and increasing efforts to examine human pathophysiology, are revealing new signalling pathways and potential therapeutic targets. In this Review, we discuss the cellular and molecular pathobiology of HFpEF, with the major focus being on mechanisms relevant to the heart, because most research has focused on this organ. We also highlight the involvement of other important organ systems, including the lungs, kidneys and skeletal muscle, efforts to characterize patients with the use of systemic biomarkers, and ongoing therapeutic efforts. Our objective is to provide a roadmap of the signalling pathways and mechanisms of HFpEF that are being characterized and which might lead to more patient-specific therapies and improved clinical outcomes.
Collapse
Affiliation(s)
- Sumita Mishra
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A. Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,
| |
Collapse
|
13
|
Chen Z, Lin Q, Li J, Wang X, Ju J, Xu H, Shi D. Estimated Glomerular Filtration Rate Is Associated With an Increased Risk of Death in Heart Failure Patients With Preserved Ejection Fraction. Front Cardiovasc Med 2021; 8:643358. [PMID: 33981733 PMCID: PMC8107393 DOI: 10.3389/fcvm.2021.643358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Renal dysfunction is associated with adverse cardiovascular outcomes in patients with heart failure (HF), but its impact on patients with heart failure with preserved ejection fraction (HFpEF) remains unclear. Methods: 3,392 subjects of the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) trial were assigned to two groups by estimated glomerular filtration rate (eGFR) ≥ 60 ml/min/1.73 m2 or 30–59 ml/min/1.73 m2. The outcomes, including all-cause death, cardiovascular death and HF hospitalization, were examined by multivariable cox models. Results: Over a median follow-up of 3.4 ± 1.7 years, a total of 524 all-cause deaths, 334 cardiovascular deaths and 440 HF hospitalizations occurred. Compared with patients with eGFR ≥ 60 ml/min/1.73 m2, those with eGFR 30–59 ml/min/1.73 m2 were associated with an increased risk of the all-cause death [adjusted hazard ratio (HR), 1.47; 95% confidence interval (CI), 1.24–1.76; P < 0.001], cardiovascular death (adjusted HR, 1.53; 95% CI: 1.23–1.91; p < 0.001), and HF hospitalization (adjusted HR: 1.21; 95% CI: 1.00–1.47; p = 0.049) after multivariable adjustment for potential confounders. Conclusions: eGFR 30–59 ml/min/1.73 m2 was related to an increased risk of all-cause death, cardiovascular death and HF hospitalization in HFpEF patients.
Collapse
Affiliation(s)
- Zhuo Chen
- Cardiovascular Diseases Center, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Lin
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingen Li
- Department of Cardiology, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jianqing Ju
- Cardiovascular Diseases Center, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- Cardiovascular Diseases Center, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Cardiovascular Diseases Center, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Worsening Kidney Function Is the Major Mechanism of Heart Failure in Hypertension: The ALLHAT Study. JACC-HEART FAILURE 2020; 9:100-111. [PMID: 33189627 DOI: 10.1016/j.jchf.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The authors aimed to quantify the extent to which the effect of antihypertensive drugs on incident heart failure (HF) is mediated by their effect on kidney function. BACKGROUND The authors hypothesized that the dynamic change in kidney function is the mechanism behind differences in the rate of incident HF in ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial) participants randomized to lisinopril and chlorthalidone, in comparison with those randomized to amlodipine and doxazosin. METHODS Causal mediation analysis of ALLHAT data (1994 to 2002) included participants with available baseline and 24- to 48-month estimated glomerular filtration rate (eGFR) (N = 27,918; mean age 66 ± 7.4 years; 32.4% Black, 56.3% men). Change in eGFR was the mediator. Incident symptomatic HF was the primary outcome. Hospitalized/fatal HF was the secondary outcome. Linear regression (for mediator) and logistic regression (for outcome) analyses were adjusted for demographics, cardiovascular disease, and risk factors. RESULTS There were 1,769 incident HF events, including 1,359 hospitalized/fatal HF events. In fully adjusted causal mediation analysis, the relative change in eGFR mediated 18% of the effect of chlorthalidone, and 33% of lisinopril on incident symptomatic HF, and 25% of the effect of chlorthalidone, and 41% of lisinopril on hospitalized/fatal HF. In participants with diabetes, the relative change in eGFR mediated nearly 50% of the effect of lisinopril on incident symptomatic HF, whereas in diabetes-free participants, only 17%. CONCLUSIONS On the risk difference scale, change in eGFR accounts for up to 50% of the mechanism by which antihypertensive medications affect HF. (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial [ALLHAT]; NCT00000542).
Collapse
|
15
|
Feng Y, Yin Y, Deng R, Li H. Renal safety and efficacy of angiotensin receptor‐neprilysin inhibitor: A meta‐analysis of randomized controlled trials. J Clin Pharm Ther 2020; 45:1235-1243. [PMID: 32776562 DOI: 10.1111/jcpt.13243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Yu Feng
- Department of Hemopurification Center China Aerospace Science and Industry Corporation, 731 Hospital Beijing China
| | - Yongmei Yin
- Department of Hemopurification Center China Aerospace Science and Industry Corporation, 731 Hospital Beijing China
| | - Rong Deng
- Department of Hemopurification Center China Aerospace Science and Industry Corporation, 731 Hospital Beijing China
| | - Haonan Li
- Department of Hemopurification Center China Aerospace Science and Industry Corporation, 731 Hospital Beijing China
| |
Collapse
|
16
|
Wang J, Toan S, Li R, Zhou H. Melatonin fine-tunes intracellular calcium signals and eliminates myocardial damage through the IP3R/MCU pathways in cardiorenal syndrome type 3. Biochem Pharmacol 2020; 174:113832. [PMID: 32006470 DOI: 10.1016/j.bcp.2020.113832] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
Abstract
Cardiorenal syndrome type-3 (CRS-3) is characterized by acute cardiac injury induced by acute kidney injury. Here, we investigated the causes of CRS-3 by analyzing cardiac function after renal ischemia-reperfusion injury (IRI) using echocardiography and evaluation of pro-inflammatory markers, calcium balance, mitochondrial function, and cardiomyocyte death. Our results show that renal IRI reduces cardiac diastolic function associated with cardiomyocyte death and inflammatory responses. Renal IRI also disrupts cardiomyocyte energy metabolism, induces calcium overload, and impairs mitochondrial function, as evidenced by reduced mitochondrial membrane potential and increased mitochondrial fission. Further, renal IRI induces phosphorylation of inositol 1,4,5-trisphosphate receptor (IP3R) and expression of mitochondrial calcium uniporter (MCU), resulting in cytoplasmic calcium overload and mitochondrial calcium accumulation. Pretreatment with melatonin attenuates renal IRI-mediated cardiac damage by maintaining myocardial diastolic function and reducing cardiomyocyte death. Melatonin also inhibits IP3R phosphorylation and MCU expression, thereby alleviating cytoplasmic and mitochondrial calcium overload. Blockade of IP3R has similar cardioprotective effects, whereas MCU activation abrogates the melatonin-mediated cardioprotection. These results show that the negative effects of renal IRI on myocardial viability and cardiac function are caused by induced IP3R phosphorylation, MCU upregulation, and calcium overload. Melatonin protects cardiac function against CRS-3 by suppressing IP3R-MCU signaling.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Sam Toan
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA
| | - Ruibing Li
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|