1
|
Ren T, Miao Q, Pan Y, Zhang S, Shi L, Wang Y, Ye WC, Wu ZL, Huang XJ, Song JG. Diarylheptanoid-flavanone adducts from Alpinia officinarum and their neuroprotective activities. Fitoterapia 2025; 184:106594. [PMID: 40339616 DOI: 10.1016/j.fitote.2025.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/29/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
Guided by the characteristic highly π-conjugated system of HPLC-UV experiments, four pairs of enantiomeric diarylheptanoid-flavanone adducts, officinoids A-D (1-4), were isolated from the rhizomes of medicinal plant Alpinia officinarum. Their structures with absolute configurations were fully characterized through a combination of extensive spectroscopic analysis, single-crystal X-ray diffraction, and density functional theory quantum chemical calculation. These isolated compounds represent a new class of diarylheptanoid-flavanone adducts with an unprecedented C-11-C-8'(C-6') and C-9-O-C-7' connection mode. Notably, compounds 3 and 4 contain an unusual ketal motif in the dihydropyrano[2,3-f]chromone or dihydropyrano[3,2-g]chromone skeleton. In the bioactivity assays, compound 2 exhibited significant neuroprotective effects against neuronal injury induced by oxygen-glucose deprivation and re‑oxygenation (OGD/R) in SH-SY5Y cells.
Collapse
Affiliation(s)
- Teng Ren
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Qiuping Miao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yan Pan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Shiqing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lei Shi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhen-Long Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Jian-Guo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
2
|
Bahr-Hosseini M, Saver JL. A new taxonomy of neuroprotective agents for stroke appropriate for the reperfusion era. Front Neurol 2025; 15:1514924. [PMID: 40040642 PMCID: PMC11878098 DOI: 10.3389/fneur.2024.1514924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/20/2024] [Indexed: 03/06/2025] Open
Abstract
The advent of the era of highly effective reperfusion therapy for acute ischemic stroke has reawakened interest in neuroprotective treatments as they are far more likely to be efficacious as synergistic complements to reperfusion rather than standalone interventions. However, testing neuroprotective agents combined with reperfusion mandates not only renewed conduct of trials but also a fundamental reconceptualization of the subclasses of neuroprotection therapies. We propose a new taxonomy of neuroprotective treatment agents appropriate for the reperfusion era that recognizes six broad classes of agents, each targeting a distinct process and time epoch of injury: (1) Bridging neuroprotectives slow infarct expansion in the pre-reperfusion period, (2) Blood-brain barrier stabilizers restore the integrity of BBB before and early after reperfusion, (3) Microcirculation lumen preservers protect arteriolar and capillary endothelial cell integrity deterring the no-reflow phenomenon, (4) Reperfusion injury preventors block inflammatory, oxidative, and other processes that start immediately after reperfusion, (5) Edema reducers avert cerebral swelling and secondary injury due to brain tissue compression and herniation, and (6) Delayed neuroprotectives mitigate injury due to apoptosis and mitochondrial dysfunction in the late post-reperfusion period. This approach also broadly distinguishes neuroprotection from other major treatment strategies, including recanalization, collateral enhancement, and neurorepair. By focusing on broad physiologic targets of action rather than granular molecular mechanisms, this six-fold classification of neuroprotection can inform the design of preclinical studies and human clinical trials, including imaging biomarker endpoint selection and treatment timing. This updated taxonomy may accelerate the translation of cerebroprotective agents from bench to bedside.
Collapse
Affiliation(s)
- Mersedeh Bahr-Hosseini
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | | |
Collapse
|
3
|
Winder AJ, Stanley EA, Fiehler J, Forkert ND. Challenges and Potential of Artificial Intelligence in Neuroradiology. Clin Neuroradiol 2024; 34:293-305. [PMID: 38285239 DOI: 10.1007/s00062-024-01382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE Artificial intelligence (AI) has emerged as a transformative force in medical research and is garnering increased attention in the public consciousness. This represents a critical time period in which medical researchers, healthcare providers, insurers, regulatory agencies, and patients are all developing and shaping their beliefs and policies regarding the use of AI in the healthcare sector. The successful deployment of AI will require support from all these groups. This commentary proposes that widespread support for medical AI must be driven by clear and transparent scientific reporting, beginning at the earliest stages of scientific research. METHODS A review of relevant guidelines and literature describing how scientific reporting plays a central role at key stages in the life cycle of an AI software product was conducted. To contextualize this principle within a specific medical domain, we discuss the current state of predictive tissue outcome modeling in acute ischemic stroke and the unique challenges presented therein. RESULTS AND CONCLUSION Translating AI methods from the research to the clinical domain is complicated by challenges related to model design and validation studies, medical product regulations, and healthcare providers' reservations regarding AI's efficacy and affordability. However, each of these limitations is also an opportunity for high-impact research that will help to accelerate the clinical adoption of state-of-the-art medical AI. In all cases, establishing and adhering to appropriate reporting standards is an important responsibility that is shared by all of the parties involved in the life cycle of a prospective AI software product.
Collapse
Affiliation(s)
- Anthony J Winder
- Department of Radiology, University of Calgary, Calgary, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Emma Am Stanley
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Canada
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Bindal P, Kumar V, Kapil L, Singh C, Singh A. Therapeutic management of ischemic stroke. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2651-2679. [PMID: 37966570 DOI: 10.1007/s00210-023-02804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Stroke is the third leading cause of years lost due to disability and the second-largest cause of mortality worldwide. Most occurrences of stroke are brought on by the sudden occlusion of an artery (ischemic stroke), but sometimes they are brought on by bleeding into brain tissue after a blood vessel has ruptured (hemorrhagic stroke). Alteplase is the only therapy the American Food and Drug Administration has approved for ischemic stroke under the thrombolysis category. Current views as well as relevant clinical research on the diagnosis, assessment, and management of stroke are reviewed to suggest appropriate treatment strategies. We searched PubMed and Google Scholar for the available therapeutic regimes in the past, present, and future. With the advent of endovascular therapy in 2015 and intravenous thrombolysis in 1995, the therapeutic options for ischemic stroke have expanded significantly. A novel approach such as vagus nerve stimulation could be life-changing for many stroke patients. Therapeutic hypothermia, the process of cooling the body or brain to preserve organ integrity, is one of the most potent neuroprotectants in both clinical and preclinical contexts. The rapid intervention has been linked to more favorable clinical results. This study focuses on the pathogenesis of stroke, as well as its recent advancements, future prospects, and potential therapeutic targets in stroke therapy.
Collapse
Affiliation(s)
- Priya Bindal
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Uttarakhand, 246174, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India.
| |
Collapse
|
5
|
Zhang Q, Huang S, Liu X, Wang W, Zhu Z, Chen L. Innovations in Breaking Barriers: Liposomes as Near-Perfect Drug Carriers in Ischemic Stroke Therapy. Int J Nanomedicine 2024; 19:3715-3735. [PMID: 38681090 PMCID: PMC11046314 DOI: 10.2147/ijn.s462194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024] Open
Abstract
Liposomes, noted for their tunable particle size, surface customization, and varied drug delivery capacities, are increasingly acknowledged in therapeutic applications. These vesicles exhibit surface flexibility, enabling the incorporation of targeting moieties or peptides to achieve specific targeting and avoid lysosomal entrapment. Internally, their adaptable architecture permits the inclusion of a broad spectrum of drugs, contingent on their solubility characteristics. This study thoroughly reviews liposome fabrication, surface modifications, and drug release mechanisms post-systemic administration, with a particular emphasis on drugs crossing the blood-brain barrier (BBB) to address lesions. Additionally, the review delves into recent developments in the use of liposomes in ischemic stroke models, offering a comparative evaluation with other nanocarriers like exosomes and nano-micelles, thereby facilitating their clinical advancement.
Collapse
Affiliation(s)
- Qiankun Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Songze Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaowen Liu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
6
|
Han D, Wang M, Dong N, Zhang J, Li D, Ma X, Ma Y, Wang S, Zhu Y, Wang C. Selective homing of brain-derived reconstituted lipid nanoparticles to cerebral ischemic area enables improved ischemic stroke treatment. J Control Release 2024; 365:957-968. [PMID: 38104776 DOI: 10.1016/j.jconrel.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Lipid nanoparticles (LNPs) hold great promise as carriers for developing drug delivery systems (DDSs) aimed at managing ischemic stroke (IS). Previous research has highlighted the vital role played by the lipid composition and biophysical characteristics of LNPs, influencing their interactions with cells and tissues. This understanding presents an opportunity to engineer LNPs tailored specifically for enhanced IS treatment. We previously introduced the innovative concept of reconstituted lipid nanoparticles (rLNPs), which not only retain the advantages of conventional LNPs but also incorporate lipids from the originating cell or tissue. Brain-derived rLNPs (B-rLNPs) exhibit significantly superior accumulation within the cerebral ischemic region when compared to liver-derived rLNPs (L-rLNPs). The homing effect of B-rLNPs was then employed to construct 3-n-butylphthalide (NBP) loaded DDS (B-rLNPs/NBP) for the treatment of IS. Our results demonstrated that compared with free NBP, B-rLNPs/NBP can significantly reduce infarct volume, neurological deficits, blood-brain barrier (BBB) leakage rate, brain water content, neutrophil infiltration, alleviate pathological structures, and improve the motor function in MCAO/R model. We also proved that B-rLNPs/NBP showed further reinforced protective effects on the same model than free NBP through the regulation of TLR4/MyD88/NF-κB (anti-inflammation) and Bax/Bcl-2 (anti-apoptosis) pathways. This study offers a promising tool towards improved IS treatment.
Collapse
Affiliation(s)
- Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, China
| | - Meihua Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, China
| | - Ningyu Dong
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Dingran Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoling Ma
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ying Ma
- Jiangsu Institute for Food and Drug Control, Nanjing, Jiangsu, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
7
|
Ho YJ, Cheng HL, Liao LD, Lin YC, Tsai HC, Yeh CK. Oxygen-loaded microbubble-mediated sonoperfusion and oxygenation for neuroprotection after ischemic stroke reperfusion. Biomater Res 2023; 27:65. [PMID: 37415210 DOI: 10.1186/s40824-023-00400-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/21/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Ischemic stroke-reperfusion (S/R) injury is a crucial issue in the protection of brain function after thrombolysis. The vasodilation induced by ultrasound (US)-stimulated microbubble cavitation has been applied to reduce S/R injury through sonoperfusion. The present study uses oxygen-loaded microbubbles (OMBs) with US stimulation to provide sonoperfusion and local oxygen therapy for the reduction of brain infarct size and neuroprotection after S/R. METHODS The murine S/R model was established by photodynamic thrombosis and thrombolysis at the remote branch of the anterior cerebral artery. In vivo blood flow, partial oxygen pressure (pO2), and brain infarct staining were examined to analyze the validity of the animal model and OMB treatment results. The animal behaviors and measurement of the brain infarct area were used to evaluate long-term recovery of brain function. RESULTS The percentage of blood flow was 45 ± 3%, 70 ± 3%, and 86 ± 2% after 60 min stroke, 20 min reperfusion, and 10 min OMB treatment, respectively, demonstrating sonoperfusion, and the corresponding pO2 level was 60 ± 1%, 76 ± 2%, and 79 ± 4%, showing reoxygenation. After 14 days of treatment, a 87 ± 3% reduction in brain infarction and recovery of limb coordination were observed in S/R mice. The expression of NF-κB, HIF-1α, IL-1β, and MMP-9 was inhibited and that of eNOS, BDNF, Bcl2, and IL-10 was enhanced, indicating activation of anti-inflammatory and anti-apoptosis responses and neuroprotection. Our study demonstrated that OMB treatment combines the beneficial effects of sonoperfusion and local oxygen therapy to reduce brain infarction and activate neuroprotection to prevent S/R injury.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsiang-Lung Cheng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Chun Lin
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Chieh Tsai
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, No.5Fuxing St.Guishan Dist., Taoyuan City, 333, Taiwan.
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| |
Collapse
|
8
|
Fan G, Liu M, Liu J, Huang Y. The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci 2023; 16:1113081. [PMID: 37033381 PMCID: PMC10076579 DOI: 10.3389/fnmol.2023.1113081] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Glutamate plays an important role in excitotoxicity and ferroptosis. Excitotoxicity occurs through over-stimulation of glutamate receptors, specifically NMDAR, while in the non-receptor-mediated pathway, high glutamate concentrations reduce cystine uptake by inhibiting the System Xc-, leading to intracellular glutathione depletion and resulting in ROS accumulation, which contributes to increased lipid peroxidation, mitochondrial damage, and ultimately ferroptosis. Oxidative stress appears to crosstalk between excitotoxicity and ferroptosis, and it is essential to maintain glutamate homeostasis and inhibit oxidative stress responses in vivo. As researchers work to develop natural compounds to further investigate the complex mechanisms and regulatory functions of ferroptosis and excitotoxicity, new avenues will be available for the effective treatment of ischaemic stroke. Therefore, this paper provides a review of the molecular mechanisms and treatment of glutamate-mediated excitotoxicity and ferroptosis.
Collapse
Affiliation(s)
- Genhao Fan
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Huang,
| |
Collapse
|
9
|
Matossian V, Starkman S, Sanossian N, Stratton S, Eckstein M, Conwit R, Liebeskind DS, Sharma L, Tenser MK, Saver JL. Quantifying the amount of greater brain ischemia protection time with pre-hospital vs. in-hospital neuroprotective agent start. Front Neurol 2022; 13:990339. [PMID: 36176566 PMCID: PMC9514007 DOI: 10.3389/fneur.2022.990339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study is to quantify the increase in brain-under-protection time that may be achieved with pre-hospital compared with the post-arrival start of neuroprotective therapy among patients undergoing endovascular thrombectomy. In order to do this, a comparative analysis was performed of two randomized trials of neuroprotective agents: (1) pre-hospital strategy: Field administration of stroke therapy-magnesium (FAST-MAG) Trial; (2) in-hospital strategy: Efficacy and safety of nerinetide for the treatment of acute ischemic stroke (ESCAPE-NA1) Trial. In the FAST-MAG trial, among 1,041 acute ischemic stroke patients, 44 were treated with endovascular reperfusion therapy (ERT), including 32 treated with both intravenous thrombolysis and ERT and 12 treated with ERT alone. In the ESCAPE-NA1 trial, among 1,105 acute ischemic stroke patients, 659 were treated with both intravenous thrombolysis and ERT, and 446 were treated with ERT alone. The start of the neuroprotective agent was sooner after onset with pre-hospital vs. in-hospital start: 45 m (IQR 38-56) vs. 122 m. The neuroprotective agent in FAST-MAG was started 8 min prior to ED arrival compared with 64 min after arrival in ESCAPE-NA1. Projecting modern endovascular workflows to FAST-MAG, the total time of "brain under protection" (neuroprotective agent start to reperfusion) was greater with pre-hospital than in-hospital start: 94 m (IQR 90-98) vs. 22 m. Initiating a neuroprotective agent in the pre-hospital setting enables a faster treatment start, yielding 72 min additional brain protection time for patients with acute ischemic stroke. These findings provide support for the increased performance of ambulance-based, pre-hospital treatment trials in the development of neuroprotective stroke therapies.
Collapse
Affiliation(s)
- Vartan Matossian
- MSTAR Program, Department of Geriatrics, University of California, Los Angeles, Los Angeles, CA, United States,*Correspondence: Vartan Matossian
| | - Sidney Starkman
- Stroke Center and Department of Emergency Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nerses Sanossian
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Samuel Stratton
- Department of Emergency Medicine, University Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Marc Eckstein
- Department of Emergency Medicine, University of Southern California, Los Angeles, CA, United States
| | - Robin Conwit
- Division of Extramural Research, National Institutes of Health/National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - David S. Liebeskind
- Stroke Center and Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Latisha Sharma
- Stroke Center and Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - May-Kim Tenser
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Jeffrey L. Saver
- Stroke Center and Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Song Y, Zhang X, Li C, Xu S, Zhou B, Wu X. Is Bilirubin Associated with the Severity of Ischemic Stroke? A Dose Response Meta-Analysis. J Clin Med 2022; 11:jcm11123262. [PMID: 35743332 PMCID: PMC9224549 DOI: 10.3390/jcm11123262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
There is no consensus on the role of bilirubin in acute ischemic stroke. Higher levels of serum bilirubin may provide a treatment advantage in oxidative-stress-mediated diseases but also may simply reflect the strength of the oxidative stress. As of 28 February 2022, the relevant studies were selected from four databases (PubMed, Web of science, Cochrane, and CNKI) through a retrieval strategy, and strict literature screening and quality evaluation were carried out. The dose–response relationship was fitted with a restricted cubic splines function. We found that the serum total bilirubin level and the direct bilirubin level were positively correlated with the severity of ischemic stroke. The direct bilirubin level was linearly correlated with the severity of stroke (P for non-linearity = 0.55), and the direct bilirubin increase of 1 μmol/L may be related to the 1% increase in the possibility of having moderate or severe ischemic stroke. High bilirubin levels are associated with stroke severity in patients with ischemic stroke and may serve as a marker of the intensity of initial oxidative stress.
Collapse
Affiliation(s)
- Yumeng Song
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang 110000, China; (Y.S.); (C.L.)
| | - Xiaohong Zhang
- Department of Clinical Epidemiology, The Fourth Hospital of China Medical University, Shenyang 110000, China;
| | - Chaoxiu Li
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang 110000, China; (Y.S.); (C.L.)
| | - Shuang Xu
- Technology Service Department, Library of China Medical University, Shenyang 110000, China;
| | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang 110000, China; (Y.S.); (C.L.)
- Correspondence: (B.Z.); (X.W.)
| | - Xiaomei Wu
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang 110000, China; (Y.S.); (C.L.)
- Correspondence: (B.Z.); (X.W.)
| |
Collapse
|
11
|
Liew SL, Lin DJ, Cramer SC. Interventions to Improve Recovery After Stroke. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
13
|
Nikolopoulos D, Fanouriakis A, Bertsias G. Treatment of neuropsychiatric systemic lupus erythematosus: clinical challenges and future perspectives. Expert Rev Clin Immunol 2021; 17:317-330. [PMID: 33682602 DOI: 10.1080/1744666x.2021.1899810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Neuropsychiatric (NP) involvement represents an emerging frontier in systemic lupus erythematosus (SLE), posing significant challenges due to its clinical diversity and obscure pathophysiology. The authors herein discuss selected aspects in the management of NPSLE based on existing literature and our experience, aiming to facilitate routine medical care.Areas covered: Research related to diagnosis, neuroimaging, treatment and outcome is discussed, focusing on data published in PubMed during the last 5 years. Selected translational studies of clinical relevance are included.Expert opinion: Identification of NPSLE patients who may benefit from appropriate treatment can be facilitated by attribution algorithms. Immunosuppressants are typically indicated in recurrent seizures, optic neuritis, myelopathy, psychosis and peripheral nerve disease, although a low threshold is recommended for cerebrovascular disease and other NP manifestations, especially when SLE is active. With the exception of stroke with positive antiphospholipid antibodies, anti-coagulation is rarely indicated in other syndromes. Refractory NPSLE can be treated with rituximab, whereas the role of other biologics remains unknown. Advances in the fields of biomarkers, neuroimaging for brain structural, perfusion or functional abnormalities, and design of novel compounds targeting not only systemic autoimmunity but also inflammatory and regenerative pathways within the nervous system, hold promise for optimizing NPSLE management.
Collapse
Affiliation(s)
- Dionysis Nikolopoulos
- 4th Department of Internal Medicine, Joint Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - George Bertsias
- Department of Rheumatology, Clinical Immunology, University of Crete Medical School and University Hospital of Heraklion, Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity and Inflammation, Infections & Immunity Division, Institute of Molecular Biology and Biotechnology (FORTH), Heraklion, Greece
| |
Collapse
|
14
|
Lin DJ, Cramer SC. Principles of Neural Repair and Their Application to Stroke Recovery Trials. Semin Neurol 2021; 41:157-166. [PMID: 33663003 DOI: 10.1055/s-0041-1725140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Neural repair is the underlying therapeutic strategy for many treatments currently under investigation to improve recovery after stroke. Repair-based therapies are distinct from acute stroke strategies: instead of salvaging threatened brain tissue, the goal is to improve behavioral outcomes on the basis of experience-dependent brain plasticity. Furthermore, timing, concomitant behavioral experiences, modality specific outcome measures, and careful patient selection are fundamental concepts for stroke recovery trials that can be deduced from principles of neural repair. Here we discuss core principles of neural repair and their implications for stroke recovery trials, highlighting related issues from key studies in humans. Research suggests a future in which neural repair therapies are personalized based on measures of brain structure and function, genetics, and lifestyle factors.
Collapse
Affiliation(s)
- David J Lin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of VA Medical Center, Providence, Rhode Island
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles, California.,California Rehabilitation Institute, Los Angeles, California
| |
Collapse
|
15
|
Zhang M, Tang M, Wu Q, Wang Z, Chen Z, Ding H, Hu X, Lv X, Zhao S, Sun J, Kang S, Wu T, Xiao B. LncRNA DANCR attenuates brain microvascular endothelial cell damage induced by oxygen-glucose deprivation through regulating of miR-33a-5p/XBP1s. Aging (Albany NY) 2020; 12:1778-1791. [PMID: 31986122 PMCID: PMC7053632 DOI: 10.18632/aging.102712] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
Brain microvascular endothelial cell (BMEC) survival and angiogenesis after ischemic stroke has great significance for improving the prognosis of stroke. Abnormal variants of lncRNAs are closely associated with stroke. In this study, we examined the effects and molecular mechanisms of differentiation antagonizing non-protein coding RNA (DANCR) on apoptosis, migration, and angiogenesis of oxygen-glucose deprivation (OGD)-treated BMECs. We found that DANCR expression significantly increased at 2, 4, 6, 8, and 10 h after OGD. DANCR overexpression promoted cell viability, migration, and angiogenesis in OGD-treated BMECs. Additionally, we found that X-box binding protein l splicing (XBP1s) expression was positively correlated with DANCR expression. DANCR overexpression promoted XBP1s expression in OGD-treated BMECs. Silenced XBP1s reversed the effect of DANCR in OGD-treated BMECs. Furthermore, we found that microRNA (miR)-33a-5p bound to DANCR and the 3'-UTR of XBP1. miR-33a-5p overexpression inhibited proliferation, migration, angiogenesis, and XBP1s expression in OGD-treated DANCR-overexpressing BMECs, reversing the protective effect of DANCR. Finally, we found that XBP1s expression promoted proliferation, migration, and angiogenesis, reversing the damaging effect of miR-33a-5p. In conclusion, DANCR enhanced survival and angiogenesis in OGD-treated BMECs through the miR-33a-5p/XBP1s axis.
Collapse
Affiliation(s)
- Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Zhuolu Wang
- Department of Breast Surgery, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xinhang Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xinyi Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Songfeng Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jingyan Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuntong Kang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tong Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
16
|
Behdarvandy M, Karimian M, Atlasi MA, Azami Tameh A. Heat shock protein 27 as a neuroprotective biomarker and a suitable target for stem cell therapy and pharmacotherapy in ischemic stroke. Cell Biol Int 2019; 44:356-367. [PMID: 31502740 DOI: 10.1002/cbin.11237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Ischemic stroke is a major common cause of death and long-term disability worldwide. Several pathophysiological events including excitotoxicity, oxidative/nitrative stress, inflammation, and apoptosis are involved in ischemic injuries. Recently, the molecular mechanisms involved in cerebral ischemia through a focus on a member of small heat shock proteins family, Hsp27, has been developed. Notably, following exposure to ischemia, Hsp27 expression in the brain could be increased rather than the normal condition and it may play an important role in neuroprotection after ischemic stroke. The neuroprotection effects of Hsp27 may arise from its anti-oxidant, anti-inflammatory, anti-apoptotic, and chaperonic properties. Moreover, some therapeutic strategies such as stem cell therapy and pharmacotherapy have been developed with Hsp27 targeting. In this review, we describe the function and structure of Hsp27 and its possible role in neuroprotection after ischemic stroke. Finally, we present current studies in stroke therapy, which focused on Hsp27 targeting.
Collapse
Affiliation(s)
- Marjan Behdarvandy
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| |
Collapse
|
17
|
Kamisli S, Basaran C, Batcioglu K, Oztanir MN, Gul M, Satilmis B, Uyumlu AB, Kayhan B, Genc M. Neuroprotective effects of the new Na channel blocker rs100642 in global ischemic brain injury. Arch Med Sci 2019; 15:467-474. [PMID: 30899300 PMCID: PMC6425206 DOI: 10.5114/aoms.2017.72550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/18/2017] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION RS100642, a mexiletine analogue, is a novel sodium channel blocker with neuroprotective and antioxidant activities. The protectivity of RS100642, which has been shown against focal cerebral ischemia, was investigated in global cerebral ischemia in this study. MATERIAL AND METHODS Global cerebral ischemia was induced for five minutes in adult male Wistar Albino rats via the 4-vessel occlusion method. Intravenous administration of 1 mg/kg RS100642 following reperfusion for 30 min (RS100642 group) was compared with a sham treatment group (ischemia group) and nonischemized group (control) histologically based on morphology and caspase-3 immunohistochemistry, and biochemically based both on measurement of oxidative stress including malondialdehyde (MDA) levels, superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities and on assessment of apoptosis including caspase-3 and -8 activities and tumor necrosis factor α (TNF-α) levels at the end of 6 h. RESULTS While the RS100642 group had significantly lower MDA levels and higher SOD activities than the sham treatment group (p < 0.05), GPx and CAT activities of the RS100642 and sham treatment groups were similar (p > 0.05) and significantly lower than those of the controls (p < 0.05). Necrosis and caspase-3 activity and immunoreactivity in the RS100642 group were significantly lower than those in the sham treatment group (p < 0.05), while there was no significant difference between groups regarding caspase-8 and TNF-α (p > 0.05). CONCLUSIONS Na+ channel blockade by RS100642 has remarkable neuroprotective effects following global brain ischemia/reperfusion damage. Further research is required to determine the optimum dose and time of administration.
Collapse
Affiliation(s)
- Suat Kamisli
- Division of Neurology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Cenk Basaran
- Division of Neurology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Kadir Batcioglu
- Division of Biochemistry, Faculty of Medicine, İnönü University, Malatya, Turkey
| | | | - Mehmet Gul
- Division of Histology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Basri Satilmis
- Division of Biochemistry, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Ayse Burcin Uyumlu
- Division of Biochemistry, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Basak Kayhan
- Division of Medicinal Biology and Genetics, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Metin Genc
- Division of Public Health, Faculty of Medicine, İnönü University, Malatya, Turkey
| |
Collapse
|
18
|
Zhao CS, Li H, Wang Z, Chen G. Potential application value of xenon in stroke treatment. Med Gas Res 2018; 8:116-120. [PMID: 30319767 PMCID: PMC6178644 DOI: 10.4103/2045-9912.241077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 11/04/2022] Open
Abstract
Stroke is an acute disease with extremely high mortality and disability, including ischemic stroke and hemorrhagic stroke. Currently only limited drugs and treatments have been shown to have neuroprotective effects in stroke. As a medical gas, xenon has been proven to have neuroprotective effect in considerable amount of previous study. Its unique properties are different from other neuroprotective agents, making it is promising to play a special therapeutic role in stroke, either alone or in combination with other treatments. In this article, we aim to review the role of xenon in the treatment of stroke, and summarize the mechanism of using xenon to produce therapeutic effects after stroke according to the existing research. Moreover, we intend to explore and demonstrate the feasibility and safety of xenon for clinical treatment of stroke. Despite the disadvantages of difficulty in obtaining and being expensive, as long as the use of reasonable methods, xenon can play an important role in the treatment of stroke.
Collapse
Affiliation(s)
- Chong-Shun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hao Li
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
19
|
Pan WH, Lai YH, Yeh WT, Chen JR, Jeng JS, Bai CH, Lin RT, Lee TH, Chang KC, Lin HJ, Hsiao CF, Chern CM, Lien LM, Liu CH, Chen WH, Chang A. Intake of potassium- and magnesium-enriched salt improves functional outcome after stroke: a randomized, multicenter, double-blind controlled trial. Am J Clin Nutr 2017; 106:1267-1273. [PMID: 28877896 DOI: 10.3945/ajcn.116.148536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 08/07/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Stroke is one of the leading causes of mortality and neurologic deficits. Management measures to improve neurologic outcomes are in great need. Our previous intervention trial in elderly subjects successfully used salt as a carrier for potassium, demonstrating a 41% reduction in cardiovascular mortality by switching to potassium-enriched salt. Dietary magnesium has been associated with lowered diabetes and/or stroke risk in humans and with neuroprotection in animals.Objective: Because a large proportion of Taiwanese individuals are in marginal deficiency states for potassium and for magnesium and salt is a good carrier for minerals, it is justifiable to study whether further enriching salt with magnesium at an amount near the Dietary Reference Intake (DRI) amount may provide additional benefit for stroke recovery.Design: This was a double-blind, randomized controlled trial comprising 291 discharged stroke patients with modified Rankin scale (mRS) ≤4. There were 3 arms: 1) regular salt (Na salt) (n = 99), 2) potassium-enriched salt (K salt) (n = 97), and 3) potassium- and magnesium-enriched salt (K/Mg salt) (n = 95). The NIH Stroke Scale (NIHSS), Barthel Index (BI), and mRS were evaluated at discharge, at 3 mo, and at 6 mo. A good neurologic performance was defined by NIHSS = 0, BI = 100, and mRS ≤1.Results: After the 6-mo intervention, the proportion of patients with good neurologic performance increased in a greater magnitude in the K/Mg salt group than in the K salt group and the Na salt group, in that order. The K/Mg salt group had a significantly increased OR (2.25; 95% CI: 1.09, 4.67) of achieving good neurologic performance compared with the Na salt group. But the effect of K salt alone (OR: 1.58; 95% CI: 0.77, 3.22) was not significant.Conclusions: This study suggests that providing the DRI amount of magnesium and potassium together long term is beneficial for stroke patient recovery from neurologic deficits. This trial was registered at clinicaltrials.gov as NCT02910427.
Collapse
Affiliation(s)
- Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan;
| | - Ying-Ho Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Biochemical Science and Technology, College of Life Science, and
| | - Wen-Ting Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jiunn-Rong Chen
- Department of Neurology, Yunlin Christian Hospital, Yunlin, Taiwan
| | - Jiann-Shing Jeng
- Stroke Center Intensive Care Unit, National Taiwan University Hospital, Taipei, Taiwan
| | - Chyi-Huey Bai
- Department of Public Health, College of Medicine, and.,School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Ruey-Tay Lin
- Department of Neurology, College of Medicine, and.,Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsong-Hai Lee
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ku-Chou Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Huey-Juan Lin
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chin-Fu Hsiao
- Division of Biometry, Department of Agronomy, National Taiwan University, Taipei, Taiwan.,Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chang-Ming Chern
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Education and Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Ming Lien
- Department of Neurology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; and
| | - Chung-Hsiang Liu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, and.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Hung Chen
- Department of Neurology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; and
| | - Anna Chang
- Department of Neurology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; and
| |
Collapse
|
20
|
Abstract
The human brain requires uninterrupted delivery of blood-borne oxygen and nutrients to sustain its function. Focal ischemia, particularly, ischemic stroke, and global ischemia imposed by cardiac arrest disrupt the brain's fuel supply. The resultant ATP depletion initiates a complex injury cascade encompassing intracellular Ca2+ overload, glutamate excitotoxicity, oxido-nitrosative stress, extracellular matrix degradation, and inflammation, culminating in neuronal and astroglial necrosis and apoptosis, neurocognitive deficits, and even death. Unfortunately, brain ischemia has proven refractory to pharmacological intervention. Many promising treatments afforded brain protection in animal models of focal and global ischemia, but failed to improve survival and neurocognitive recovery of stroke and cardiac arrest patients in randomized clinical trials. The culprits are the blood-brain barrier (BBB) that limits transferral of medications to the brain parenchyma, and the sheer complexity of the injury cascade, which presents a daunting array of targets unlikely to respond to monotherapies. Erythropoietin is a powerful neuroprotectant capable of interrupting multiple aspects of the brain injury cascade. Preclinical research demonstrates erythropoietin's ability to suppress glutamate excitotoxicity and intracellular Ca2+ overload, dampen oxidative stress and inflammation, interrupt the apoptotic cascade, and preserve BBB integrity. However, the erythropoietin dosages required to traverse the BBB and achieve therapeutically effective concentrations in the brain parenchyma impose untoward side effects. Recent discoveries that hypoxia induces erythropoietin production within the brain and that neurons, astroglia, and cerebrovascular endothelium harbor membrane erythropoietin receptors, raise the exciting prospect of harnessing endogenous erythropoietin to protect the brain from the ravages of ischemia-reperfusion.
Collapse
Affiliation(s)
- Robert T Mallet
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, United States.
| | - Myoung-Gwi Ryou
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, United States; Tarleton State University, Fort Worth, TX, United States
| |
Collapse
|
21
|
Subirós N, Pérez-Saad H, Aldana L, Gibson CL, Borgnakke WS, Garcia-Del-Barco D. Neuroprotective effect of epidermal growth factor plus growth hormone-releasing peptide-6 resembles hypothermia in experimental stroke. Neurol Res 2016; 38:950-958. [PMID: 27665924 DOI: 10.1080/01616412.2016.1235249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Combined therapy with epidermal growth factor (EGF) and growth hormone-releasing peptide 6 (GHRP-6) in stroke models has accumulated evidence of neuroprotective effects from several studies, but needs further support before clinical translation. Comparing EGF + GHRP-6 to hypothermia, a gold neuroprotection standard, may contribute to this purpose. OBJECTIVES The aims of this study were to compare the neuroprotective effects of a combined therapy based on EGF + GHRP-6 with hypothermia in animal models of (a) global ischemia representing myocardial infarction and (b) focal brain ischemia representing ischemic stroke. METHODS (a) Global ischemia was induced in Mongolian gerbils by a 15-min occlusion of both carotid arteries, followed by reperfusion. (b) Focal brain ischemia was achieved by intracerebral injection of endothelin 1 in Wistar rats. In each experiment, three ischemic treatment groups - vehicle, EGF + GHRP-6, and hypothermia - were compared to each other and to a sham-operated control group. End points were survival, neurological scores, and infarct volume. RESULTS (a) In global ischemia, neurological score at 48-72 h, infarct volume, and neuronal density of hippocampal CA1 zone in gerbils treated with EGF + GHRP-6 were similar to the hypothermia-treated group. (b) In focal ischemia, the neurologic score and infarct volume of rats receiving EGF + GHRP-6 were also similar to animals in the hypothermia group. DISCUSSION With hypothermia being a good standard neuroprotectant reference, these results provide additional proof of principle for EGF and GHRP-6 co-administration as a potentially neuroprotective stroke therapy.
Collapse
Affiliation(s)
- N Subirós
- a Biomedical Research Division , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - H Pérez-Saad
- a Biomedical Research Division , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - L Aldana
- a Biomedical Research Division , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - C L Gibson
- b Department of Neuroscience, Psychology and Behaviour , University of Leicester , Leicester , UK
| | - W S Borgnakke
- c Department of Periodontics and Oral Medicine , University of Michigan School of Dentistry , Ann Arbor , MI , USA
| | - D Garcia-Del-Barco
- a Biomedical Research Division , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| |
Collapse
|
22
|
|
23
|
Activation of large-conductance Ca(2+)-activated K(+) channels inhibits glutamate-induced oxidative stress through attenuating ER stress and mitochondrial dysfunction. Neurochem Int 2015; 90:28-35. [PMID: 26163046 DOI: 10.1016/j.neuint.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/22/2015] [Accepted: 07/02/2015] [Indexed: 12/17/2022]
Abstract
Large-conductance Ca(2+)-activated K(+) channels (BK channels) are widely expressed throughout the vertebrate nervous system, and are involved in the regulation of neurotransmitter release and neuronal excitability. Here, the neuroprotective effects of NS11021, a selective and chemically unrelated BK channel activator, and potential molecular mechanism involved have been studied in rat cortical neurons exposed to glutamate in vitro. Pretreatment with NS11021 significantly inhibited the loss of neuronal viability, LDH release and neuronal apoptosis in a dose-dependent manner. All these protective effects were fully antagonized by the BK-channel inhibitor paxilline. NS11021-induced neuroprotection was associated with reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) generation, lipid peroxidation and preserved activity of antioxidant enzymes. Moreover, NS11021 significantly attenuated the glutamate-induced endoplasmic reticulum (ER) calcium release and activation of ER stress markers, including glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and caspase-12. Pretreatment with NS11021 also mitigated the mitochondrial membrane potential (MMP) collapse, cytochrome c release, and preserved mitochondrial Ca(2+) buffering capacity and ATP synthesis after glutamate exposure. Taken together, these results suggest that activation of BK channels via NS11021 protects cortical neurons against glutamate-induced excitatory damage, which may be dependent on the inhibition of ER stress and preservation of mitochondrial dysfunction.
Collapse
|
24
|
Shimada Y, Tanaka R, Shimura H, Yamashiro K, Urabe T, Hattori N. Phosphorylation enhances recombinant HSP27 neuroprotection against focal cerebral ischemia in mice. Neuroscience 2014; 278:113-21. [DOI: 10.1016/j.neuroscience.2014.07.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/18/2014] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
|
25
|
Vennemeyer JJ, Hopkins T, Kuhlmann J, Heineman WR, Pixley SK. Effects of elevated magnesium and substrate on neuronal numbers and neurite outgrowth of neural stem/progenitor cells in vitro. Neurosci Res 2014; 84:72-8. [DOI: 10.1016/j.neures.2014.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/18/2014] [Accepted: 05/02/2014] [Indexed: 01/10/2023]
|
26
|
Chang JJ, Mack WJ, Saver JL, Sanossian N. Magnesium: potential roles in neurovascular disease. Front Neurol 2014; 5:52. [PMID: 24782823 PMCID: PMC3995053 DOI: 10.3389/fneur.2014.00052] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/28/2014] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Magnesium therapy has been studied extensively in pre-clinical and clinical trials in multiple organ systems. Cerebrovascular diseases may benefit from its neuroprotective properties. This review summarizes current studies of magnesium in a wide range of neurovascular diseases. METHODS We searched relevant terms in the National Library of Medicine PubMed database and selected research including basic science, translational reports, meta-analyses, and clinical studies. RESULTS Studies examining magnesium administration in ischemic stroke have failed to show any benefit in clinical outcome. Data on magnesium for intracerebral hemorrhage (ICH) are limited. Preliminary investigations in subarachnoid hemorrhage (SAH) were promising, but definitive studies did not reveal differences in clinical outcome between magnesium and placebo-treated groups. Studies examining magnesium administration in global ischemia following cardiac arrest suggest a trend toward improved clinical outcome. The strongest evidence for clinically relevant neuroprotection following magnesium administration derives from studies of pre-term infants and patients undergoing cardiac bypass and carotid endarterectomy procedures. Magnesium was found to have an excellent safety profile across all investigations. CONCLUSION Magnesium is easy to administer and possesses a favorable safety profile. Its utility as a neuroprotectant in cardiac surgery, carotid endarterectomy, and pre-term infant hypoxia remain promising. Value as a therapeutic agent in ischemic stroke, ICH, and SAH is unclear and appears to be limited by late administration. Ongoing clinical trials assessing magnesium administration in the first hours following symptom onset may help clarify the role of magnesium therapy in these disease processes.
Collapse
Affiliation(s)
- Jason J Chang
- Department of Neurology, University of Southern California , Los Angeles, CA , USA
| | - William J Mack
- Department of Neurosurgery, University of Southern California , Los Angeles, CA , USA ; The Roxanna Todd Hodges Comprehensive Stroke Clinic, University of Southern California , Los Angeles, CA , USA
| | - Jeffrey L Saver
- Department of Neurology, UCLA Stroke Center, University of California Los Angeles , Los Angeles, CA , USA
| | - Nerses Sanossian
- Department of Neurology, University of Southern California , Los Angeles, CA , USA ; The Roxanna Todd Hodges Comprehensive Stroke Clinic, University of Southern California , Los Angeles, CA , USA
| |
Collapse
|
27
|
Neuroprotective agents in ischemic stroke: past failures and future opportunities. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/cli.13.91] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Abstract
Ischemic stroke is increased in systemic lupus erythematosus (SLE) patients. The differential diagnosis of stroke in SLE is complex. Transient ischemic attack and ischemic stroke share pathophysiologic mechanisms, but prognosis may vary depending on severity and cause, and definitions are dependent on the timing and extent of the diagnostic evaluation. In SLE patients with a history of transient ischemic attacks, stroke occurred in 57%. Cerebrovascular events account for 20% to 30% of deaths in patients with SLE. In SLE, both disease-specific and traditional stroke risk factors are important.
Collapse
Affiliation(s)
- H Timlin
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Petri
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Oskouei DS, Rikhtegar R, Hashemilar M, Sadeghi-Bazargani H, Sharifi-Bonab M, Sadeghi-Hokmabadi E, Zarrintan S, Sharifipour E. The effect of Ginkgo biloba on functional outcome of patients with acute ischemic stroke: a double-blind, placebo-controlled, randomized clinical trial. J Stroke Cerebrovasc Dis 2013; 22:e557-63. [PMID: 23871729 DOI: 10.1016/j.jstrokecerebrovasdis.2013.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/30/2013] [Accepted: 06/08/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Acute ischemic stroke is a major cerebrovascular disease with potential morbidity and mortality. Despite the availability of thrombolytic therapy in some centers, risk factor modification and rehabilitation therapy are the mainstays of stroke management. There is supporting evidence that Ginkgo biloba may afford neuroprotection and improve the outcomes of patients with acute ischemic stroke. METHODS In a double-blind, placebo-controlled, randomized controlled trial, we assessed the efficacy of G biloba on functional outcome in patients with acute stroke. The National Institutes of Heath Stroke Scale (NIHSS) was used to measure functional outcome. A total of 102 patients with acute ischemic stroke were studied. All patients received either G biloba or placebo tablets for 4 months. This trial was registered to the Iranian Registry of Clinical Trials (www.irct.ir; trial IRCT138804212150N1). RESULTS There were 52 patients who received G biloba and 50 patients who were in the placebo group. Age, sex distribution, previous medical condition, and laboratory data did not have any significant difference between the 2 groups (P>.05). The mean difference of 4-month follow-up NIHSS scores and NIHSS scores at admission was 4.7±2.7 and 4.1±3.0 in the G biloba and placebo groups, respectively (P>.05). The primary outcome-a 50% reduction in the 4-month follow-up NIHSS score compared to the baseline NIHSS score-was reached in 17 patients (58.6%) and 5 patients (18.5%) in the G biloba and placebo groups, respectively (P<.05). The risk ratio and number needed to treat were 3.16 (confidence interval 1.35-7.39) and 2.50 (confidence interval 1.58-5.90), respectively. In addition, multivariate regression adjusted for age and sex revealed a significant NIHSS decline in the G biloba group compared to the placebo group (P<.05). CONCLUSIONS Our data suggest that G biloba may have protective effects in ischemic stroke. Therefore, the administration of G biloba is recommended after acute ischemic stroke.
Collapse
Affiliation(s)
- Darioush Savadi Oskouei
- Department of Neurology, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Centre, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lapchak PA. Drug-like property profiling of novel neuroprotective compounds to treat acute ischemic stroke: guidelines to develop pleiotropic molecules. Transl Stroke Res 2013; 4:328-42. [PMID: 23687519 PMCID: PMC3653324 DOI: 10.1007/s12975-012-0200-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of novel neuroprotective compounds to treat acute ischemic stroke (AIS) has been problematic and quite complicated, since many candidates that have been tested clinically lacked significant pleiotropic activity, were unable to effectively cross the blood brain barrier (BBB), had poor bioavailability or were toxic. Moreover, the compounds did not confer significant neuroprotection or clinical efficacy measured using standard behavioral endpoints, when studied in clinical trials in a heterogeneous population of stroke patients. To circumvent some of the drug development problems describe above, we have used a rational funnel approach to identify and develop promising candidates. Using a step-wise approach, we have identified a series of compounds based upon two different neuroprotection assays. We have then taken the candidates and determined their "drug-like" properties. This guidelines article details in vitro screening assays used to show pleiotropic activity of a series of novel compounds; including enhanced neuroprotective activity compared to the parent compound fisetin. Moreover, for preliminary drug de-risking or risk reduction during development, we used compound assessment in the CeeTox assay, ADME toxicity using the AMES test for genotoxicity and interaction with Cytochrome P450 using CYP450 inhibition analysis against a spectrum of CYP450 enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) as a measure of drug interaction. Moreover, the compounds have been studied using a transfected Madin Darby canine kidney (MDCK) cell assay to assess blood brain barrier penetration (BBB). Using this series of assays, we have identified 4 novel molecules to be developed as an AIS treatment.
Collapse
Affiliation(s)
- Paul A Lapchak
- Director of Translational Research, Cedars-Sinai Medical Center, Department of Neurology, Davis Research Building, D-2091, 110 N. George Burns Road, Los Angeles, CA 90048 USA
| |
Collapse
|
31
|
Abstract
Adult neurogenesis in the hippocampal subgranular zone (SGZ) and the anterior subventricular zone (SVZ) is regulated by multiple factors, including neurotransmitters, hormones, stress, aging, voluntary exercise, environmental enrichment, learning, and ischemia. Chronic treatment with selective serotonin reuptake inhibitors (SSRIs) modulates adult neurogenesis in the SGZ, the neuronal area that is hypothesized to mediate the antidepressant effects of these substances. Layer 1 inhibitory neuron progenitor cells (L1-INP cells) were recently identified in the adult cortex, but it remains unclear what factors other than ischemia affect the neurogenesis of L1-INP cells. Here, we show that chronic treatment with an SSRI, fluoxetine (FLX), stimulated the neurogenesis of γ-aminobutyric acid (GABA)ergic interneurons from L1-INP cells in the cortex of adult mice. Immunofluorescence and genetic analyses revealed that FLX treatment increased the number of L1-INP cells in all examined cortical regions in a dose-dependent manner. Furthermore, enhanced Venus reporter expression driven by the synapsin I promoter demonstrated that GABAergic interneurons were derived from retrovirally labeled L1-INP cells. In order to assess if these new GABAergic interneurons possess physiological function, we examined their effect on apoptosis surrounding areas following ischemia. Intriguingly, the number of neurons expressing the apoptotic marker, active caspase-3, was significantly lower in adult mice pretreated with FLX. Our findings indicate that FLX stimulates the neurogenesis of cortical GABAergic interneurons, which might have, at least, some functions, including a suppressive effect on apoptosis induced by ischemia.
Collapse
|
32
|
Schmidt A, Minnerup J, Kleinschnitz C. Emerging neuroprotective drugs for the treatment of acute ischaemic stroke. Expert Opin Emerg Drugs 2013; 18:109-20. [DOI: 10.1517/14728214.2013.790363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Phattanarudee S, Towiwat P, Maher TJ, Ally A. Effects of medullary administration of a nitric oxide precursor on cardiovascular responses and neurotransmission during static exercise following ischemic stroke. Can J Physiol Pharmacol 2013; 91:510-20. [PMID: 23826997 DOI: 10.1139/cjpp-2013-0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have reported that in rats with a 90 min left middle cerebral artery occlusion (MCAO) and 24 h reperfusion, pressor responses during muscle contractions were attenuated, as were glutamate concentrations in the left rostral ventrolateral medulla (RVLM) and left caudal VLM (CVLM), but gamma-aminobutyric acid (GABA) levels increased in left RVLM and CVLM. This study determined the effects of L-arginine, a nitric oxide (NO) precursor, within the RVLM and (or) CVLM on cardiovascular activity and glutamate/GABA levels during static exercise in left-sided MCAO rats. Microdialysis of L-arginine into left RVLM had a greater attenuation of cardiovascular responses, a larger decrease in glutamate, and a significant increase in GABA levels during muscle contractions in stroke rats. Administration of N(G)-monomethyl-L-arginine, an NO-synthase inhibitor, reversed the effects. In contrast, L-arginine administration into left CVLM evoked a greater potentiation of cardiovascular responses, increased glutamate, and decreased GABA levels during contractions in stroked rats. However, L-arginine administration into both left RVLM and left CVLM elicited responses similar to its infusion into the left RVLM. These results suggest that NO within the RVLM and CVLM modulates cardiovascular responses and glutamate/GABA neurotransmission during static exercise following stroke, and that a RVLM-NO mechanism has a dominant effect in the medullary regulation of cardiovascular function.
Collapse
|
34
|
Cerio FGD, Lara-Celador I, Alvarez A, Hilario E. Neuroprotective therapies after perinatal hypoxic-ischemic brain injury. Brain Sci 2013; 3:191-214. [PMID: 24961314 PMCID: PMC4061821 DOI: 10.3390/brainsci3010191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 12/29/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is one of the main causes of disabilities in term-born infants. It is the result of a deprivation of oxygen and glucose in the neural tissue. As one of the most important causes of brain damage in the newborn period, the neonatal HI event is a devastating condition that can lead to long-term neurological deficits or even death. The pattern of this injury occurs in two phases, the first one is a primary energy failure related to the HI event and the second phase is an energy failure that takes place some hours later. Injuries that occur in response to these events are often manifested as severe cognitive and motor disturbances over time. Due to difficulties regarding the early diagnosis and treatment of HI injury, there is an increasing need to find effective therapies as new opportunities for the reduction of brain damage and its long term effects. Some of these therapies are focused on prevention of the production of reactive oxygen species, anti-inflammatory effects, anti-apoptotic interventions and in a later stage, the stimulation of neurotrophic properties in the neonatal brain which could be targeted to promote neuronal and oligodendrocyte regeneration.
Collapse
Affiliation(s)
- Felipe Goñi de Cerio
- Biotechnology Area, GAIKER Technology Centre, Parque Tecnológico de Zamudio Ed 202, 48170 Zamudio, Vizcaya, Spain.
| | - Idoia Lara-Celador
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Bizkaia, Spain.
| | - Antonia Alvarez
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Bizkaia, Spain.
| | - Enrique Hilario
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Bizkaia, Spain.
| |
Collapse
|
35
|
Affiliation(s)
- Jeffrey L Saver
- UCLA Stroke Center, 710 Westwood Plaza, Los Angeles, CA 90095, USA.
| |
Collapse
|
36
|
Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci 2012; 13:11753-11772. [PMID: 23109881 PMCID: PMC3472773 DOI: 10.3390/ijms130911753] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/31/2022] Open
Abstract
Neuroprotection aims to prevent salvageable neurons from dying. Despite showing efficacy in experimental stroke studies, the concept of neuroprotection has failed in clinical trials. Reasons for the translational difficulties include a lack of methodological agreement between preclinical and clinical studies and the heterogeneity of stroke in humans compared to homogeneous strokes in animal models. Even when the international recommendations for preclinical stroke research, the Stroke Academic Industry Roundtable (STAIR) criteria, were followed, we have still seen limited success in the clinic, examples being NXY-059 and haematopoietic growth factors which fulfilled nearly all the STAIR criteria. However, there are a number of neuroprotective treatments under investigation in clinical trials such as hypothermia and ebselen. Moreover, promising neuroprotective treatments based on a deeper understanding of the complex pathophysiology of ischemic stroke such as inhibitors of NADPH oxidases and PSD-95 are currently evaluated in preclinical studies. Further concepts to improve translation include the investigation of neuroprotectants in multicenter preclinical Phase III-type studies, improved animal models, and close alignment between clinical trial and preclinical methodologies. Future successful translation will require both new concepts for preclinical testing and innovative approaches based on mechanistic insights into the ischemic cascade.
Collapse
|
37
|
Afshari D, Moradian N, Rezaei M. Evaluation of the intravenous magnesium sulfate effect in clinical improvement of patients with acute ischemic stroke. Clin Neurol Neurosurg 2012; 115:400-4. [PMID: 22749947 DOI: 10.1016/j.clineuro.2012.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/03/2012] [Accepted: 06/02/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Evidence is mounting that magnesium may play a critical role in the development of strokes and the healing process during and after a stroke. Magnesium is an N-methyl-D-aspartate (NMDA) glutamate receptor antagonist that has been shown to be neuroprotective in many preclinical models of ischemic and excitotoxic brain injury. This study was performed to evaluate the intravenous magnesium sulfate effect in clinical improvement of patients with acute ischemic stroke. METHODS One hundred and seven patients with acute ischemic stroke signs and symptoms lasting less than 12 hours were included in the study and were divided into two groups, 55 patients received 4 g of MgSO(4) over 15 minutes and then 16 g over the next 24 hours, and 52 patients were received matching placebo. The study primary end point was stroke related neurologic deficit evaluation by the national institute of stroke scale (NIHSS). RESULTS Patients receiving MgSO(4) showed significant recovery compared with the group of patients receiving placebo. CONCLUSION This study suggests that magnesium sulfate can be used as a safe and useful neuroprotective agent in acute ischemic stroke and lacunar stroke patients may represent a relevant and practical target population for agents with biological activity in white matter.
Collapse
Affiliation(s)
- Daryoush Afshari
- Neurology Department of Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | | |
Collapse
|
38
|
Goñi-de-Cerio F, Alvarez A, Lara-Celador I, Alvarez FJ, Alonso-Alconada D, Hilario E. Magnesium sulfate treatment decreases the initial brain damage alterations produced after perinatal asphyxia in fetal lambs. J Neurosci Res 2012; 90:1932-40. [DOI: 10.1002/jnr.23091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/22/2012] [Accepted: 05/02/2012] [Indexed: 11/12/2022]
|
39
|
Yang J, Guo L, Liu R, Liu H. Neuroprotective effects of VEGF administration after focal cerebral ischemia/reperfusion: Dose response and time window. Neurochem Int 2012; 60:592-6. [DOI: 10.1016/j.neuint.2012.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 01/25/2012] [Accepted: 02/20/2012] [Indexed: 01/17/2023]
|
40
|
Sun Y, Zhang G, Zhang Z, Yu P, Zhong H, Du J, Wang Y. Novel multi-functional nitrones for treatment of ischemic stroke. Bioorg Med Chem 2012; 20:3939-45. [PMID: 22579617 DOI: 10.1016/j.bmc.2012.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/20/2022]
Abstract
Ischemic stroke resulting from obstruction of blood vessels is an enormous public health problem with urgent need for effective therapy. The co-administration of thrombolytic/antiplatelet agent and neuroprotective agent improves therapeutic efficacy and agent possessing both thrombolytic/antiplatelet and antiradical activities provides a promising strategy for the treatment of ischemic stroke. We have previously reported a novel compound, namely TBN, possessing both antiplatelet and antiradical activities, showed significant neuroprotective effect in a rat stroke model. We herein report synthesis of a series of new pyrazine derivatives, and evaluation of their biological activities. Their mechanisms of action were also investigated. Among these new derivatives, compound 21, armed with two nitrone moieties, showed the greatest neuroprotective effects in vitro and in vivo. Compound 21 significantly inhibited ADP-induced platelet aggregation. In a cell free antiradical assay, compound 21 was the most effective agent in scavenging the three most damaging radicals, namely (·)OH, O(2)(·-) and ONOO(-).
Collapse
Affiliation(s)
- Yewei Sun
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou 510632, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Antenatal magnesium individual participant data international collaboration: assessing the benefits for babies using the best level of evidence (AMICABLE). Syst Rev 2012; 1:21. [PMID: 22587882 PMCID: PMC3351723 DOI: 10.1186/2046-4053-1-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/21/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The primary aim of this study is to assess, using individual participant data (IPD) meta-analysis, the effects of administration of antenatal magnesium sulphate given to women at risk of preterm birth on important clinical outcomes for their child such as death and neurosensory disability. The secondary aim is to determine whether treatment effects differ depending on important pre-specified participant and treatment characteristics, such as reasons at risk of preterm birth, gestational age, or type, dose and mode of administration of magnesium sulphate. METHODS DESIGN The Antenatal Magnesium Individual Participant Data (IPD) International Collaboration: assessing the benefits for babies using the best level of evidence (AMICABLE) Group will perform an IPD meta-analysis to answer these important clinical questions. SETTING/TIMELINE: The AMICABLE Group was formed in 2009 with data collection commencing late 2010. INCLUSION CRITERIA Five trials involving a total 6,145 babies are eligible for inclusion in the IPD meta-analysis. PRIMARY STUDY OUTCOMES: For the infants/children: Death or cerebral palsy. For the women: Any severe maternal outcome potentially related to treatment (death, respiratory arrest or cardiac arrest). DISCUSSION Results are expected to be publicly available in 2012.
Collapse
|
42
|
Sutherland BA, Minnerup J, Balami JS, Arba F, Buchan AM, Kleinschnitz C. Neuroprotection for ischaemic stroke: translation from the bench to the bedside. Int J Stroke 2012; 7:407-18. [PMID: 22394615 DOI: 10.1111/j.1747-4949.2012.00770.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuroprotection seeks to restrict injury to the brain parenchyma following an ischaemic insult by preventing salvageable neurons from dying. The concept of neuroprotection has shown promise in experimental studies, but has failed to translate into clinical success. Many reasons exist for this including the heterogeneity of human stroke and the lack of methodological agreement between preclinical and clinical studies. Even with the proposed Stroke Therapy Academic Industry Roundtable criteria for preclinical development of neuroprotective agents for stroke, we have still seen limited success in the clinic, an example being NXY-059, which fulfilled nearly all the Stroke Therapy Academic Industry Roundtable criteria. There are currently a number of ongoing trials for neuroprotective strategies including hypothermia and albumin, but the outcome of these approaches remains to be seen. Combination therapies with thrombolysis also need to be fully investigated, as restoration of oxygen and glucose will always be the best therapy to protect against cell death from stroke. There are also a number of promising neuroprotectants in preclinical development including haematopoietic growth factors, and inhibitors of the nicotinamide adenine dinucleotide phosphate oxidases, a source of free radical production which is a key step in the pathophysiology of acute ischaemic stroke. For these neuroprotectants to succeed, essential quality standards need to be adhered to; however, these must remain realistic as the evidence that standardization of procedures improves translational success remains absent for stroke.
Collapse
Affiliation(s)
- Brad A Sutherland
- Acute Stroke Programme, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
43
|
Repair-Based Therapies After Stroke. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
44
|
Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci 2011; 33:223-37. [PMID: 22044990 DOI: 10.1007/s10072-011-0828-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 10/20/2011] [Indexed: 12/21/2022]
Abstract
Although being a physiologically important excitatory neurotransmitter, glutamate plays a pivotal role in various neurological disorders including ischemic neurological diseases. Its level is increased during cerebral ischemia with excessive neurological stimulation causing the glutamate-induced neuronal toxicity, excitotoxicity, and this is considered the triggering spark in the ischemic neuronal damage. The glutamatergic stimulation will lead to rise in the intracellular sodium and calcium, and the elevated intracellular calcium will lead to mitochondrial dysfunction, activation of proteases, accumulation of reactive oxygen species and release of nitric oxide. Interruption of the cascades of glutamate-induced cell death during ischemia may provide a way to prevent, or at least reduce, the ischemic damage. Various therapeutic options are suggested interrupting the glutamatergic pathways, e.g., inhibiting the glutamate synthesis or release, increasing its clearance, blocking of its receptors or preventing the rise in intracellular calcium. Development of these strategies may provide future treatment options in the management of ischemic stroke.
Collapse
Affiliation(s)
- Botros B Kostandy
- Department of Pharmacology, Faculty of Medicine, University of Assiut, Assiut 71526, Egypt.
| |
Collapse
|
45
|
Dhawan J, Benveniste H, Luo Z, Nawrocky M, Smith SD, Biegon A. A new look at glutamate and ischemia: NMDA agonist improves long-term functional outcome in a rat model of stroke. FUTURE NEUROLOGY 2011; 6:823-834. [PMID: 22140354 DOI: 10.2217/fnl.11.55] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ischemic stroke triggers a massive, although transient, glutamate efflux and excessive activation of NMDA receptors (NMDARs), possibly leading to neuronal death. However, multiple clinical trials with NMDA antagonists failed to improve, or even worsened, stroke outcome. Recent findings of a persistent post-stroke decline in NMDAR density, which plays a pivotal role in plasticity and memory formation, suggest that NMDAR stimulation, rather than inhibition, may prove beneficial in the subacute period after stroke. AIM: This study aims to examine the effect of the NMDAR partial agonist d-cycloserine (DCS) on long-term structural, functional and behavioral outcomes in rats subjected to transient middle cerebral artery occlusion, an animal model of ischemic stroke. MATERIALS #ENTITYSTARTX00026; METHODS: Rats (n = 36) that were subjected to 90 min of middle cerebral artery occlusion were given a single injection of DCS (10 mg/kg) or vehicle (phosphate-buffered saline) 24 h after occlusion and followed up for 30 days. MRI (structural and functional) was used to measure infarction, atrophy and cortical activation due to electrical forepaw stimulation. Memory function was assessed on days 7, 21 and 30 postocclusion using the novel object recognition test. A total of 20 nonischemic controls were included for comparison. RESULTS: DCS treatment resulted in significant improvement of somatosensory and cognitive function relative to vehicle treatment. By day 30, cognitive performance of the DCS-treated animals was indistinguishable from nonischemic controls, while vehicle-treated animals demonstrated a stable memory deficit. DCS had no significant effect on infarction or atrophy. CONCLUSION: These results support a beneficial role for NMDAR stimulation during the recovery period after stroke, most likely due to enhanced neuroplasticity rather than neuroprotection.
Collapse
Affiliation(s)
- Jasbeer Dhawan
- Medical Department, Brookhaven National Laboratory, Building 490, Upton, NY 11973, USA
| | | | | | | | | | | |
Collapse
|
46
|
Heiss WD. The ischemic penumbra: correlates in imaging and implications for treatment of ischemic stroke. The Johann Jacob Wepfer award 2011. Cerebrovasc Dis 2011; 32:307-20. [PMID: 21921593 DOI: 10.1159/000330462] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The concept of the ischemic penumbra was formulated 30 years ago based on experiments in animal models showing functional impairment and electrophysiological disturbances with decreasing flow to the brain below defined values (the threshold for function) and irreversible tissue damage with the blood supply further decreased (the threshold for infarction). The perfusion range between these thresholds was termed 'penumbra', and restitution of flow above the functional threshold was able to reverse the deficits without permanent damage. However, in further experiments, the dependency of the development of irreversible lesions on the interaction of the severity and duration of critically reduced blood flow was established - proving that the lower the flow, the shorter the time for efficient reperfusion. Therefore, infarction develops from the core of ischemia to the areas of less severe hypoperfusion. The propagation of irreversible tissue damage is characterized by a complex cascade of interconnected electrophysiological, molecular, metabolic and perfusional disturbances. Waves of depolarizations, the peri-infarct spreading depression-like depolarizations, inducing activation of ion pumps and liberation of excitatory transmitters, have dramatic consequences as drastically increased metabolic demand cannot be satisfied in regions with critically reduced blood supply. The translation of experimental concept into the basis for efficient treatment of stroke requires non-invasive methods by which regional flow and energy metabolism can be repeatedly investigated to demonstrate penumbra tissue that can benefit from therapeutic interventions. Positron emission tomography (PET) allows the quantification of regional cerebral blood flow, the regional metabolic rate for oxygen and the regional oxygen extraction fraction. From these variables, clear definitions of irreversible tissue damage and critically perfused but potentially salvageable tissue (i.e. the penumbra) can be achieved in animal models and stroke patients. Additionally, further tracers can be used for early detection of irreversible tissue damage, e.g. by the central benzodiazepine receptor ligand flumazenil. However, PET is a research tool and its complex logistics limit clinical routine applications. As a widely applicable clinical tool, perfusion/diffusion-weighted (PW/DW) MRI is used, and the 'mismatch' between the PW and the DW abnormalities serve as an indicator of the penumbra. However, comparative studies of PW/DW-MRI and PET have pointed to an overestimation of the core of irreversible infarction as well as of the penumbra by MRI modalities. Some of these discrepancies can be explained by unselective application of relative perfusion thresholds, which might be improved by more complex analytical procedures. Heterogeneity of the MRI signatures used for the definition of the mismatch are also responsible for disappointing results in the application of PW/DW-MRI for the selection of patients for clinical trials. As long as a validation of the mismatch selection paradigm is lacking, its use as a surrogate marker of outcome is limited.
Collapse
|
47
|
Cramer SC. An overview of therapies to promote repair of the brain after stroke. Head Neck 2011; 33 Suppl 1:S5-7. [PMID: 21901776 DOI: 10.1002/hed.21840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2011] [Indexed: 11/08/2022] Open
Abstract
Stroke remains a leading cause of disability. Most patients show some degree of spontaneous recovery, but this is generally incomplete. Studies on the neurobiology of this recovery are providing clues to therapeutic interventions that aim to improve patient outcomes. A number of potential such restorative therapies are reviewed. Numerous treatment strategies are under study. Most have a time window measured in days or weeks and so have the potential to help a large fraction of patients. This review considers these therapies, as well as points to consider in translating their application to human trials.
Collapse
Affiliation(s)
- Steven C Cramer
- Departments of Neurology and Anatomy & Neurobiology, University of California, Irvine, California, USA.
| |
Collapse
|
48
|
Sahota P, Savitz SI. Investigational therapies for ischemic stroke: neuroprotection and neurorecovery. Neurotherapeutics 2011; 8:434-51. [PMID: 21604061 PMCID: PMC3250280 DOI: 10.1007/s13311-011-0040-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Current treatment strategies for ischemic stroke primarily focus on reducing the size of ischemic damage and rescuing dying cells early after occurrence. To date, intravenous recombinant tissue plasminogen activator is the only United States Food and Drug Administration approved therapy for acute ischemic stroke, but its use is limited by a narrow therapeutic window. The pathophysiology of stroke is complex and it involves excitotoxicity mechanisms, inflammatory pathways, oxidative damage, ionic imbalances, apoptosis, angiogenesis, neuroprotection, and neurorestoration. Regeneration of the brain after damage is still active days and even weeks after a stroke occurs, which might provide a second window for treatment. A huge number of neuroprotective agents have been designed to interrupt the ischemic cascade, but therapeutic trials of these agents have yet to show consistent benefit, despite successful preceding animal studies. Several agents of great promise are currently in the middle to late stages of the clinical trial setting and may emerge in routine practice in the near future. In this review, we highlight select pharmacologic and cell-based therapies that are currently in the clinical trial stage for stroke.
Collapse
Affiliation(s)
- Preeti Sahota
- Department of Neurology, University of Texas Medical School at Houston, Houston, TX 77030 USA
| | - Sean I. Savitz
- Department of Neurology, University of Texas Medical School at Houston, Houston, TX 77030 USA
| |
Collapse
|
49
|
Ding G, Jiang Q, Li L, Zhang L, Wang Y, Zhang ZG, Lu M, Panda S, Li Q, Ewing JR, Chopp M. Cerebral tissue repair and atrophy after embolic stroke in rat: a magnetic resonance imaging study of erythropoietin therapy. J Neurosci Res 2011; 88:3206-14. [PMID: 20722071 DOI: 10.1002/jnr.22470] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using magnetic resonance imaging (MRI) protocols of T(2)-, T(2)*-, diffusion- and susceptibility-weighted imaging (T2WI, T2*WI, DWI, and SWI, respectively) with a 7T system, we tested the hypothesis that treatment of embolic stroke with erythropoietin (EPO) initiated at 24 hr and administered daily for 7 days after stroke onset has benefit in repairing ischemic cerebral tissue. Adult Wistar rats were subjected to embolic stroke by means of middle cerebral artery occlusion (MCAO) and were randomly assigned to a treatment (n = 11) or a control (n = 11) group. The treated group was given EPO intraperitoneally at a dose of 5,000 IU/kg daily for 7 days starting 24 hr after MCAO. Controls were given an equal volume of saline. MRI was performed at 24 hr and then weekly for 6 weeks. MRI and histological measurements were compared between groups. Serial T2WI demonstrated that expansion of the ipsilateral ventricle was significantly reduced in the EPO-treated rats. The volume ratio of ipsilateral parenchymal tissue relative to the contralateral hemisphere was significantly increased after EPO treatment compared with control animals, indicating that EPO significantly reduces atrophy of the ipsilateral hemisphere, although no significant differences in ischemic lesion volume were observed between the two groups. Angiogenesis and white matter remodeling were significantly increased and occurred earlier in EPO-treated animals than in the controls, as evident from T2*WI and diffusion anisotropy maps, respectively. These data indicate that EPO treatment initiated 24 hr poststroke promotes angiogenesis and axonal remodeling in the ischemic boundary, which may potentially reduce atrophy of the ipsilateral hemisphere.
Collapse
Affiliation(s)
- Guangliang Ding
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang SH, Li Q, Deng ZH, Ji X, Jiang X, Ge X, Bo QQ, Cui JY, Zhang LZ, Liu JK, Hong M. Neanthes japonica (Iznka) fibrinolytic enzyme reduced cerebral infarction, cerebral edema and increased antioxidation in rat models of focal cerebral ischemia. Neurosci Lett 2010; 489:16-9. [PMID: 21129442 DOI: 10.1016/j.neulet.2010.11.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/16/2010] [Accepted: 11/19/2010] [Indexed: 11/15/2022]
Abstract
Thrombolytic agent is increasingly being used in treating acute ischemic stroke. A novel protease with strong thrombolytic activity, Neanthes japonica (Iznka) fibrinolytic enzyme (NJF) discovered in our laboratory has been reported with characteristics of direct hydrolyzing fibrin and fibrinogen. The neuroprotective effect of NJF and urokinase (UK) was tested in rat models of middle cerebral artery occlusion (MCAO). The model was successfully produced by introducing an intraluminal suture into the left middle cerebral artery (MCA). NJF (0.25, 0.5, 1mg/kg) was injected intravenously 1h after the onset of reperfusion. Compared with vehicle group, MCAO animals treated with NJF showed dose dependent reduction in cerebral infarction with improved neurological outcome. Meanwhile, ischemia induced cerebral edema was reduced in a dose dependent manner. Treatment with NJF at 0.5mg/kg was almost equivalent to UK at 15,000U/kg dosage in the reduction of cerebral infarction and cerebral edema. Biomedical assay showed that NJF treatment suppressed lipid peroxidation and restored superoxide dismutase (SOD) activities in brain tissue. These results suggest that NJF posses neuroprotective potential in rat MCAO and reperfusion model. Neuroprotection shown by NJF may be attributed to inhibition of lipid peroxidation, increase in endogenous antioxidant defense enzymes.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Department of Biochemistry and Molecular Biology, Norman Bethune College of Medicine, Jilin University, 126 Xinmin Street, Changchun, Jilin Province 130021, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|