1
|
Zhao S, Ghose-Paul C, Zhang K, Tzipori S, Sun X. Immune-based treatment and prevention of Clostridium difficile infection. Hum Vaccin Immunother 2015; 10:3522-30. [PMID: 25668664 DOI: 10.4161/21645515.2014.980193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clostridium difficile (C. difficile) causes over 500,000 infections per year in the US, with an estimated 15,000 deaths and an estimated cost of $1-3 billion. Moreover, a continual rise in the incidence of severe C. difficile infection (CDI) has been observed worldwide. Currently, standard treatment for CDI is the administration of antibiotics. While effective, these treatments do not prevent and may contribute to a disease recurrence rate of 15-35%. Prevention of recurrence is one of the most challenging aspects in the field. A better knowledge of the molecular mechanisms of the disease, the host immune response and identification of key virulence factors of C. difficilenow permits the development of immune-based therapies. Antibodies specific for C. difficile toxins have been shown to effectively treat CDI and prevent disease relapse in animal models and in humans. Vaccination has been recognized as the most cost-effective treatment/prevention for CDI. This review will summarize CDI transmission, epidemiology, major virulent factors and highlights the rational and the development of immune-based approaches against this remerging threat.
Collapse
Key Words
- AAD, antibiotic-associated diarrhea
- CDI, Clostridium difficile infection
- CPD, cysteine proteinase domain
- GTD, glucosyltransferase domain
- HuMabs, human monoclonal antibodies
- IVIG, intravenous immunoglobulin
- RBD, receptor binding domain
- SLP, surface-layer protein
- TMD, transmembrane domain
- bacterial toxins
- clostridium difficile infection (CDI)
- immunotherapy
- mAb, monoclonal antibody
- monoclonal antibody
- vaccine
Collapse
Affiliation(s)
- Song Zhao
- a Department of Infectious Diseases and Global Health ; Tufts University Cummings School of Veterinary Medicine ; North Grafton , MA USA
| | | | | | | | | |
Collapse
|
2
|
Chuong KH, O'Doherty KC, Secko DM. Media Discourse on the Social Acceptability of Fecal Transplants. QUALITATIVE HEALTH RESEARCH 2015; 25:1359-1371. [PMID: 25595150 DOI: 10.1177/1049732314568199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Advances in human microbiome research have generated considerable interest in elucidating the role of bacteria in health and the application of microbial ecosystem therapies and probiotics. Fecal transplants involve the introduction of gut microbes from a healthy donor's stool to the patient and have been documented as effective for treating Clostridium difficile infections (CDIs) and some other gastrointestinal disorders. However, the treatment has encountered regulatory hurdles preventing widespread uptake. We examined dominant representations of fecal transplants in Canadian media and found that fecal transplants are often represented as being inherently disgusting or distasteful (the "ick factor"). This "ick factor" is used to construct different messages about the treatment's social acceptability and legitimacy. We conclude that an over-emphasis on the "ick factor" constrains public discourse from a more nuanced discussion of the social challenges, scientific concerns, and regulatory issues surrounding the treatment.
Collapse
|
3
|
Leber A, Viladomiu M, Hontecillas R, Abedi V, Philipson C, Hoops S, Howard B, Bassaganya-Riera J. Systems Modeling of Interactions between Mucosal Immunity and the Gut Microbiome during Clostridium difficile Infection. PLoS One 2015; 10:e0134849. [PMID: 26230099 PMCID: PMC4521955 DOI: 10.1371/journal.pone.0134849] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile infections are associated with the use of broad-spectrum antibiotics and result in an exuberant inflammatory response, leading to nosocomial diarrhea, colitis and even death. To better understand the dynamics of mucosal immunity during C. difficile infection from initiation through expansion to resolution, we built a computational model of the mucosal immune response to the bacterium. The model was calibrated using data from a mouse model of C. difficile infection. The model demonstrates a crucial role of T helper 17 (Th17) effector responses in the colonic lamina propria and luminal commensal bacteria populations in the clearance of C. difficile and colonic pathology, whereas regulatory T (Treg) cells responses are associated with the recovery phase. In addition, the production of anti-microbial peptides by inflamed epithelial cells and activated neutrophils in response to C. difficile infection inhibit the re-growth of beneficial commensal bacterial species. Computational simulations suggest that the removal of neutrophil and epithelial cell derived anti-microbial inhibitions, separately and together, on commensal bacterial regrowth promote recovery and minimize colonic inflammatory pathology. Simulation results predict a decrease in colonic inflammatory markers, such as neutrophilic influx and Th17 cells in the colonic lamina propria, and length of infection with accelerated commensal bacteria re-growth through altered anti-microbial inhibition. Computational modeling provides novel insights on the therapeutic value of repopulating the colonic microbiome and inducing regulatory mucosal immune responses during C. difficile infection. Thus, modeling mucosal immunity-gut microbiota interactions has the potential to guide the development of targeted fecal transplantation therapies in the context of precision medicine interventions.
Collapse
Affiliation(s)
- Andrew Leber
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Monica Viladomiu
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Raquel Hontecillas
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Vida Abedi
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Casandra Philipson
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stefan Hoops
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Brad Howard
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Josep Bassaganya-Riera
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Sun X, Hirota SA. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol Immunol 2014; 63:193-202. [PMID: 25242213 DOI: 10.1016/j.molimm.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 02/08/2023]
Abstract
Clostridium difficile (C. difficile) is the most common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous colitis. The clinical manifestation of C. difficile infection (CDI) is highly variable, from asymptomatic carriage, to mild self-limiting diarrhea, to the more severe pseudomembranous colitis. Furthermore, in extreme cases, colonic inflammation and tissue damage can lead to toxic megacolon, a condition requiring surgical intervention. C. difficile expresses two key virulence factors; the exotoxins, toxin A (TcdA) and toxin B (TcdB), which are glucosyltransferases that target host-cell monomeric GTPases. In addition, some hypervirulent strains produce a third toxin, binary toxin or C. difficile transferase (CDT), which may contribute to the pathogenesis of CDI. More recently, other factors such as surface layer proteins (SLPs) and flagellin have also been linked to the inflammatory responses observed in CDI. Although the adaptive immune response can influence the severity of CDI, the innate immune responses to C. difficile and its toxins play crucial roles in CDI onset, progression, and overall prognosis. Despite this, the innate immune responses in CDI have drawn relatively little attention from clinical researchers. Targeting these responses may prove useful clinically as adjuvant therapies, especially in refractory and/or recurrent CDI. This review will focus on recent advances in our understanding of how C. difficile and its toxins modulate innate immune responses that contribute to CDI pathogenesis.
Collapse
Affiliation(s)
- Xingmin Sun
- Tufts University Cummings School of Veterinary Medicine, Department of Infectious Diseases and Global Health, North Grafton, MA 01536, USA; Tufts University, Clinical and Translational Science Institute, Boston, MA 02111, USA.
| | - Simon A Hirota
- University of Calgary, Snyder Institute for Chronic Diseases, Departments of Physiology & Pharmacology and Microbiology, Immunology & Infectious Diseases, Calgary, AB T2N4N1, Canada
| |
Collapse
|
5
|
Suwantarat N, Bobak DA. Fecal Bacteriotherapy for Recurrent Clostridium difficile Infection: What's Old Is New Again? Curr Infect Dis Rep 2013; 15:101-3. [PMID: 23549617 DOI: 10.1007/s11908-013-0314-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, effective management of recurrent Clostridium difficile infection (CDI) has emerged as an important issue for those clinicians who treat patients with CDI. In addition to antibiotic-based therapies, including alternating use, chaser, and tapering protocols, interest has increased in the potential utility of a variety of nonantibiotic forms of adjunctive therapy. Among these alternative forms of treatment, the concept of transferring extracts of a stool from donors to patients with CDI has been met with great interest among researchers, clinicians, and patients alike. Fecal bacteriotherapy, or so-called fecal microbiota transplantation, for therapy of CDI is a procedure that dates back to the 1950s. Recently, however, a variety of studies have garnered attention in the lay press, in addition to the standard scientific-reporting community. Although no well-controlled trials have been published as yet and the details of the procedures used have varied widely between institutions, the available evidence suggests that for selected patients, fecal bacteriotherapy appears to be generally safe and effective. Concerns about true efficacy and the theoretical potential for infectious complications have prevented widespread adoption of this concept as standard therapy, but its use in academic and community practices is on the rise.
Collapse
Affiliation(s)
- Nuntra Suwantarat
- Division of Infectious Diseases and HIV Medicine, Case School of Medicine, University Hospitals Case Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA,
| | | |
Collapse
|
6
|
Brandes V, Schelle I, Brinkmann S, Schulz F, Schwarz J, Gerhard R, Genth H. Protection from Clostridium difficile toxin B-catalysed Rac1/Cdc42 glucosylation by tauroursodeoxycholic acid-induced Rac1/Cdc42 phosphorylation. Biol Chem 2013; 393:77-84. [PMID: 22628301 DOI: 10.1515/bc-2011-198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/03/2011] [Indexed: 02/02/2023]
Abstract
Toxin A (TcdA) and toxin B (TcdB) are the major virulence factors of Clostridium difficile-associated diarrhoea (CDAD). TcdA and TcdB mono-glucosylate small GTPases of the Rho family, thereby causing actin re-organisation in colonocytes, resulting in the loss of colonic barrier function. The hydrophilic bile acid tauroursodeoxycholic acid (TUDCA) is an approved drug for the treatment of cholestasis and biliary cirrhosis. In this study, TUDCA-induced activation of Akt1 is presented to increase cellular levels of pS71-Rac1/Cdc42 in human hepatocarcinoma (HepG2) cells, showing for the first time that bile acid signalling affects the activity of Rho proteins. Rac1/Cdc42 phosphorylation, in turn, protects Rac1/Cdc42 from TcdB-catalysed glucosylation and reduces the TcdB-induced cytopathic effects in HepG2 cells. The results of this study indicate that TUDCA may prove useful as a therapeutic agent for the treatment of CDAD.
Collapse
Affiliation(s)
- Vanessa Brandes
- Institut für Toxikologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|