1
|
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023; 12:199. [PMID: 36611992 PMCID: PMC9818774 DOI: 10.3390/cells12010199] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which causes many severe acute and chronic infections with high morbidity, and mortality rates as high as 40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired resistance to many of the available antibiotics. In this review, we review the important acute and chronic infections caused by this pathogen. We next discuss various animal models which have been developed to evaluate P. aeruginosa pathogenesis and assess therapeutics against this pathogen. Next, we review current treatments (antibiotics and vaccines) and provide an overview of their efficacies and their limitations. Finally, we highlight exciting literature on novel antibiotic-free strategies to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M. Kuzel
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Kim JE, Monmai C, Rod-in W, Jang AY, You SG, Lee SM, Jung SK, Park WJ. Co-immunomodulatory Activities of Anionic Macromolecules Extracted from Codium fragile with Red Ginseng Extract on Peritoneal Macrophage of Immune-Suppressed Mice. J Microbiol Biotechnol 2020; 30:352-358. [PMID: 31893613 PMCID: PMC9728336 DOI: 10.4014/jmb.1909.09062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study we investigated the immune effects of oral administration of anionic macromolecules extracted from Codium fragile (CFAM) and red ginseng extract mixture on the peritoneal macrophage cells in immune-suppressed mice. Cyclophosphamide (CY) induces the immune-suppressed condition. CY-treated mice were orally fed with different concentrations of CFAM supplemented with red ginseng extract and the peritoneal macrophages collected. CY treatment significantly decreased the immune activities of peritoneal macrophages, compared to the normal mice. The administration of CFAM mixed with red ginseng extract significantly boosted the viability of macrophage cells and nitric oxide production of peritoneal macrophages. Further, the oral administration of CFAM mixed with red ginseng extract up-regulated the expression of iNOS, COX-2, and TLR-4 as well as cytokines such as IL-1β, IL-6, TNF-α, and IFN-γ more than the red ginseng-treated group. This study showed that CFAM enhanced the immune activity of red ginseng extract in the peritoneal macrophage cells of immune-suppressed mice. Furthermore, CFAM might be used as a co-stimulant of red ginseng extract through the regulation of macrophage cells for the enhancement of human health and immunity.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Chaiwat Monmai
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 5457, Republic of Korea
| | - Weerawan Rod-in
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 5457, Republic of Korea
| | - A-yeong Jang
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea,Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 5457, Republic of Korea
| | - Sang-Guan You
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea,Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 5457, Republic of Korea
| | - Sang-min Lee
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea,Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Seok-Kyu Jung
- Department of Horticulture, Daegu Catholic University, Gyeongsan 3830, Republic of Korea
| | - Woo Jung Park
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea,Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 5457, Republic of Korea,Corresponding author Phone: +82-33-640-2857 Fax: +82-33-640-2850 E-mail:
| |
Collapse
|
3
|
Suresh MV, Dolgachev VA, Zhang B, Balijepalli S, Swamy S, Mooliyil J, Kralovich G, Thomas B, Machado-Aranda D, Karmakar M, Lalwani S, Subramanian A, Anantharam A, Moore BB, Raghavendran K. TLR3 absence confers increased survival with improved macrophage activity against pneumonia. JCI Insight 2019; 4:131195. [PMID: 31801911 DOI: 10.1172/jci.insight.131195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptor 3 (TLR3) is a pathogen recognition molecule associated with viral infection with double-stranded RNA (dsRNA) as its ligand. We evaluated the role of TLR3 in bacterial pneumonia using Klebsiella pneumoniae (KP). WT and TLR3-/- mice were subjected to a lethal model of KP. Alveolar macrophage polarization, bactericidal activity, and phagocytic capacity were compared. RNA-sequencing was performed on alveolar macrophages from the WT and TLR3-/- mice. Adoptive transfers of alveolar macrophages from TLR3-/- mice to WT mice with KP were evaluated for survival. Expression of TLR3 in postmortem human lung samples from patients who died from gram-negative pneumonia and pathological grading of pneumonitis was determined. Mortality was significantly lower in TLR3-/-, and survival improved in WT mice following antibody neutralization of TLR3 and with TLR3/dsRNA complex inhibitor. Alveolar macrophages from TLR3-/- mice demonstrated increased bactericidal and phagocytic capacity. RNA-sequencing showed an increased production of chemokines in TLR3-/- mice. Adoptive transfer of alveolar macrophages from the TLR3-/- mice restored the survival in WT mice. Human lung samples demonstrated a good correlation between the grade of pneumonitis and TLR3 expression. These data represent a paradigm shift in understanding the mechanistic role of TLR3 in bacterial pneumonia.
Collapse
Affiliation(s)
| | | | - Boya Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Samantha Swamy
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jashitha Mooliyil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Georgia Kralovich
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Bivin Thomas
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Monita Karmakar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Sanjeev Lalwani
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Arulselvi Subramanian
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Bethany B Moore
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
4
|
Cheng HY, Ning MX, Chen DK, Ma WT. Interactions Between the Gut Microbiota and the Host Innate Immune Response Against Pathogens. Front Immunol 2019; 10:607. [PMID: 30984184 PMCID: PMC6449424 DOI: 10.3389/fimmu.2019.00607] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
The mammalian intestine is colonized by over a trillion microbes that comprise the "gut microbiota," a microbial community which has co-evolved with the host to form a mutually beneficial relationship. Accumulating evidence indicates that the gut microbiota participates in immune system maturation and also plays a central role in host defense against pathogens. Here we review some of the mechanisms employed by the gut microbiota to boost the innate immune response against pathogens present on epithelial mucosal surfaces. Antimicrobial peptide secretion, inflammasome activation and induction of host IL-22, IL-17, and IL-10 production are the most commonly observed strategies employed by the gut microbiota for host anti-pathogen defense. Taken together, the body of evidence suggests that the host gut microbiota can elicit innate immunity against pathogens.
Collapse
Affiliation(s)
- Hong-Yu Cheng
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Meng-Xia Ning
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Wen-Tao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
5
|
Hefele M, Stolzer I, Ruder B, He GW, Mahapatro M, Wirtz S, Neurath MF, Günther C. Intestinal epithelial Caspase-8 signaling is essential to prevent necroptosis during Salmonella Typhimurium induced enteritis. Mucosal Immunol 2018; 11:1191-1202. [PMID: 29520026 DOI: 10.1038/s41385-018-0011-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/03/2018] [Accepted: 01/14/2018] [Indexed: 02/04/2023]
Abstract
Although induction of host cell death is a pivotal step during bacteria-induced gastroenteritis, the molecular regulation remains to be fully characterized. To expand our knowledge, we investigated the role of the central cell death regulator Caspase-8 in response to Salmonella Typhimurium. Here, we uncovered that intestinal salmonellosis was associated with strong upregulation of members of the host cell death machinery in intestinal epithelial cells (IECs) as an early event, suggesting that elimination of infected IECs represents a host defense strategy. Indeed, Casp8∆IEC mice displayed severe tissue damage and high lethality after infection. Additional deletion of Ripk3 or Mlkl rescued epithelial cell death and lethality of Casp8∆IEC mice, demonstrating the crucial role of Caspase-8 as a negative regulator of necroptosis. While Casp8∆IECTnfr1-/- mice showed improved survival after infection, tissue destruction was similar to Casp8∆IEC mice, indicating that necroptosis partially depends on TNF-α signaling. Although there was no impairment in antimicrobial peptide secretion during the early phase of infection, functional Caspase-8 seems to be required to control pathogen colonization. Collectively, these results demonstrate that Caspase-8 is essential to prevent Salmonella Typhimurium induced enteritis and to ensure host survival by two different mechanisms: maintenance of intestinal barrier function and restriction of pathogen colonization.
Collapse
Affiliation(s)
- Manuela Hefele
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Gui-Wei He
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
6
|
A Type III Effector NleF from EHEC Inhibits Epithelial Inflammatory Cell Death by Targeting Caspase-4. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4101745. [PMID: 28593173 PMCID: PMC5448047 DOI: 10.1155/2017/4101745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023]
Abstract
Enterohemorrhagic E. coli (EHEC) is a highly pathogenic bacterial strain capable of inducing severe gastrointestinal disease. Here, we show that EHEC uses the T3SS effector NleF to counteract the host inflammatory response by dampening caspase-4-mediated inflammatory epithelial cell death and by preventing the production of IL-1β. The other two inflammatory caspases, caspase-1 and caspase-5, are not involved in EHEC ΔnleF-induced inflammatory cell death. We found that NleF not only interrupted the heterodimerization of caspase-4-p19 and caspase-4-p10, but also inhibited the interaction of caspase-1 and caspase-4. The last four amino acids of the NleF carboxy terminus are essential in inhibiting caspase-4-dependent inflammatory cell death.
Collapse
|
7
|
Lee J, Nho YH, Yun SK, Hwang YS. Use of ethanol extracts of Terminalia chebula to prevent periodontal disease induced by dental plaque bacteria. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:113. [PMID: 28202081 PMCID: PMC5312597 DOI: 10.1186/s12906-017-1619-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND The fruit of the Terminalia chebula tree has been widely used for the treatment of various disorders. Its anti-diabetic, anti-mutagenic, anti-oxidant, anti-bacterial, anti-fungal, and anti-viral effects have been studied. Dental plaque bacteria (DPB) are intimately associated with gingivitis and periodontitis. In the quest for materials that will prove useful in the treatment and prevention of periodontal disease, we investigated the preventive effects of an ethanol extract of Terminalia chebula (EETC) on DPB-induced inflammation and bone resorption. METHODS The anti-bacterial effect of EETC was analyzed using the disc diffusion method. The anti-inflammatory effect of EETC was determined by molecular biological analysis of the DPB-mediated culture cells. Prevention of osteoclastic bone resorption by EETC was explored using osteoclast formation and pit formation assays. RESULTS EETC suppressed the growth of oral bacteria and reduced the induction of inflammatory cytokines and proteases, abolishing the expression of PGE2 and COX-2 and inhibiting matrix damage. By stimulating the DPB-derived lipopolysaccharides, EETC inhibited both osteoclast formation in osteoclast precursors and RANKL expression in osteoblasts, thereby contributing to the prevention of bone resorption. CONCLUSIONS EETC may be a beneficial supplement to help prevent DPB-mediated periodontal disease.
Collapse
Affiliation(s)
- Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, 164-19, Republic of Korea
| | - Youn Hwa Nho
- COSMAX R&I Center, COSMAX Inc., Seongnam, 134-86, Republic of Korea
| | - Seok Kyun Yun
- COSMAX R&I Center, COSMAX Inc., Seongnam, 134-86, Republic of Korea
| | - Young Sun Hwang
- Department of Dental Hygiene, College of Health Science, Eulji University, 553, Sansung-Daero, Soojung-Gu, Seongnam City, Republic of Korea.
| |
Collapse
|
8
|
Kang GD, Kim DH. Poncirin and its metabolite ponciretin attenuate colitis in mice by inhibiting LPS binding on TLR4 of macrophages and correcting Th17/Treg imbalance. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:175-185. [PMID: 27224242 DOI: 10.1016/j.jep.2016.05.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Poncirus trifoliate, which contains poncirin as a main constituent, is frequently used in the traditional Chinese medicine for inflammation, asthma, and infection diseases. AIM OF THE STUDY To examine anti-colitic effects of poncirin and ponciretin, a metabolite of poncirin by gut microbiota. MATERIALS AND METHODS Colitis was induced in mice by the intrarectal injection of 2,4,6-trinitrobenzenesulfonic acid (TNBS). Inflammatory markers were analyzed by enzyme-linked immunosorbent assay, immunoblotting, quantitative polymerase chain reaction, confocal microscopy, and flow cytometry. Peritoneal macrophages were isolated from mice stimulated with 4% thioglycolate. RESULTS Poncirin was metabolized to ponciretin in vitro and in vivo by gut microbiota of mice. Orally administered poncirin and ponciretin suppressed TNBS-induced colitis in mice: these inhibited colon shortening, myeloperoxidase activity, NF-κB activation, and Th17 cell differentiation, but increased occludin, claudin-1, and ZO-1 expressions and Treg cell differentiation. Poncirin and ponciretin suppressed the differentiation of splenocytes into Th17 cells and expression of IL-17 and Foxp3 in vitro, as well as the activation of macrophages stimulated with lipopolysaccharide (LPS) by inhibiting the binding of LPS on TLR4 of macrophages. These increased the differentiation of splenocytes into Treg cells. The ant-inflammatory effect of ponciretin was superior to that of poncirin. CONCLUSION Orally administered poncirin is metabolized to ponciretin by gut microbiota and poncirin and ponciretin attenuates colitis by suppressing NF-κB activation through the inhibition of LPS binding on macrophages and correcting Th17/Treg cell imbalance.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/metabolism
- Anti-Inflammatory Agents/pharmacology
- Bacteria/metabolism
- Biotransformation
- Cells, Cultured
- Colitis/chemically induced
- Colitis/immunology
- Colitis/metabolism
- Colitis/prevention & control
- Colon/drug effects
- Colon/immunology
- Colon/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/metabolism
- Drugs, Chinese Herbal/pharmacology
- Flavonoids/administration & dosage
- Flavonoids/metabolism
- Flavonoids/pharmacology
- Gastrointestinal Agents/administration & dosage
- Gastrointestinal Agents/metabolism
- Gastrointestinal Agents/pharmacology
- Gastrointestinal Microbiome
- Inflammation Mediators/metabolism
- Lipopolysaccharides/metabolism
- Lipopolysaccharides/pharmacology
- Macrophage Activation/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Male
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Signal Transduction/drug effects
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Time Factors
- Toll-Like Receptor 4/drug effects
- Toll-Like Receptor 4/metabolism
- Trinitrobenzenesulfonic Acid
Collapse
Affiliation(s)
- Geum-Dan Kang
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1, Hoegi, Dongdaemun-gu, Seoul 130-701, South Korea
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1, Hoegi, Dongdaemun-gu, Seoul 130-701, South Korea.
| |
Collapse
|
9
|
Forbester JL, Goulding D, Vallier L, Hannan N, Hale C, Pickard D, Mukhopadhyay S, Dougan G. Interaction of Salmonella enterica Serovar Typhimurium with Intestinal Organoids Derived from Human Induced Pluripotent Stem Cells. Infect Immun 2015; 83:2926-34. [PMID: 25964470 PMCID: PMC4468523 DOI: 10.1128/iai.00161-15] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/24/2015] [Indexed: 11/20/2022] Open
Abstract
The intestinal mucosa forms the first line of defense against infections mediated by enteric pathogens such as salmonellae. Here we exploited intestinal "organoids" (iHOs) generated from human induced pluripotent stem cells (hIPSCs) to explore the interaction of Salmonella enterica serovar Typhimurium with iHOs. Imaging and RNA sequencing were used to analyze these interactions, and clear changes in transcriptional signatures were detected, including altered patterns of cytokine expression after the exposure of iHOs to bacteria. S. Typhimurium microinjected into the lumen of iHOs was able to invade the epithelial barrier, with many bacteria residing within Salmonella-containing vacuoles. An S. Typhimurium invA mutant defective in the Salmonella pathogenicity island 1 invasion apparatus was less capable of invading the iHO epithelium. Hence, we provide evidence that hIPSC-derived organoids are a promising model of the intestinal epithelium for assessing interactions with enteric pathogens.
Collapse
Affiliation(s)
- Jessica L Forbester
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - David Goulding
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Ludovic Vallier
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory, Department of Surgery, West Forvie Site, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Hannan
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory, Department of Surgery, West Forvie Site, University of Cambridge, Cambridge, United Kingdom
| | - Christine Hale
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Derek Pickard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | | | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
10
|
Lee SY, Jeong JJ, Eun SH, Kim DH. Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induced colitis. Eur J Pharmacol 2015; 762:333-43. [PMID: 26054809 DOI: 10.1016/j.ejphar.2015.06.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/26/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
Abstract
Ginsenoside Rg1, one of the main constituents of Panax ginseng, exhibits anti-inflammatory effect. In a preliminary study, it was observed that ginsenoside Rg1 was metabolized to 20(S)-protopanaxtriol via ginsenosides Rh1 and F1 by gut microbiota. We further investigated the anti-inflammatory effects of ginsenoside Rg1 and its metabolites in vitro and in vivo. Ginsenosides Rg1, Rh1, and 20(S)-protopanaxtriol inhibited the activation of NF-κB activation, phosphorylation of transforming growth factor beta-activated kinase 1 and interleukin (IL)-1 receptor-associated kinase, and expression of tumor necrosis factor-α and IL-1β in lipopolysaccharide (LPS)-stimulated macrophages. They also inhibited the binding of LPS to toll-like receptor 4 on the macrophages. Orally administered ginsenoside Rg1, Rh1, or 20(S)-protopanaxtriol inhibited 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colon shortening, myeloperoxidase activity, and expression of IL-1β, IL-17, and tumor necrosis factor-α in mice with TNBS-induced colitis. They did not only inhibit TNBS-induced NF-κB activation, but also restored TNBS-induced Th17/Treg imbalance. They restored IL-10 and Foxp3 expression. Moreover, they inhibited Th17 cell differentiation in vitro. Of these metabolites, in vitro and in vivo anti-inflammatory effect of 20(S)-protopanaxtriol was the most potent, followed by Rh1. These findings suggest that ginsenoside Rg1 is metabolized to 20(S)-protopanaxtriol via ginsenosides Rh1 and F1 and these metabolites particularly 20(S)-protopanaxtriol, may ameliorate inflammatory disease such as colitis by inhibiting the binding of LPS to TLR4 on macrophages and restoring the Th17/Treg imbalance.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1, Hoegi, Dongdaemun-ku, Seoul 130-701, Republic of Korea
| | - Jin-Ju Jeong
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1, Hoegi, Dongdaemun-ku, Seoul 130-701, Republic of Korea
| | - Su-Hyeon Eun
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1, Hoegi, Dongdaemun-ku, Seoul 130-701, Republic of Korea
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1, Hoegi, Dongdaemun-ku, Seoul 130-701, Republic of Korea.
| |
Collapse
|
11
|
Jang SE, Jeong JJ, Hyam SR, Han MJ, Kim DH. Ursolic acid isolated from the seed of Cornus officinalis ameliorates colitis in mice by inhibiting the binding of lipopolysaccharide to Toll-like receptor 4 on macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9711-21. [PMID: 25213465 DOI: 10.1021/jf501487v] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ursolic acid, which was isolated from an ethanol extract of Cornus officinalis seed, potently inhibited nuclear factor κ light-chain enhancer of activated B cells (NF-κB) activation in lipopolysaccharide (LPS)-stimulated peritoneal macrophages. Therefore, we investigated the anti-inflammatory mechanism of ursolic acid in LPS-stimulated macrophages and colitic mice. Ursolic acid inhibited phosphorylation of interleukin 1 receptor-associated kinase (IRAK)1, TAK1, inhibitor of nuclear factor κB kinase subunit β (IKKβ), and IκBα as well as activation of NF-κB and MAPKs in LPS-stimulated macrophages. Ursolic acid suppressed LPS-stimulated interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, and inducible NO synthetase (iNOS) expression as well as PGE2 and NO levels. Ursolic acid not only inhibited the Alexa Fluor 488-conjugated LPS-mediated shift of macrophages but also reduced the intensity of fluorescent LPS bound to the macrophages transiently transfected with or without MyD88 siRNA. However, ursolic acid did not suppress NF-κB activation in peptidoglycan-stimulated macrophages. Oral administration of ursolic acid significantly inhibited 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colon shortening and myeloperoxidase (MPO) activity in mice. Ursolic acid also suppressed TNBS-induced COX-2 and iNOS expression as well as NF-κB activation in colon tissues. Ursolic acid (20 mg/kg) also inhibited TNBS-induced IL-1β, IL-6, TNF-α by 93, 86, and 85%, respectively (p < 0.05). However, ursolic acid reversed TNBS-mediated downregulation of IL-10 expression to 79% of the normal control group (p < 0.05). On the basis of these findings, ursolic acid may ameliorate colitis by regulating NF-κB and MAPK signaling pathways via the inhibition of LPS binding to TLR4 on immune cells.
Collapse
Affiliation(s)
- Se-Eun Jang
- Department of Life and Nanopharmaceutical Sciences, ‡Department of Food and Nutrition, and §Department of Pharmacy, Kyung Hee University , Seoul 130-701, Korea
| | | | | | | | | |
Collapse
|
12
|
Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH. Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9595-9602. [PMID: 22849695 DOI: 10.1021/jf301372g] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ginseng (the root of Panax ginseng C.A. Meyer, family Araliaceae), which contains protopanaxadiol ginsenoside Rb1 and protopanaxatriol ginsenoside Re as main constituents, is frequently used to treat cancer, inflammation, and stress. In the preliminary study, protopanaxatriol ginsenoside Re inhibited NF-κB activation in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. Therefore, we investigated its anti-inflammatory effect in peptidoglycan (PGN)-, LPS-, or tumor necrosis factor-α (TNF-α)-stimulated peritoneal macrophages and, in addition, in LPS-induced systemic inflammation and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Ginsenoside Re inhibited IKK-β phosphorylation and NF-κB activation, as well as the expression of proinflammatory cytokines, TNF-α and IL-1β, in LPS-stimulated peritoneal macrophages, but it did not inhibit them in TNF-α- or PG-stimulated peritoneal macrophages. Ginsenoside Re also inhibited IRAK-1 phosphorylation induced by LPS, as well as IRAK-1 and IRAK-4 degradations in LPS-stimulated peritoneal macrophages. Ginsenoside Re inhibited the binding of Alexa Fluor 488-conjugated LPS to TLR4 on peritoneal macrophages. Furthermore, ginsenoside Re inhibited the binding of LPS to TLR4 on peritoneal macrophages transiently transfected with MyD88 siRNAs. Orally administered ginsenoside Re significantly inhibited the expression of IL-1β and TNF-α on LPS-induced systemic inflammation and TNBS-induced colitis in mice. Ginsenoside Re inhibited colon shortening and myeloperoxidase activity in TNBS-treated mice. Ginsenoside Re reversed the reduced expression of tight-junction-associated proteins ZO-1, claudin-1, and occludin. Ginsenoside Re (20 mg/kg) inhibited the activation of NF-κB in TNBS-treated mice. On the basis of these findings, ginsenoside Re may ameliorate inflammation by inhibiting the binding of LPS to TLR4 on macrophages.
Collapse
Affiliation(s)
- In-Ah Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University , Seoul 130-701, Korea
| | | | | | | | | |
Collapse
|
13
|
Sotolongo J, Kanagavelu S, Hyun J, Ruiz J, Fukata M. TRIF mobilizes unique primary defense against Gram-negative bacteria in intestinal interface. Gut Microbes 2012; 3:437-41. [PMID: 22713267 PMCID: PMC3679230 DOI: 10.4161/gmic.20873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gastrointestinal tract is the largest mucosal surface in our body. It houses diverse microorganisms that collectively form the commensal microbial community. The security of this community is kept by host-microbial interactions and is violated by foreign pathogens that induce local as well as systemic pathology. In most cases, gastrointestinal infections are caused by Gram-negative enteropathogens, which trigger host immune responses through the TLR4 signaling pathways. Although TRIF is one of the major pathways downstream of TLR4, very little is known about how the TRIF pathway contributes to intestinal defense against pathogenic infection. Recently, we reported a unique role of TRIF signaling in host response to an enterophathogen Yersinia enterocolitica, which consisted of IFN-β induction from regional macrophages followed by activation of NK cells in the mesenteric lymph nodes. In this addendum, we show distinct roles for TRIF-dependent host response in intestinal vs. systemic infection with Gram-negative enterophathogens.
Collapse
|